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On self-learning mechanism for the output
regulation of second-order affine nonlinear systems

Haiwen Wu, Dabo Xu, and Bayu Jayawardhana

Abstract—This paper studies global robust output regulation of
second-order nonlinear systems with input disturbances that en-
compass the fully-actuated Euler-Lagrange systems. We assume
the availability of relative output (w.r.t. a family of reference
signals) and output derivative measurements. Based on a specific
separation principle and self-learning mechanism, we develop
an internal model-based controller that does not require apriori
knowledge of reference and disturbance signals and it only as-
sumes that the kernels of these signals are a family of exosystems
with unknown parameters (e.g., amplitudes, frequencies or time
periods). The proposed control framework has a self-learning
mechanism that extricates itself from requiring absolute position
measurement nor precise knowledge of the feedforward kernel
signals. By requiring the high-level task/trajectory planner to
use the same class of kernels in constraining the trajectories,
the proposed low-level controller is able to learn the desired
trajectories, to suppress the disturbance signals, and to adapt
itself to the uncertain plant parameters. The framework enables
a plug-and-play control mechanism in both levels of control.

Index Terms—Nonlinear systems, servo systems, output regu-
lation, internal model principle, certainty equivalence principle,
adaptive control.

I. INTRODUCTION

Background In the design of modern control systems, the
use of second-order systems as prototypical models has played
an important role in the development of modern nonlinear
control theories [2], [3]. They have been used in the study
of geometric control theory, to obtain insights on dissipative
and passive systems and to obtain constructive nonlinear
control design such as, backstepping, feedback linearization
and adaptive control. In this context, Euler-Lagrange (EL)
systems form a large class of second-order systems which
have been studied well for the past centuries and represent
well electro-mechanical systems, see for instance, [4], [5], [6].

In recent decades, there have been progresses in the lit-
erature of EL nonlinear control systems that deal with the
trajectory tracking control problem with ubiquitous applica-
tions in high-precision mechatronics systems and advanced
robotic systems. We refer to the monographs [7], [5], [4],
[6], [8] for a general overview of progresses in this field. In
early studies, one may refer to [9], [10], [11] for a variety
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of adaptive inverse dynamics control methods, and refer to
[12], [13], [14], [15], [16] for passivity-based adaptive control
methods. Relevant to the present study, recent studies on
control of EL systems can be found in [17], [18], [19],
[20], [21], [22] with relevant references thereof, coming up
with notable advanced nonlinear control developments. Other
relevant nonlinear control systems besides the aforementioned
EL systems are, to name a few, wing-rock motions in [23],
chaotic Duffing systems in [24], and MEMS resonators in [25].

In all of the aforementioned results, the output regulator
relies on the apriori knowledge of the reference signal and its
derivatives, which becomes essentially the feedforward part of
the tracking controller. Consequently the high-level controller,
which pre-computes the reference signals to solve and opti-
mize higher-level tasks, is not independent/separated from the
low-level tracking controller [26], [27]. Such design is usually
referred to as the so-called feedforward approach due to the
requirement of the reference signal and its derivatives. In other
words, these output regulators do not admit a self-learning
mechanism of the references to enable an appealing separation
principle between the high- (or management & supervision)
and the low- (or control) levels in the hierarchy of information
processing (see [26, pp. 18]).

Motivation For enabling the aforementioned self-learning
capability, it motivates us to embed the classical internal model
principle (see [28], [29]) in the design of tracking controller.
Generally speaking, the internal model-part of our controller is
responsible in predicting the common kernel signals that can
subsequently be used in the output regulator. This allows us to
realize plug-and-play mechanism between the high-level and
low-level controllers, as long as, they agree on the common
kernel or the exosystem which can be created provided that
we know the number of frequencies relating to the reference
and disturbance signals. In other words, a class of exosystems
can firstly be defined as common kernels for both controllers,
based on which, the high-level controller can use them for task
and trajectory planning while the low-level controller employ
them in the internal model-based controller.

Fig. 1 illustrates typical control architectures of mechatronic
systems where high-level and low-level controllers interact
with each other. The left figure shows the interconnection of
both control levels when the standard feedforward approach
is used for the low-level control. In this case, there are active
information exchanges from the high-level controller to the
low-level one: the exosystems state w, the reference trajectory
qref and its derivatives q̇ref, q̈ref. The right figure, on the other
hand, shows the control architecture using the proposed kernel-
based output regulation approach for the low-level control. In
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this figure, the use of common kernels on both control levels
enables the disconnection of information exchanges between
them. The self-learning mechanism in the low-level control
allows for the adaptation of the unknown parameters in the
kernel as well as in the model-based feedback controller.

As an illustrative example, let us consider a simple single-
link manipulator equipped with camera and (incremental)
encoder sensors to provide displacement and velocity mea-
surements as depicted in Fig. 2. In this figure, the relative
displacement error between the end-effector and moving target
effector can be measured by a camera. Based only on these
measurements, our proposed controller will then be able to
generate the desired trajectory and to track it robustly with
respect to parameter uncertainties. In this perspective, the use
of teaching pendant, which records all the motions of the target
robotic behaviour, is no longer needed for training robotic
systems as commonly used nowadays in industry.

Objective & Contribution A primary objective of the present
study is to investigate the problem of globally asymptotically
tracking of fully-actuated systems based only on the use of
relative displacement and velocity feedback in order to track
any reference signals generated by exosystems and be adaptive
to system parameter uncertainties. Specifically, for a class of
fully-actuated uncertain nonlinear systems, we pose the control
problem as a global robust output regulation problem for strict-
feedback nonlinear systems. The challenges in this problem
include the restriction of error-velocity measurement and the
uncertainties such as external disturbances and plant uncertain
parameters. These factors complicate the internal model de-
sign and stabilizing control (w.r.t. an invariant manifold) as
important steps for achieving the final control goal of global
robust output regulation.

The main contribution of the present study is to develop
a self-learning mechanism using an adaptive internal model
approach for solving the asymptotic tracking and disturbance
rejection problem for a general class of nonlinear electro-
mechanical systems by displacement error and velocity feed-
back. In our proposed control design method, we present
explicitly the construction of the adaptive internal model for
a class of second-order nonlinear system (e.g., EL systems)
to which existing approaches can not be applied, as far as we
know of. Particularly, our proposed control design framework
enables the separation of high-level and low-level control
designs where the information exchange between them is only
through the error signal. The use of exosystems as common
kernels facilitates the self-learning mechanism in our proposed
output feedback controller. Furthermore, our technical results
surmount the substantial difficulties in cascade internal model
design and transversal stability analysis for the output regula-
tion of such multivariable nonlinear systems.

Comparative Literature Review For control problems of
uncertain EL systems with input disturbances, relevant results
can be found in [17], [18], [20], [21]. In these results, the
tracking control relies on the availability of feedforward kernel
signals and meanwhile the internal model is specific to realize
the disturbance rejection. Such results can be referred to as
the mixed internal model-based and feedforward approach, cf.

[30], [31]. In comparison, the present study provides solely an
internal model-based feedback approach for the same problem
and a strictly larger class of nonlinear systems to achieve both
asymptotic tracking and disturbance rejection using error and
velocity measurement.

For solving the output regulation problem, the internal
model design is a key step. In literature, there are extensive
results on various internal model design techniques and we
refer to [32] for a thorough recent survey in this subject.
As will be shown later in this paper, the construction of
suitable internal models, which is necessary for solving the
output regulation problem, has been recognized as one of
the main challenges. When the zero-error constraint input
function is polynomial, the design of such internal models has
been discussed in [33], [34], [35], [36], [37] to name but a
few. In general, the plant nonlinearity may not be polynomial
as shown later for a simple one-dimensional EL system in
Example 2.1. Regarding nonlinear internal model construction
for the non-polynomial case, it is in general never a trivial
task, see [38], [39], [40], [41] for pioneering works. In this
case, our work provides new techniques that generalize the
aforementioned works for strict-feedback nonlinear systems
using cascaded internal models.

Outline Section II gives the output regulation problem
formulation and lists some standard assumptions. Section III
presents the main results of this paper. Section IV illustrates
the effectiveness of the proposed controllers by numerical
simulations. The conclusions are given in Section V. All the
technical proofs are put in the Appendix.

Notation | · | is the Euclidean norm in Rn or the induced
matrix norm in Rn×m. R≥0 is the set of non-negative real
numbers. I is an identity matrix of appropriate dimension
from the context. A continuous function α : R≥0 → R≥0

is said to belong to class K if it is strictly increasing and
α(0) = 0. Ko and K∞ are the subclasses of bounded and
unbounded K functions, respectively. γ : R≥0 → R≥0 is of
class L if it is continuous, strictly decreasing and γ(s) → 0
as s → ∞. β : R≥0 × R≥0 → R≥0 is of class KL if,
for each fixed s, β(r, s) belongs to K, and for each fixed
r, function β(r, s) belongs to L. For two continuous and
positive definite functions α1, α2 : R≥0 → R≥0, α1 ∈ O(α2)

implies lim sups→0+
α1(s)
α2(s)

< ∞. Ln∞ is defined as the set
of all piecewise continuous f : R≥0 → Rn such that
supt≥0 |f(t)| < ∞. Ln2 is defined as the set of all piecewise
continuous f : R≥0 → Rn such that

∫∞
0

|f(t)|2dt < ∞.
f(A) stands for image of a set A ⊆ Rn under the mapping
f : Rn → Rm. For column vectors x1, . . . , xn, we write
(x1, . . . , xn)

T := [xT1 , . . . , x
T
n ]
T as the column stacking

vector if no confusion arises from the context, and for matrix
A ∈ Rm×n with column vectors A1, . . . , An, we write
vec(A) := (A1, . . . , An)

T and mat(vec(A)) = A as the
inverse.

II. FORMULATION AND BACKGROUND

Consider uncertain nonlinear systems in the form (see [18])

H(q, w)q̈ +G(q, q̇, w) = u+ dE + d0 (1)
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Fig. 1. Two different control architectures in the control of mechatronics systems. The left figure shows the standard architecture where high-level control
actively exchanges information with the low-level controller for the computation of feedforward control signal. The right figure presents the control architecture
that is enabled with the proposed kernel-based output regulation approach. Due to the use of common kernels in both control levels where the low-level
control kernels are integrated in the self-learning part, active information exchange from the high-level controller to the low-level one is no longer needed.
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Fig. 2. Illustrative example of output regulation problem of a single-link
manipulator where the motion of virtual reference needs to be tracked using
only relative position and velocity in the feedback loop.

where q(t) ∈ Rn is the position vector, q̇(t) ∈ Rn is the veloc-
ity vector and u(t) ∈ Rn is the control input. The signal d0(t)
is an unmodeled disturbance that belongs to Ln2 and dE(t) is
a periodic input disturbance that is generated by a disturbance
exosystem with the exosystem state w(t) ∈ Rnw , which will
be described shortly below. In (1), H(q, w) ∈ Rn×n is a
smooth and uncertain inertia matrix, G(q, q̇, w) is locally
Lipschitz continuous in all its arguments with G(0, 0, w) = 0,
∀w ∈ Rnw . System (1) is said to be fully-actuated if H(q, w)
is nonsingular for all (q, w).

The disturbance exosystem is given by

ẇ = A(σ)w, σ̇ = 0, dE = D(w) (2)

where A and D are assumed to be smooth. In addition to
the disturbance exosystem (2), we assume that the reference
trajectory qref ∈ Rn can be generated by a reference exosystem
(or in the terminology of [42], the target system) as follows

v̇ = S(σ)v, qref = Q(v) (3)

where v(t) ∈ Rnv is the reference exosystem state and the
functions S and Q are assumed to be smooth. Consequently,
the tracking error or regulated output is given by

e = q − qref. (4)

In the exosystem description above, both the exosystem ma-
trices S(σ) and A(σ) of (2) and (3) depend on parameter
σ ∈ Rlσ .

In the present study, as in [43], [34] for nonlinear output reg-
ulation studies, we assume that the exosystem state variables
v(t), w(t) and parameter σ are all unknown and evolve in fixed
compact and (positively) invariant1 sets V ⊂ Rnv , W ⊂ Rnw ,
S ⊂ Rlσ , respectively. For presentation ease, we sometimes
express both the exosystems as above in the following compact
form

ẋ = f(x) with x =

vw
σ

 ∈ X, f(x) =

S(σ)vA(σ)w
0

 (5)

where X = V× S×W is compact and invariant for (5).
System (5) is regarded as the common kernel as mentioned

in Section I, which should be known or at least estimable for
any admissible trajectory tracking controller. More specifically,
if system (5) is known, i.e., both the initial condition x(0) and
the vector field f(x) are known, one can perform feedforward
control to realized trajectory tracking. However, if both x(0)
and f(x) are unknown, one should introduce a self-learning
mechanism to realize the learning of system (5). The latter
circumstance is the focus of the present study.

We note that the plant parametric uncertainties or uncertain
parameters are all constants. Using the compact form (5), we
introduce terms q0(v) and a0(w) satisfying

∂q0(v)

∂v
S(σ)v = 0,

∂a0(w)

∂w
A(σ)w = 0 (6)

as the bias (cf. [33]) of the reference qref = Q(v) and the plant
uncertain parameters or parametric uncertainties arising in (1),
respectively. By the above assumption, both the exosystems
can generate any combination of sinusoids and steps signals

1Here, a set V is said to be (positively) invariant if, for every initial
condition v(0) ∈ V, the solution v(t) of (2) satisfies v(t) ∈ V for all t ≥ 0.
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∑
iAmi sin(σit+ϕi) with unknown parameters of amplitudes

Ami, frequencies σi, and phases ϕi, relying on their initial
conditions v(0) ∈ V, w(0) ∈ W and parameters σ ∈ S.

A. Standard Assumptions

For the rest of the paper, we list the following technical
assumptions commonly used in literature.
H1 The matrix-valued function H(q, w) ∈ Rn×n is positive

definite, i.e., there exist constants cmin, cmax > 0 such
that

cminI ≤ H(q, w) ≤ cmaxI, ∀(q, w) ∈ Rn ×W.

H2 There are smooth functions a(·) ∈ Rla , Y (·) ∈ Rn×la
such that for any reference qref(t) ∈ Rn and continuous
derivatives q̇ref(t) and q̈ref(t), and for any vector v ∈ V,2

H(qref + q0(v), w)q̈ref +G(qref + q0(v), q̇ref, w)

=: Y (qref, q̇ref, q̈ref)a(w, v)

with q0(v) as noted in (6), where Y is the regres-
sor matrix and a(w, v) is such that, in line with (5),
[∂a(w, v)/∂x]f(x) = 0. In other words, a(w, v) con-
tains only the plant parametric uncertainties and constant
reference bias, relating to (6).

H3 For each parameter σ ∈ S, all the eigenvalues of ex-
osystem matrices S(σ) and A(σ) are distinct, on the
imaginary axis, and each entry of Q(v) and D(w) is
a nonlinear polynomial in its argument with unknown
coefficients.

Both the assumptions H1 and H2 are easily verifiable for
the conventional EL systems. Particularly, when q0(v) = 0,
H2 is the standard parameter linearization property, fulfilled
for general EL systems; see [6, Chapter 2] and [5, Chapter 9],
but here system (1) pursued in the present study is independent
of the so-called skew-symmetric property.

B. Problem and Motivation

Problem 2.1: For the composite system (1) and (5) with the
tracking error (4), if possible, find a smooth controller of the
form

ẋc = fc(xc, e, q̇), u = hc(xc, e, q̇) (7)

such that, for every initial condition (v(0), w(0)) ∈ V × W,
q(0), q̇(0) ∈ Rn and for every xc(0), the closed-loop system
(1) and (7) has the following properties:

• (Stability Property) the trajectory (q(t), q̇(t), xc(t)) exists
for all t ≥ 0 and is bounded over [0,∞);

• (Regulation Property) the tracking error lim
t→∞

e(t) = 0.
�

As noted in the preceding section, there are mainly two
methodologies for tracking control of (1) when confined to
model EL systems. One is the adaptive inverse dynamics
control, see [9], [10], [11] and many others. The other is
the passivity-based adaptive control, see [12], [13], [14], [16].

2Here, we use q0(v) to indicate the reference bias and qref + q0(v) is
namely the biased reference.

Besides, one may also refer to [19], [35, Example 4.3] for
recent studies on position feedback design. All these studies
are based on the combination of feedback and feedforward
control method, see Fig. 1 again. More precisely, the availabil-
ity of information on q(t), qref(t) and their time derivatives is
prerequisite, and instead of (7), the control law has generically
the form

ẋc = fc(xc, q, q̇, qref, q̇ref, q̈ref)

u = hc(xc, q, q̇, qref, q̇ref, q̈ref). (8)

On the one hand, the real-time information on q, qref, q̇ref
and q̈ref may not readily be available in order to implement
(8). Firstly, we require a common frame of coordinates for
defining q and qref which may not be accessible for industrial
robots. Secondly, the computation of qref, q̇ref and q̈ref by the
high-level controller requires accurate knowledge of system
parameters which are intrinsically uncertain. These limitations
have restricted the wide adoption of (8) beyond bespoke
robotic solutions as developed and deployed for space or
advanced industrial sectors.

On the other hand, the well-known internal model principle
plays a crucial role in the solvability of the robust output
regulation problem by error feedback [28], [29]. The use of
internal-model based controller has enabled the controller to
recreate the reference trajectories internally within its dynam-
ics [44]. It is able to self-learn the target’s dynamical behavior
based only on the output error feedback. In combination with
adaptive control technique, the controller is able to learn both
the target’s behavior and the plant dynamics. Correspondingly,
we will adopt these two approaches to solve the global
robust output regulation problem for fully-actuated second-
order nonlinear systems.

One may apply the internal model-based control framework
proposed in [38] for the output regulation of lower triangular
nonlinear systems. However it proves to be a non-trivial task as
shown in the following example of a single-link manipulator.
This design example will be further considered sequentially
in the next two sections to demonstrate verifications of the
proposed design conditions and results, respectively.

Example 2.1: Consider the single-link manipulator system
as shown in Fig. 2 and modeled by

Jq̈ +mgl cos(q) = u+ dE (9)

where m > 0 is the mass, J > 0 is the moment of inertia
about the joint axis and l > 0 is the distance from its axis of
rotation to the center of mass. Notice that system (9) is non-
polynomial, due to the trigonometric nonlinearity cos(q). Let
us consider the asymptotic tracking control problem with a
reference signal generated by (3) while rejecting a periodic
disturbance signal generated by (2) using only the relative
error measurement e = qref − q and without having direct
measurement of q.

To this end, following [43, pp. 83], the so-called zero-error
constrained input can be written as

u⋆(x) = J
∂ξ⋆(v)

∂v
S(σ)v +mgl cos(Q(v))−D(w) (10)
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where ξ⋆(v) = [∂Q(v)/∂v]S(σ)v, which is obtained from
(3), (4) and (9). From (10), we observe that u⋆(x) is not
polynomial, and the internal model design conditions of [38],
[45], [34] are not verifiable. Moreover, it is too difficult to
apply standard Slotine-Li controller or its variants as we do
not have the measurement of q. To the best of our knowledge,
even when both w and σ are known, the construction of an
internal model-based global robust output regulator is still an
open issue.

Nonetheless, by exploiting the parameter linearization prop-
erty in H2, the unknown system parameters (J,mgl) can be
learned through adaptation. It provides the capability of gener-
ating the non-polynomial zero-error constrained input u⋆(x).
This will be further explained and resolved in Example 3.1
later. �

C. Internal Model Characterization and Stability Notions

For solving nonlinear output regulation problems, there are
two key ingredients when error output feedback is concerned.
The first one is the design of admissible internal models that
provide self-learning of the desired feedforward control input.
The second one is the design of a stabilizing control law for
the augmented systems, comprising of the plant dynamics and
the internal model. The latter one must ensure that the output-
zeroing manifold is attractive for a given initial region.

Correspondingly, for solving Problem 2.1, we need the fol-
lowing technical notions. Consider (1) and (5) in the following
compact form

ẋ = f(x) (11a)
q̇ = ξ (11b)

H(q, w)ξ̇ = u+D(w)−G(q, ξ, w) + d0 (11c)
e = q −Q(v) (11d)

where e is the regulated output. Associated to (11) above,
we need to solve the regulator equations (see [46] or [43,
Chapter 3]). In fact, it has a globally defined solution{

q⋆ = q⋆(x), ξ⋆ = ξ⋆(x), u⋆ = u⋆(x)
}

with x ∈ X in line with (5), and

q⋆ = Q(v), ξ⋆ =
∂Q(v)

∂v
S(σ)v (12)

u⋆ = H(q⋆(x), w)ψ⋆(x) +G(q⋆(x), ξ⋆(x), w)−D(w)

where ψ⋆(x) = [∂ξ⋆(x)/∂x]f(x). On the basis of (12), we
define the zero-error constrained state and input manifold as{
(q, ξ, u) = (q⋆(x), ξ⋆(x), u⋆(x)) : x ∈ X

}
to be invariant

for system (11c), where the regulated output e = 0. In this
regards, any admissible output regulator that solves Problem
2.1 must generate a control input signal u(t) that converges
asymptotically to u⋆(x(t)), which subsequently guarantees
that e(t) → 0 as t → ∞. As mentioned before, since the
information of u⋆(x) is not directly available to the controller,
we will provide a constructive design of an internal model that
can provide u⋆(x). Following [43, Definition 6.6], we provide
a characterization of admissible internal models in this study.

Definition 2.1: (Internal Model Candidates) For system (11)
with control input u, a dynamical compensator of the form

η̇ = γ(η, x, u) (13)

is said to be a pseudo internal model with output u if, it
satisfies the following internal model property:

• There exist smooth functions θ(x) ∈ Rℓ and Γ(θ, x) ∈
Rn such that, for all x ∈ X,

∂θ(x)

∂x
f(x) = γ(θ(x), x, u⋆(x)), u⋆(x) = Γ(θ(x), x)

referred to as a generator of u⋆(x).

Moreover, if the vector field γ(η, x, u) in (13) is independent
of the exosystem state x, then it is said to be an implementable
internal model with output u. �

Definition 2.1 has been given to characterize the internal
model property only. It should be noted that this is not
sufficient enough to succeed the output regulation synthesis
because of the following reason. As elaborated in [38], after
the internal model design, one needs to further solve the
stabilizing control of the augmented system, composed of the
plant dynamics and the designed internal model. In this study,
although the fully-actuated plant in (11) itself is controllable or
stabilizable (see [7, Chapter 12]), it may not be the case for
the augmented system. Hence, an admissible internal model
should be further specified to enjoy certain stability properties
and in turn the solvability of the output regulation. Such a
stability property is crucial to ensure certain stabilizability
property relating to the associated augmented system. This
indeed motivates us to carefully select or develop stability
and stabilizing tools to carry out the current output regulation
synthesis.

In the rest of this section, we revisit some useful stability
notions for nonlinear systems transformable in the form

ż = F (z, x, u), ẋ = f(x) (14)

with state (z, x) ∈ Rn × X and input u ∈ Rm, where X
is a restricted invariant set for subsystem ẋ = f(x), and
the vector field F : Rn × X × Rm → Rn, F (0, x, 0) = 0
for all x, is locally Lipschitz in its arguments. Let Z(t) =
Z(z(0), x(0), u, t), t ≥ 0, be the (unique) solution with initial
condition (z(0), x(0)) and input u ∈ Rm.

The following transversal stability definitions are technically
inspired and given in the spirit of [47] and [48] on zero-input
transversal (local) uniform exponential stability (0-TUES),
transversal ISS (TISS), and TiISS.

Definition 2.2: (0-TUES) System (14) is 0-TUES if, the
zero-input system is forward complete and there exist numbers
r, k, λ > 0 such that, for every (z(0), x(0)) ∈ Rn × X with
z(0) restricted in a neighborhood of its origin,

|Z(z(0), x(0), 0, t)| ≤ k|z(0)| exp(−λt), t ≥ 0.

�

Definition 2.3: (TISS & TiISS) System (14) is said to be
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Fig. 3. Roadmap and descriptions for technical results.

• TISS if there exist functions β ∈ KL, γ ∈ K∞ such that
for any initial state (z(0), x(0)) ∈ Rn × X and for any
input u(t) ∈ Lm∞, it is forward complete and satisfies

|Z(t)| ≤ β(|z(0), x(0)|, t) + γ
(

sup
0≤s≤t

|u(s)|
)
, t ≥ 0.

• TiISS if there exist functions β ∈ KL, α, γ ∈ K∞ such
that for any initial state (z(0), x(0)) ∈ Rn × X and for
any input u(t) ∈ Lm∞, it is forward complete and satisfies

α(|Z(t)|) ≤ β(|z(0), x(0)|, t) +
∫ t

0

γ(|u(s)|)ds, t ≥ 0.

�
The proceeding stability properties can be validated based

on Lyapunov-like functions, analogous to the iISS notion and
its equivalent or sufficient Lyapunov function characterization.

III. MAIN RESULTS

A. Cascading Internal Models via Certainty Equivalence

Let us begin with introducing a specific nonlinear internal
model candidate serving the output regulation of system (11)
in accordance with the characterization in Definition 2.1.

Specifically, we first present Lemma 3.1 for the design of a
reference internal model with output ξ, and Lemma 3.2 for the
design of a pseudo disturbance internal model with output u.
It is then followed by Lemma 3.3 that gives a crucial certainty
equivalence property. We refer to Fig. 3 for the roadmap on
the technical results presented in this section.

Lemma 3.1: Consider the subsystem (11a) and (11b) with
ξ as virtual input and (11d) as regulated output. Then there
is a smooth nonlinear internal model of the affine form

η̇ = φa(η) +Naξ =: γa(η, ξ), η ∈ Rℓ (15)

with output ξ per Definition 2.1, satisfying the internal model
property: there exist smooth functions θ(x) ∈ Rℓ, Γ(θ) ∈ Rn
such that, for all x ∈ X,

∂θ(x)

∂x
f(x) = γa(θ(x), ξ

⋆(x)), ξ⋆(x) = Γ ◦ θ(x). (16)

Moreover, the output function Γ(·) can be chosen to be smooth,
globally defined, and compactly supported. 3

3A continuous function is said to be compactly supported if it is zero outside
a compact set.

Lemma 3.2: Consider system (11) satisfying H2. Let

c(x) =
(
q⋆(x)− q0(v), ξ

⋆(x), ψ⋆(x)
)T ∈ R3n (17)

where q0(v) is a reference bias. Then one can construct a
smooth pseudo internal model of an affine form

ζ̇ = φb(ζ, c) +Nbu =: γb(ζ, c, u), c = c(x), ζ ∈ Rl (18)

with output u per Definition 2.1, satisfying the internal model
property: there exist smooth functions ϑ : X → Rl, ρ : ϑ(X)×
c(X)× X → Rn such that, for all x ∈ X,

∂ϑ(x)

∂x
f(x) = γb(ϑ(x), c(x), u

⋆(x))

u⋆(x) = ρ(ϑ(x), c(x), x)

where ρ(·) takes the form

ρ(ϑ(x), c(x), x) = ρ1(ϑ(x)) + ρ2(ϑ(x), c(x))Ω (19)

with Ω := Ω(a(w, v), σ), for smooth functions ρ1(·), ρ2(·),
and Ω(·) of appropriate dimensions. Moreover, the function
ρ(·) can be chosen to be smooth, globally defined, and
compactly supported.

At this place, for the internal model provided in Lemma 3.1,
we note an appealing transversal stability property. For this
purpose, consider the systems (5) and (15), and let ξ = ξ⋆(x)+
ξ̃ where ξ̃ defines the incremental state with respect to ξ⋆. We
have then the following augmented system

ẋ = f(x), η̇ = γa(η, ξ
⋆(x) + ξ̃). (20)

By taking the error coordinate η̄ = η − θ(x), we obtain

ẋ = f(x)

˙̄η = γa(η̄ + θ(x), ξ⋆(x) + ξ̃)− γa(θ(x), ξ
⋆(x)) (21)

which takes the same form as (14) in Definition 2.2. Con-
sequently, the transversal uniform exponential stability notion
can become a useful concept to address the output regulation
design. In this regards, system (20) has a (positively) invariant
manifold {

(η, x) : η = θ(x), x ∈ X
}

(22)

which should be made attractive for fulfilling the regulation
property. In light of [47], we require the manifold (22) to be
0-TUES in the sense of Definition 2.2. As far as the stabilizing
control is concerned, we can show that the system (21) admits
an iISS property with input ξ̃ and output η̄. Specifically,
inspired by [49], the so-called PE condition (see [50, pp. 265])
of θ(x) can ensure the above properties and (21) will become
TiISS. To be shown shortly, such internal model stability
properties is of importance for us to reach the TiISS stability
property of Proposition 3.1.

Next, to validate the pseudo internal model (18), we explore
the following interesting certainty equivalence property from
(15) to (18) based on Lemmas 3.1 and 3.2.

Lemma 3.3: (Certainty Equivalence) Consider the gen-
erator (16) as in Lemma 3.1 and the function c(x) as in
Lemma 3.2. Then there are smooth mappings L1(·) and L2(·)
such that, for all x ∈ X,

q⋆(x) = L1 ◦ θ(x) + q0(v), ψ⋆(x) = L2 ◦ θ(x) (23)
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where q0(v) is a reference bias of qref = Q(v) as specified in
(6). Moreover, there exists a smooth, globally defined, and
compactly supported function L(·) such that the following
equivalence condition

L ◦ θ(x) = c(x) =

L1(θ(x))
Γ(θ(x))
L2(θ(x))

 , ∀x ∈ X (24)

is ensured.

Based on the above technical results, we are ready to design
an implementable internal model that can be used to resolve
output regulation problem of systems (11).

Proposition 3.1: Consider (11) satisfying assumption H2.
Then one can construct an implementable internal model

η̇ = γa(η, ξ)

ζ̇ = γb(ζ, L(η), u)

u = ρ1(ζ) + ρ2(ζ, L(η))Ω (25)

with output u and Ω as in (19) relying on the plant/exosystem
parameters, satisfying both the following conditions:

• (Internal Model Property) For the smooth functions θ(·),
ϑ(·) and ρ(·) specified in Lemmas 3.1 and 3.2, we have,
for all x ∈ X,

∂θ(x)

∂x
f(x) = γa(θ(x), ξ

⋆(x))

∂ϑ(x)

∂x
f(x) = γb(ϑ(x), L ◦ θ(x), u⋆(x))

u⋆(x) = ρ(ϑ(x), L ◦ θ(x), x)
= ρ1(ϑ(x)) + ρ2(ϑ(x), c(x))Ω. (26)

• (Stability Property) For system (18), let x(t) be any
trajectory of exosystem (5) and

z(t) =
(
z1(t), z2(t)

)T
, ũ(t) =

(
ũ1(t), ũ2(t)

)T
z1(t) = η(t)− θ(x(t)), z2(t) = ζ(t)− ϑ(x(t))

ũ1(t) = ξ(t)− ξ⋆(x(t)), ũ2(t) = u(t)− u⋆(x(t))

N̄ = block diag(Na, Nb) (27)

be the new coordinates and inputs. Further let

F (z, x, ũ) =
(
F1(z1, x, ũ), F2(z, x, ũ)

)T
F1(z1, x, ũ) = γa(z1 + θ, ũ1 + ξ⋆)− γa(θ, ξ

⋆)

F2(z, x, ũ) = γb(z2 + ϑ,L(z1 + θ), ũ2 + u⋆)

− γb(ϑ,L(θ), u
⋆).

If the trajectory x(t) of (5) is such that θ(x(t)) is of PE
in the sense of [50, pp. 265] then for an external input
ν ∈ R2n, the following dynamics

ż = F (z + N̄ν, x, ũ), ẋ = f(x) (28)

where matrix N̄ is given in (27), is TiISS w.r.t. input
(ũ, ν) per Definition 2.3 and moreover is 0-TUES.

We remark here that the PE condition in Proposition 3.1
is mild and frequently used in the adaptive output regulation
design. This can be fulfilled if the degree of minimal zeroing
polynomial is known, or equivalent to the following condition:

the number of excited modes of the reference exosystem or
the order of the reference exosystem is known.

Proposition 3.1 has two key ingredients for resolving the
output regulation problem. One is to provide a specific internal
model taking a cascaded interconnection structure. The other
is that its stability ensures the important stabilizability of the
augmented system, composed of the plant dynamics and the
implementable internal model. The latter will be shown shortly
in the next subsection.

B. Transveral Stability Analysis for the Augmented System

Combining the internal model (25) to the composite system
(11) gives the following augmented system

ẋ = f(x)

η̇ = γa(η, ξ)

q̇ = ξ

ζ̇ = γb(ζ, L(η), u)

H(q, w)ξ̇ = u+D(w)−G(q, q̇, w) + d0

e = q −Q(v). (29)

Correspondingly, it is sufficient enough to design an output
regulator for u that only uses the available measurement
(e, ξ, η, ζ) such that the zeroing output manifold

{(η, q, ζ, ξ) = (θ(x), q⋆(x), ϑ(x), ξ⋆(x)) : x ∈ X} (30)

is globally attractive or stable in some sense.
At this moment, it remains to stabilize system (29) w.r.t. its

invariant manifold (30) to imply the solvability of Problem 2.1.
Let us first consider the basic situation of the system with
known parameter vector Ω in (19) or (26).

Toward that end, based on (11d) and (27) with ũ1, ũ2 thereof
replaced by

ξ̃ = ξ − Γ(η), ū = u− ρ1(ζ)− ρ2(ζ, L(η))Ω

respectively, we write the translated system as

ẋ = f(x)

ż1 = F1(z1, x, ξ̃ + Γ̃(z1, x))

ė = ξ̃ + Γ̃(z1, x)

ż2 = F2(z, x, ū+ ρ̃(z, x))

H(q, w)
˙̃
ξ = ū+ ρ̃(z, x) + ∆0(z1, e, ξ̃, x) + d0 (31)

where

Γ̃(z1, x) = Γ(z1 + θ)− Γ(θ)

ρ̃(z, x) = ρ(z2 + ϑ,L(z1 + θ), x)− ρ(ϑ,L(θ), x)

∆0(z1, e, ξ̃, x) = G(L1(θ),Γ(θ), w) +H(L1(θ), w)L2(θ)

−G(e+ L1(θ), ξ̃ + Γ(z1 + θ), w)

−H(e+ L1(θ), w)[dΓ(z1 + θ)/dt]. (32)

In (32), it is easy to show that Γ̃(0, x) = 0, ρ̃(0, x) = 0,
∆0(0, 0, 0, x) = 0, ∀x ∈ X. Thus, the system (31) has
an equilibrium at (z, e, ξ̃) = (0, 0, 0). Clearly, the global
uniform asymptotic stability of this equilibrium, if it can be
done, assures the attractivity of manifold (30) and leads to
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the solvability of the output regulation problem (see [43,
Corollary 7.4] for similar arguments). Hence, we turn to the
stabilization problem.

More specifically, we look for a stabilizing control law

ū = kc(e, ξ̃) (33)

that renders the system (31) 0-TUES per Definition 2.2. In
this way, it leads to a control law of the form

u = kc(e, ξ̃) + ρ1(ζ) + ρ2(ζ, L(η))Ω (34)

for system (29). Once (34) is derived and it is possible to
achieve a modified adaptive control law of the form

u = kc(e, ξ̃) + ρ1(ζ) + ρ2(ζ, L(η))Ω̂

for system (29) with Ω̂(t) to be an estimate of Ω.
To make the above idea clear, for system (31), further let

z1 =

[
z1 −Nae

z2 −NbH(q, w)δ

]
, z2 =

[
e
δ

]
, δ = ξ̃ + k0(e)

as the new coordinates, where k0(·) ∈ Rn together with
subsequent k(·) ∈ Rn are the designing functions to be
specified. Then we write the closed-loop system of system
(31) under the control law (33) or ū = −k(δ) as

ẋ = f(x) (35a)
ż1 = f1(z1, z2, x, d0) (35b)
ż2 = f2(z1, z2, x, d0) (35c)

whose vector fields are given in (69). Compared with system
(31), system (35) is of greater interest due to its intercon-
nection structure for performing the small-gain theorem based
stability analysis.

Specifically, we can show an iISS property for subsystem
(35b) and an ISS one for subsystem (35c), respectively,
validated by the design parameters k0(·), k(·) ∈ Rn. Based
on that, the key idea of managing the stability analysis of
(35) is to adapt the general nonlinear small-gain theorem
proposed in [51, Theorem 2]. Particularly, the iISS network
scenario encountered in system (35) is distinguished from
those addressed in [51], [52], [53] and the special ISS network
in [54].

In what follows, inspired by [51], [54], we modify a specific
small-gain theorem serving the current stability analysis and
moreover, succeeding the Lyapunov function construction. We
use the following verifiable conditions for system (35) in terms
of Lyapunov-like functions.
H0 There are smooth iISS-Lyapunov functions Vi =

Vi(t, zi), i = 1, 2 for subsystems (35b) and (35c), respec-
tively. More specifically, there are smooth comparison
functions ᾱi, αi ∈ K∞, αi, γi, ri ∈ K, i = 1, 2 with
lims→∞ α2(s) = ∞ and lims→∞ γ2(s) < ∞ such that,
for all the arguments,

αi(|zi|) ≤ Vi(t, zi) ≤ ᾱi(|zi|)
V̇i|(35) ≤ −αi(Vi) + γi(V3−i) + ri(|d0|), i = 1, 2. (36)

Furthermore, there are constants κ1, κ2 > 0 rendering
(36) with gain functions

γ1(s) = κ1α2(s), γ2(s) = κ2α1(s), s ≥ 0. (37)

Lemma 3.4: (Small-Gain Theorem) Consider system (35)
satisfying all the conditions of H0. If the gain condition

κ1κ2 < 1 (38)

holds, then there are constants κ̃1, κ̃2 such that the sum-type
function

V (t, z1, z2) =

2∑
i=1

κ̃iVi(t, zi), κ̃1, κ̃2 > 0 (39)

is a well-defined smooth iISS-Lyapunov function for the com-
posite (z1, z2) system.

We point out that Lemma 3.4 can be regarded as a modest
extension from the analogous ISS one proposed in [54, Theo-
rem 3.1 & Remark 3.2]. In comparison with the most general
small-gain theorem of [51, Theorem 2] for the iISS networks,
Lemma 3.4 is special but it lends itself to a direct construction
of the sum-type iISS-Lyapunov functions [52].

Now we state a result on the transversal stability analysis
for system (35). It finally offers a set of design parameters by
verifying all the conditions posed in Lemma 3.4.

Proposition 3.2: Consider system (35) satisfying assump-
tions H1 to H3 and the PE condition posed in Proposition 3.1.
Then there exist smooth design functions k0(·), k(·) ∈ Rn such
that the closed-loop system (35) is TiISS w.r.t. d0. Moreover,
it is 0-TUES.

The transversal stability notions have been adopted here for
managing the by-product stability analysis arising in the output
regulation design. Particularly, a Lyapunov function approach
has been developed to prove the TiISS and 0-TUES properties.
It is worth noting that, as elaborated in [47], such transveral
stability is somehow essential for nonlinear observer design
and synchronization, which can provide necessary and suffi-
cient conditions for the design of observers and synchronizers.
From this viewpoint, our study can be a concrete case study for
nonlinear output regulation design analysis in the terminology
of transversal or incremental stability theory. We shall refer to
[55] for an interesting result in this direction.

C. Main Theorems and Discussions

As a summary of the preceding subsections, we state the
following two main theorems of this study for two extreme
circumstances on the knowledge of parameter vector Ω in (19).
Based on them, the design with partially known parameters
can be easily modified.

Theorem 3.1: Consider the composite system (1) and (5) or
its equivalent representation (11) satisfying assumptions H1 to
H3. Further suppose that the PE condition in Proposition 3.1
holds. If Ω in (19) is given, then Problem 2.1 can be solved
by a smooth control law of the form

η̇ = γa(η, ξ)

ζ̇ = γb(ζ, L(η), u), δ = k0(e) + ξ − Γ(η)

u = −k(δ) + ρ1(ζ) + ρ2(ζ, L(η))Ω

with design parameters as given in Propositions 3.1 and 3.2.
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Theorem 3.1 is a direct consequence of Proposition 3.2. This
can be shown in the same spirit of the problem conversion
from the output regulation problem to a tractable stabilization
one (w.r.t. an equilibrium), cf. [38, Proposition 5.1], whose
proof is omitted. Based on that, when Ω in (19) is unknown,
we can further approach the direct adaptive control redesign to
deal with the controller gain/parameter estimation for system
(11) as the main conclusion of the present study.

Theorem 3.2: Under the same conditions as those in Theo-
rem 3.1 but with unknown parameter Ω, Problem 2.1 is still
solvable by a smooth control law of the form

η̇ = γa(η, ξ)

ζ̇ = γb(ζ, L(η), u)

˙̂
Ω = −λρT2 (ζ, L(η))δ, δ = k0(e) + ξ − Γ(η)

u = −k(δ) + ρ1(ζ) + ρ2(ζ, L(η))Ω̂ (40)

with design parameter λ of a positive definite matrix and all
the others are as given in Theorem 3.1.

To illustrate the results in this section, let us accomplish the
design example of Example 2.1.

Example 3.1: This example illustrates the proposed ap-
proach by solving the output regulation problem of the single-
link manipulator example of Example 2.1

As required in Theorem 3.2, we first verify conditions H1
and H2 for the single-link manipulator in (9). Note that the
condition H1 naturally holds because the moment of inertia
J is always positive. To show condition H2, let us consider
the zero-error constrained input (10) in Example 2.1. Let q0 =
q0(v) be the constant bias of reference qref = Q(v) as in (6).
Using (12) and (23), it can be shown that

u⋆(x) =
[
L2(θ) cos(L1(θ)) − sin(L1(θ))

]
︸ ︷︷ ︸

=:Y (L1(θ),Γ(θ),L2(θ))

 J
mgl cos(q0)
mgl sin(q0)


︸ ︷︷ ︸

=:a(w,v)

−D(w) (41)

where a(w, v) collects all the constant uncertainties due to sys-
tem parameters and reference bias. It verifies the condition H2.
Moreover, the certainty equivalence property in Lemma 3.3 is
also verified. Explicit expressions of functions L1 and L2 are
given in (56) and (57), respectively.

Once conditions H1 and H2 are satisfied, a controller
of the form (40) can be constructed for solving the global
output regulation problem of single-link manipulator. Explicit
expressions of subsystems η and ζ are given in (46) and (50),
respectively. �

We stress that the control law is internal model-based, and
particularly contains a pair of internal models in a cascade in-
terconnection structure. As noted before, such characteristic is
different from that of the nonlinear internal models introduced
in [38] for the general lower triangular systems. In fact, if we
apply [38] for our problem, the internal model would take the
following isolated structure

η̇ = γa(η, ξ), ζ̇ = γb(ζ, u). (42)

However, in this way the required condition (see the conditions
of [38, Lemma 3.1] together with the relevant stability condi-
tion iii) in [38, Proposition 5.1]) may fail here even for the
uncertain single-link manipulator as shown in Example 2.1.

At this point, if we insist on the internal model design within
the structure like (42), it can be shown that the internal model
design conditions proposed in [41, Assumptions A1) & A2)]
are verifiable, not expanded here in details, with the semi-
global output regulation control goal. However, it leads to a
relaxed practical regulation property and does not assure the
asymptotic one, i.e., zero steady-state tracking error. This is
beyond the scope of this research, and it turns out to be an
interesting future direction of combining the internal model
technique proposed in [41] and the learning mechanism in the
present study toward semi-global output regulation design for
electro-mechanical systems.

Besides the above, in comparison with the global control
studies based on the polynomial conditions, see, for example,
[56, Equation (15)], Theorem 3.1 or 3.2 of this paper is still of
interest and potential to offer a distinguished solution by virtue
of the cascade internal models. Similarly, for the relevant semi-
global output regulation studies, we further point out that the
proposed method is also promising to be applicable for more
nonlinear systems than before. For example, the usual internal
model design condition for semi-global output regulation by
error feedback, such as those in [34] and [35, Chapter 5], fails
and thus it does not lead to asymptotic tracking due to the same
reason as that encountered in constructing (42). In summary,
the proposed internal model is more constructive thanks to the
use of additional velocity measurement and the embedding of
the self-learning mechanism in the proposed regulator as well.

Finally, we shall note that the proposed approach pos-
sesses certain scalability, cf. [57]. For example, the required
conditions H1 and H2 are verifiable when the number of
DOF grows to the popular 6 or 7-DOF robotic manipulators,
and the proposed controller performs well. Nevertheless, the
computational complexity of course increases as expected
in the computation of the dynamic regressor matrix in the
condition H2.

IV. SIMULATION SETUP AND RESULTS

In this section, the effectiveness of the proposed approach
is demonstrated by applying the Theorem 3.2 to the tracking
and disturbance rejection control of single- and two-link
manipulators, and van der Pol oscillator. 4

Example 4.1: In this example, we present simulation results
for single- and two-link manipulators. For a computational
setup, all the reference signals are piecewise continuous as
shown in Fig. 4 and 5, respectively, and the disturbance in
each channel is a pure unity harmonic.

For the single-link manipulator presented in Example 2.1
and solved in Example 3.1, we apply Theorem 3.2 with
parameters λ = 1, m1i = (1, 1.4142)T , i = 1, Λ = 1,
k0(e) = 10(1 + e2)e, k(δ) = 10(1 + δ2)δ. Although the
reference bias changes at 30 and 60 second, respectively, and

4Matlab codes of all the simulations are available at
https://github.com/haiwenwu/ELOR2021.
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the frequency changes at 60 second, Fig. 4 shows that the
tracking error tends to zeros in each time interval.

For the two-link robot manipulator, we refer to [5, Ex-
ample 6.2] for system model and physical parameters. By
applying Theorem 3.2 with parameters λ = 30I , m1i =
(1, 1.4142)T , i = 1, 2, Λ = 10I , k0(e) = (10(1+e21)e1, 10(1+
e22)e2)

T , k(δ) = (10(8 + δ21)δ1, 10(8 + δ22)δ2)
T , the position

tracking error response is shown in Fig. 5. �
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Fig. 4. Reference signal qref(t) and tracking error e(t) for the single-link
manipulator in Example 4.1.
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Fig. 5. Reference signal qref(t) and tracking error e(t) for the two-link
manipulator in Example 4.1.
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Fig. 6. Reference signal qref(t) and tracking error e(t) in Example 4.2.

Example 4.2: Borrowed from [34] and for a global regulator
design, consider the controlled van der Pol oscillator

q̈ + q − w1q̇ + q̇3 + w2qq̇
2 = u

perturbed by w2qq̇
2, where q ∈ R is the state, u ∈ R is the

control input, w1, w2 are constant uncertain parameters whose
values range in a compact set. As in [34], the objective is
to make the state q asymptotically track a reference signal
qref that is generated by an exosystem (3). Assume that w =
(w1, w2)

T is such that 0.5 ≤ w1 ≤ 1.5 and 1.5 ≤ w2 ≤ 2.5
and the desired steady-state input u⋆(x) is given by

u⋆ = q⋆(x) + ξ⋆3(x) + ψ⋆(x)− w1ξ
⋆(x) + w2q

⋆(x)ξ⋆2(x).

Applying Theorem 3.2, the controller can be modified as

η̇ = γa(η, ξ)

˙̂
Ω = −λρT2 (η)δ, δ = k0(e) + ξ − Γ(η)

u = −k(δ) + ρ1(η) + ρ2(η)Ω̂

since the external input disturbance is absent, where ρ1,
ρ2 are specified as ρ1 = L1(η) + Γ3(η) + L2(η), ρ2 =[
−Γ(η) L1(η)Γ

2(η)
]
. The simulating reference is set the

same as that in [34], shown in Fig. 6. The design parameters
in controller are chosen as λ = 100I , Λ = 500I , k0(e) = 5e,
k(δ) = 5δ. The parameter in M1 is chosen as m1 =
(1, 2.7, 3.4, 2.1)T during [0, 25) (s) and m1 = (1, 1.4142)T

during [25, 90) (s). In the last time interval [90, 110] (s), the
reference signal is set zero, and in this case the internal model
is no need. The tracking error response is shown in Fig. 6.

To close this example, we note that the design method of
[37] is applicable here using internal models of the structure
(42). In sharp contrast to that, the proposed learning-based
design is distinguished and it provides an alternative but
reduced-order controller, e.g., the controller order is reduced
from 11 to 6 in the case of the period [25, 90) (s). �

V. CONCLUSION

We have studied a self-learning mechanism-based global
robust output regulation design for second-order nonlinear
systems subject to external input disturbances by error and
velocity feedback. Specifically, based on a certainty equiva-
lence principle method, we proposed a novel class of nonlinear
internal models taking a cascade interconnection structure with
strictly relaxed conditions than before. It can get through the
hurdles for constructive internal model design in nonlinear
output regulation of electro-mechanical systems.

APPENDIX A
PROOF OF LEMMA 3.1

The proof is sketched as a practical modification of [49,
Theorem 3.1], leading to an interesting reduced-order redesign.

For the sake of presentation ease, we denote

⟨x⟩ = (x1, 0, x2, 0, . . . , xn, 0)
T ∈ R2n

odd[x] = (x1, x3, x5, · · · )T , even[x] = (x2, x4, x6, · · · )T

as induced vectors of a vector x = (x1, . . . , xn)
T ∈ Rn.

Recalling (12), we write ξ⋆(x) = (ξ⋆1(x), . . . , ξ
⋆
n(x))

T whose
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entries are all polynomials in v. For i = 1, . . . , n, suppose that
ξ⋆i (x) is unbiased, then each ξ⋆i (x) has a minimal zeroing poly-
nomial (see [43, Remark 6.15]) Pi(s) = sℓi −

∑ℓi/2
j=1 bijs

2j−2

for an even integer ℓi and a set of real numbers {bij =

bij(σ)}ℓi/2j=1 . Let

Ξi(x) =

[
ξ⋆i (x)

dξ⋆i (x)

dt
· · · d(ℓi−1)ξ⋆i (x)

dt(ℓi−1)

]T
(43)

Φi(bi) =

[
0ℓi−1 Iℓi−1

−bi1 0, . . . ,−biℓi/2, 0

]
, Ψi =

[
1

0ℓi−1

]T
where bi := bi(σ) = (bi1, . . . , biℓi/2)

T . Then we have to be a
generator of ξ⋆i (x) in the sense of Definition 2.1.

Select any controllable pair (M1i, N1i) with

M1i =

[
0ℓi−1 Iℓi−1

−mT
1i

]
, N1i =

[
0ℓi−1

1

]
where m1i ∈ Rℓi is given so that M1i is Hurwitz. Solving
the Sylvester equation Ti(bi)Φi(bi) = MiTi(bi) + NiΨi
determines the unique and nonsingular solution Ti(bi) (see
[58, Theorem 2]). In a similar manner as the proof of [49,
Theorem 3.1] but for a reduced-order design, we claim that,
for each i = 1, . . . , n, the following system

[∂θia(x)/∂x]f(x) =M1iθia(x) +N1iθic(x)

0 = −odd[θia(x)]
{
odd[θia(x)]

T θib(σ)

+ even[θia(x)]
T even[m1i]− θic(x)

}
[∂θic(x)/∂x]f(x) = −θic(x) + ξ⋆i (x)

ξ⋆i (x) = Γ1i ◦ θi(x), x ∈ X (44)

can be made a well-defined generator of ξ⋆i (x), where θi(x) =
(θia(x), θib(σ), θic(x))

T , and the output mapping Γ1i(θi) is
smooth, globally defined, and compactly supported such that,
for all x ∈ X,

Γ1i(θi(x))

= [m1i − ⟨ϱ1i(θib(σ))⟩]T [Φi ◦ ϱ1i(θib(σ)) + I]θia(x) (45)

where ϱ1i(θib) := odd[m1i]−θib. This can be shown by means
of the closed-form solution θi(x) of each (44).

Denote θa = (θ1a, . . . , θna)
T , θb = (θ1b, . . . , θnb)

T ,
θc = (θ1c, . . . , θnc)

T , m1 = (m11, . . . ,m1n)
T , and let

M1, N1,Ψ,Φ, χ1(θa), χ2(θa) be block matrices with diagonal
blocks M1i, N1i,Ψi,Φi, odd[θia], even[θia] for i = 1, . . . , n,
respectively. Then we rewrite (44) in a compact form

[∂θa(x)/∂x]f(x) =M1θa(x) +N1θc(x)

0 = −Λχ1(θa(x))
{
χT1 (θa(x))θb(σ)

+ χ2(θa(x))
T even[m1]− θc(x)

}
[∂θc(x)/∂x]f(x) = −θc(x) + ξ⋆(x).

It finally leads to the following internal model

η̇a =M1ηa +N1ηc

η̇b = −Λχ1(ηa)
{
χT1 (ηa)ηb + χT2 (ηa)even[m1]− ηc

}
η̇c = −ηc + ξ, η = (ηa, ηb, ηc)

T ∈ Rℓ (46)

taking the form (15) for any positive definite matrix Λ, with
output mapping Γ(·) = (Γ11(·), . . . ,Γ1n(·))T to be smooth,

globally defined, and compactly supported, satisfying (45).
The proof is complete.

APPENDIX B
PROOF OF LEMMA 3.2

Consider function u⋆(x) as a solution to the regulator
equations (12) and c(x) as in (17). Our main objective in this
proof is to construct a pseudo internal model with output u by
means of establishing a suitable generator of u⋆(x). Toward
this end, we first note that

u⋆(x) = H(q⋆, w)ψ⋆ +G(q⋆, ξ⋆, w)−D(w)

= Y (q⋆ − q0(v), ξ
⋆, ψ⋆)a−D(w) =: Ȳ (c)a−D(w).

Since each entry of D(w) is polynomial in w, as shown
in Appendix A, it has a minimal zeroing polynomial of
degree li for i = 1, · · · , n. One can select any controllable
pair (M2i, N2i) with M2i ∈ Rli×li being Hurwitz, and
denote M2 = block diag(M21, . . . ,M2n) ∈ Rlb×lb , N2 =
block diag(N21, . . . , N2n), M2a = Ila ⊗M2, N2a = Ila ⊗N2

with la as the dimension of a(w, v) in H2 and lb =
∑n
i=1 li.

Now we claim that the following equations

[∂ϑa(x)/∂x]f(x) =M2aϑa(x) +N2avec(Ȳ (c(x)))

[∂ϑb(x)/∂x]f(x) =M2ϑb(x) +N2u
⋆(x) (47)

where M2a = Ila ⊗ M2, N2a = Ila ⊗ N2 with la as
the dimension of a(w, v) in H2, are solvable with solution
ϑ(x) = (ϑa(x), ϑb(x))

T . In fact, different from deriving the
closed-form solution for (44) in the proof of Lemma 3.1, this
can be shown in the same manner as that of [41, Proposition 1]
to assure the solvability of (47) and thus is omitted. At this
moment, we remark that the proof of Lemma 3.2 here is
independent of the closed-form solution ϑ(x) of (47) which is
as a matter of fact never realistic for the current study because
of the strong nonlinearities involed in (u⋆(x), Ȳ (c(x))).

Next, to make (47) a valid generator of u⋆(x), we need to
assign an output mapping in accordance with Definition 2.1.
For this purpose, we observe that (47) is a linear system w.r.t.
the external input (u⋆, Ȳ (c)). Moreover, by using u⋆(x) =
Ȳ (c)a − D(w), generator (47) satisfies [∂ϑ̄(x)/∂x]f(x) =
M2ϑ̄(x) + N2[u

⋆(x) − Ȳ (c(x))a] where ϑ̄(x) = ϑb(x) −
mat

(
ϑb(x)

)
a with output u⋆(x) = Ȳ (c(x))a − D(w) =

Ȳ (c(x))a+Γ2(σ)ϑ(x). Employing the classical additivity and
homogeneity properties relating to linear dynamical systems,
we can set an output mapping of system (47) as

u⋆(x) = Γ2(σ)[ϑb(x)− mat(ϑa(x))a] + Ȳ (c(x))a (48)

where Γ2(σ) ∈ Rn×lb can be parameterized as Γ2(σ) =
Γ0 +

∑nµ

i=1 Γ̆2iµi(σ) for an integer nµ > 0. Note that
the right hand side of (48) is a function of (ϑ(x), c(x))
of linearly parameterized. For another representation of this
function, using the facts that Γ0 ∈ Rn×lb and Γ̆2i ∈ Rn×lb
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for i = 1, . . . , nµ are all matrices independent of σ, and
µi(σ) ∈ R are functions of σ, we have

u⋆(x) = Γ0ϑb(x) + [Γ̆21ϑb(x), · · · , Γ̆2nµ
ϑb(x)]µ(σ)

−
[
Γ̆21mat(ϑa(x)), · · · , Γ̆2nµ

mat(ϑa(x))
]

· (µ(σ)⊗ a)− Γ0mat(ϑa(x))a+ Ȳ (c(x))a

=: ρ1(ϑ(x)) + ρ2(ϑ(x), c(x))Ω(a, σ) (49)

where Ω(a, σ) =
(
µ(σ), (µ(σ) ⊗ a), a

)T
, µ(σ) =

(µ1(σ), . . . , µnµ(σ))
T , ρ1(ϑ) = Γ0ϑb and ρ2(ϑ, c) =[

ρ21, ρ22, ρ23
]

with ρ21 =
[
Γ̆21ϑb, · · · , Γ̆2nµϑb

]
, ρ21 =[

Γ̆21mat(ϑa), · · · , Γ̆2nµmat(ϑa)
]

and ρ23 =
[
Ȳ (c) −

Γ0mat(ϑa)
]
. As a summary, the system (47) with output (49)

is a generator of u⋆(x), and gives the following internal model

ζ̇a =M2aζa +N2avec(Ȳ (L(η)))

ζ̇b =M2ζb +N2u, ζ = (ζa, ζb)
T ∈ Rl (50)

with output u and the output mapping is specified in (49). It
exactly takes the form (18). The proof is complete.

APPENDIX C
PROOF OF LEMMA 3.3

We need to solve q⋆(x) and ψ⋆(x) in (12) from θ(x) satis-
fying (44). Recall (12) and we write q̄⋆(x) := q⋆(x)− q0(v),
q̄⋆(x) = (q̄⋆1(x), . . . , q̄

⋆
n(x))

T , ψ⋆(x) = (ψ⋆1(x), . . . , ψ
⋆
n(x))

T .
For each i = 1, . . . , n, denote

Πi(x) =
[
q̄⋆i (x)

dq̄⋆i (x)
dt · · · d(ℓi−1)q̄⋆i (x)

dt(ℓi−1)

]T
Υi(x) =

[
ψ⋆i (x)

dψ⋆
i (x)
dt · · · d(ℓi−1)ψ⋆

i (x)

dt(ℓi−1)

]T
. (51)

Since q̄⋆i (x), ξ
⋆
i (x) and ψ⋆i (x) satisfying (12) have common

frequency parameters, using Ξi(x) and Φi(bi) in (43), we have

Πi(x) = Φ−1
i (bi)Ξi(x), Υi(x) = Φi(bi)Ξi(x). (52)

By generator (44) and [49, Proof of Theorem 3.1], it assures
an invertible matrix Tai(bi) satisfying

T−1
ai (bi)Φi(bi)Tai(bi) = Φi(bi) (53)

and

ΨiT
−1
ai (bi) = [m1i − ⟨bi⟩]T [Φi(bi) + I] (54)

such that

θia(x) = Tai(bi)Ξi(x). (55)

Substituting (55) into (52) gives

Πi(x) = Φ−1
i (bi)T

−1
ai (bi)︸ ︷︷ ︸

using (53)

θia(x) = T−1
ai (bi)Φ

−1
i (bi)θia(x)

Υi(x) = Φi(bi)T
−1
ai (bi)︸ ︷︷ ︸

using (53)

θia(x) = T−1
ai (bi)Φi(bi)θia(x).

This together with (51) and Ψi in (43) yields

q̄⋆i (x) = ΨiΠi(x) = ΨiT
−1
ai (bi)︸ ︷︷ ︸

using (54)

Φ−1
i (bi)θia(x)

= [m1i − ⟨bi⟩]T [Φi(bi) + I]Φ−1
i (bi)θia(x)

ψ⋆i (x) = ΨiΥi(x) = ΨiT
−1
ai (bi)︸ ︷︷ ︸

using (54)

Φi(bi)θia(x)

= [m1i − ⟨bi⟩]T [Φi(bi) + I]Φi(bi)θia(x).

In the above, using the fact bi(σ) = odd[m1i] − θib(σ) =:
ϱi(θib(σ)) and by substitutions, it gives, for all x ∈ X,

q̄⋆i (x) = [m1i − ⟨ϱi(θib)⟩]T [Φi ◦ ϱi(θib) + I]

· [Φi ◦ ϱi(θib)]−1θia(x) =: L1i ◦ θi(x) (56)

ψ⋆i (x) = [m1i − ⟨ϱi(θib)⟩]T [Φi ◦ ϱi(θib) + I]

· [Φi ◦ ϱi(θib)]θia(x) =: L2i ◦ θi(x). (57)

Finally, the smooth mappings L1(·) and L2(·) in (23) can be
obtained as L1(θ) = (L11(θ1), . . . , L1n(θn))

T and L2(θ) =
(L21(θ1), . . . , L2n(θn))

T , respectively. The proof is complete.

APPENDIX D
PROOF OF PROPOSITION 3.1

Before proceeding, we recall a convenient and useful tech-
nical lemma whose proof can be found in [59, Lemma A.1].

Lemma D.1: Suppose that F : Rn×D is continuous in (e, x)
for a compact set D and satisfies: (i) F (0, x) = 0,∀x ∈ D;
(ii) F (e, x) is locally Lipschitz at e = 0 uniformly on D. Then
there is a function γ ∈ K ∩ O(Id) such that

|F (e, x)|2 ≤ γ(|e|2), ∀(e, x) ∈ Rn × D. (58)

In addition to (i) and (ii), suppose that (iii) f(e, x) is bounded
for all (e, x) ∈ Rn × D. Then we have γ ∈ Ko ∩ O(Id)
satisfying (58).

The internal model property in Proposition 3.1 can be easily
shown by combining Lemmas 3.1, 3.2, and 3.3, and thus is
omitted. In the rest of the proof, we only show the TiISS
property by a Lyapunov function approach.

Toward that end, we first write up the vector field of (28)
explicitly. Using (46), (50), and (27), we write

F (z + N̄ν, x, ũ) =


M1z1a +N1(z1c + ν1)

−Θ(x)z1b + F1b(z1 +Naν1, x)
−(z1c + ν1) + ũ1

M2az2a + F2a(z1 +Naν1, x)
M2(z2b +N2ν2) +N2ũ2


with Θ(x) = Λχ(θa(x))χ

T (θa(x)), z1 = (z1a, z1b, z1c)
T ,

z2 = (z2a, z2b)
T , Na = [0 0 In]

T , Nb = [0 NT
2 ]T ,

F1b := F1b(z1 +Naν1, x), F2a := F2a(z1 +Naν1, x) and

F1b = χ1(θa)χ1(θa)
T (z1b + θb) + χ1(θa)χ2(θa)

T even(m1)

− Λ[χ1(z1a + θa)χ1(z1a + θa)(z1b + θb)

+ χ1(z1a + θa)(z1c + ν1 + θc)− χ1(θa)θc

− χ1(z1a + θa)χ2(z1a + θa)
T even(m1)]

F2a = N2avec
(
Ȳ (L(z1 +Naν1 + θ))− Ȳ (L(θ))

)
.
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The proof is divided in two parts.
Part I. The task of this part is to construct a smooth iISS

Lyapunov function V0(t, z) for system (28) such that

α0(|z|) ≤ V0(t, z) ≤ ᾱ0(|z|)
V̇0|(28) ≤ −α0(V0) + c0|ν|2 + c0|ũ|2 (59)

for constant c0 > 0 and α0, ᾱ0 ∈ K∞, α0 ∈ K∩O(Id). Based
on that, the 0-TUES property can be assured.

Consider the z1b-subsystem of system (28). By the as-
sumption and using [50, Theorem 6.14], the induced linear
system ż1b = −Θ(x)z1b is exponentially stable at origin. Thus,
using the converse theorem [35, Theorem 4.14], there is a
smooth Lyapunov function W (t, z1b) satisfying cb1|z1b|2 ≤
W (t, z1b) ≤ cb2|z1b|2, ∂W

∂t − ∂W
∂z1b

Θ(x)z1b ≤ −cb3|z1b|2,
|∂W/∂z1b| ≤ cb4|z1b| for constants cb1, cb2, cb3, cb4 > 0. Let

V1b(t, z1b) = ln(1 +W (t, z1b)) (60)

which satisfies, α1b(|z1b|) ≤ V1b(t, z1b) ≤ ᾱ1b(|z1b|), ∀(t, z1b)
with α1b(s) = ln(1 + cb1s

2), ᾱ1b(s) = cb2s
2, s ≥ 0, and

V̇1b|(28) =
1

1 +W (t, z1b)

[
∂W

∂t
− ∂W

∂z1b

(
Θ(x)z1b − F1b

)]
≤ − cb3|z1b|2

1 +W (t, z1b)
+

cb4|z1b|
1 +W (t, z1b)

|F1b|.

In the above, note that, there is a constant cb > 0 such that
cb4|z1b||F1b| ≤ cb3

2 |z1b|2 + cb(1 + cb1|z1b|2)(|z1a|2 + |z1c|2 +
|ν1|2) and consequently,

V̇1b|(28) ≤ −cb3
2

|z1b|2

1 + cb2|z1b|2
+ cb(|z1a|2 + |z1c|2 + |ν1|2)

≤ −αb(|z1b|2) + cb(|z1a|2 + |z1c|2 + |ν1|2)

where αb(s) = c̄b
s

1+s ∈ Ko∩O(Id) for some constant c̄b > 0.
Next, using (60), let

V0(t, z) = ϵ−1
1 zT1aP1z1a + ϵ−1

2 V1b(t, z1b) +
ϵ−1
3

2
zT1cz1c

+ zT2aP2az2a + zT2bP2bz2b (61)

where P1, P2a and P2b are positive definite matrices solved
from MT

1 P1 + P1M1 = −I , MT
2aP2a + P2aM2a = −I and

MT
2 P2b + P2bM2 = −I , and ϵ1, ϵ2, ϵ3 > 0 to be specified by

(66). For (61), it manifests the 1st condition of (59) with

α0(s) = c0 ln(1 + s2), ᾱ0(s) = c̄0s
2, s > 0. (62)

To show the second condition of (59), we have

V̇0|(28) ≤ −
(ϵ−1

1

2
− ϵ−1

2 cb

)
|z1a|2 − ϵ−1

2 αb(|z1b|2)−
1

2
|z2a|2

−
(ϵ−1

3

2
− 4ϵ−1

1 |P1N1|2 − ϵ−1
2 cb

)
|z1c|2 −

1

2
|z2b|2

+
(
4ϵ−1

1 |P1N1|2 + ϵ−1
2 cb + ϵ−1

3

)
|ν1|2 + ϵ−1

3 |ũ1|2

+ 4|P2bM2N2|2|ν2|2 + 4|P2bN2|2|ũ2|2

+ 2|P2a|2|F2a(z1 +Naν1, x)|2. (63)

In (63), since function L is smooth and compactly supported,
by Lemma D.1, we have, for all x ∈ X,

|F2a(z1+Naν1, x)|2 ≤ c2a(|z1a|2+αb(|z1b|2)+|z1c|2+|ν1|2)
(64)

for a constant c2a > 0. Substituting (64) into (63) gives

V̇0|(28) ≤ −
(ϵ−1

1

2
− ϵ−1

2 cb − c2a

)
|z1a|2

−
(
ϵ−1
2 − 2|P2a|2c2a

)
αb(|z1b|2)

−
(ϵ−1

3

2
− 4ϵ−1

1 |P1N1|2 − ϵ−1
2 cb − c2a

)
|z1c|2

− 1

2
|z2a|2 −

1

2
|z2b|2 + c0(|ν|2 + |ũ|2) (65)

with c0 = max{4|P2bM2N2|2, 4|P2bN2|2, 2|P2a|2c2a+ ϵ−1
3 +

ϵ−1
2 cb + 4ϵ−1

1 |P1N1|2}.
In (65), choosing parameters ϵ1, ϵ2, ϵ3 such that

ϵ−1
2 − 2|P2a|2c2a ≥ cz1 , ϵ−1

1 /2− ϵ−1
2 cb − c2a ≥ cz1

ϵ−1
3 /2− 4ϵ−1

1 |P1N1|2 − ϵ−1
2 cb − c2a ≥ cz1 (66)

for a constant cz1 > 0, yields

V̇0|(28) ≤ −cz1 |z1a|2 − cz1αb(|z1b|2)− cz1 |z1c|2

− 1

2
|z2a|2 −

1

2
|z2b|2 + c0(|ν|2 + |ũ|2).

Further, using the inequalities s ≥ s/(1 + s), ∀s ≥ 0, and∑N
i=1 αb(si) ≥ αb(

∑N
i=1 si), ∀si ≥ 0, i = 1, . . . , N for any

positive integer N , there is a constant c̄0 > 0 such that the
second condition of (59) is confirmed with gain function

α0(s) = c̄0s/(1 + s), s ≥ 0. (67)

In the rest of this part, on the basis of (62) and (67),
we show the 0-TUES property of system (28). In fact, note
that there are constants s0, c01, c̄01, c01 such that α0(s) ≥
c01s

2, ᾱ0(s) ≤ c̄01s
2, α0(s) ≥ c01s,∀s ∈ [0, s0). Thus, using

[3, Theorem 4.10], it confirms the exponential stability of
system (28) at the origin with (ũ, ν) = (0, 0). Immediately,
there are constants cz1, cz2 > 0 such that every trajectory
z(t) = z(z(0), x(0), 0, t) starting from z(0) in a neighborhood
of z = 0 and x(0) ∈ X satisfies |z(z(0), x(0), 0, t)| ≤
cz1|z(0)| exp(−cz2t), t ≥ 0.

Part II. This part is to show the TiISS property of system
(28). Consider (59) with the specified gain function α0(·) in
(67). Using [48, Lemma IV.1], one has functions ρ̄1 ∈ K∞
and ρ̄2 ∈ L so that α0(s

2) ≥ ρ̄1(s)ρ̄2(s), ∀s ≥ 0. Then, it is
possible to choose a Lipschitz continuous and positive definite
function ρ̄(·) so that ρ̄(s) ≤

(
ρ̄1 ◦ ᾱ−1

0 (s)
) (
ρ̄2 ◦ α−1

0 (s)
)
,

∀s ≥ 0. Substituting these inequalities in (59) gives

V̇0|(28) ≤ −ρ̄1(|z|)ρ̄2(|z|) + c01(|ν|2 + |ũ|2)
≤ −ρ̄(V0(t, z)) + c01(|ν|2 + |ũ|2).

Further by [48, Corollary IV.3], one has β0 ∈ KL such that

V0(t, z(t)) ≤ β0(V0(0, z(0)), t)

+ 2c01

∫ t

0

(c01|ν(s)|2 + |ũ(s)|2)ds, t ≥ 0.

The above together with the first condition of (59) gives

α0(|z(t)|) ≤ V0(t, z(t))

≤ β0

(
ᾱ0

(
|(z(0), x(0))|

)
, t
)

+ 2c01

∫ t

0

(|ν(s)|2 + |ũ(s)|2)ds, t ≥ 0.
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which manifests the TiISS property of system (28) in the sense
of Definition 2.3. The proof is complete.

APPENDIX E
PROOF OF LEMMA 3.4

Consider (39) with constants κ̃1, κ̃2 to be specified. Using
the dissipation inequalities (36), we have

V̇ |(35) ≤
2∑
i=1

κ̃i
{
− αi(Vi) + γi(Vi+1) + ri(|d0|)

}
≤ −(κ̃1 − κ̃2κ2)α1(V1)− (κ̃2 − κ̃1κ1)α2(V2) + r(|d0|)

with r(·) := κ̃1r1(·) + κ̃2r2(·). In the above, it is possible to
select parameters κ̃1, κ̃2 > 0 such that κ̃1 − κ̃2κ2 ≥ 1 and
κ̃2 − κ̃1κ1 ≥ 1. In fact, using the gain condition κ1κ2 < 1,
we can set κ̃1 = 1+κ2

1−κ1κ2
and κ̃2 = 1+κ1

1−κ1κ2
which assures

V̇ |(35) ≤ −α1(V1)− α2(V2) + r(|d0|). (68)

Hence, all the relevant conditions in [48, Definition II.2] are
verifiable that ends the proof.

APPENDIX F
PROOF OF PROPOSITION 3.2

To carry out the proof, we need the expressions of the vector
fields of (35) described by

f1(z1, z2, x, d0) = F (z1 + N̄ν, x, ũ) (69)

f2(z1, z2, x, d0) =

[
−k0(e) + δ +∆1(z1, e, x)

H−1
(
− k(δ) + ∆2(z1, z2, x) + d0

)]
where z11 = z1−Nae, z12 = z2−NbH(e+Q(v), w)δ, ν1 = e,
ν2 = H(e+Q(v), w)δ, ũ1 = 0, ũ2 = ∆3(z11, z2, x, d0) and

∆1 = Γ(z11 + θ +Nae)− Γ(θ)

∆2 = ρ(z12 + ϑ+NbHδ,L(z11 + θ +Nae), x) +D(w)

−G
(
e+Q(v), δ − k0(e) + Γ(z11 + θ +Nae), w

)
−H(e+Q(v), w)[dΓ(z11 + θ +Nae)/dt]

+H(e+Q(v), w)[dk0(e)/dt]

∆3 = G(Q(v),Γ(θ), w) +H(Q(v), w)L2(θ)

−G
(
e+Q(v), δ − k0(e) + Γ(z11 + θ +Nae), w

)
−H(e+Q(v), w)[dΓ(z11 + θ +Nae)/dt]

+H(e+Q(v), w)[dk0(e)/dt] +H ′δ + d0

with H ′ = dH(e+Q(v), w)/dt.

To proceed, we first set the Lyapunov function candidates.
Recalling (59), let

V1(t, z1) = V0(t, z1), V2(t, z2) =
1

2
eT e+

1

2
δTHδ. (70)

The 1st condition of (36) is manifest. The rest of the proof is
divided in two parts.

Part I. This part is to verify the condition H0 for Lemma 3.4
for (35b) and (35c). Note that system (35b) is written in line

with system (28) with specified (ũ, ν) given in (69). According
to (59), we have a constant c1 > 0 so that

V̇1|(35b) ≤ −α0(V1) + c0(|e|2 + |Hδ|2 + |∆3|2)︸ ︷︷ ︸
using H1 & Lemma D.1

≤ −α0(V1) + c1
(
αb(|z11|) + V2 + |d0|2

)
.

Again, choosing ϵ1, ϵ2, ϵ3 in (66) such that cz1 − c1 > 1, it
assures the 2nd inequality of (36) with

α1(s) = cϵs/(1 + s), γ1(s) = c1s, r1(s) = c1s
2 (71)

for a constant cϵ > 0. Similarly, we have

V̇2|(35c)

= eT (−k0(e) + δ +∆1) + δT (−k(δ) + ∆2 + d0 +H ′δ)

= −eT k0(e)− δT k(δ) + eT∆1 + δT (∆2 + d0 +H ′δ)︸ ︷︷ ︸
using Young’s inequality & Lemma D.1

≤ −eT k0(e)− δT k(δ) + c2
(
α0(V1) + V2 + |d0|2

)
(72)

for a constant c2 > 0. Thus, by selecting k0 and k, we obtain
the 2nd inequality of (36) with

α2(s) = cks, γ2(s) = c2s/(1 + s), r2(s) = c2s
2 (73)

for some constant ck > 0 relying on k0 and k.
Part II. Let us now verify the condition (38) in Lemma 3.4

and construct the iISS-Lyapunov function for the composite
(z1, z2)-subsystem.

In view of (71) and (73), the condition of (37) is verifiable
with constants κ1 = c1/ck and κ2 = c2/cϵ. Recall (72). It
is possible to choose k0 and k such that ck > c1c2/cϵ, and
(38) is verified. Consequently, we have κ̃1 = ckcϵ+ckc2

ckcϵ−c1c2 > 0,
κ̃2 = ckcϵ+c1cϵ

ckcϵ−c1c2 > 0 so that the function of (39) satisfies
(68). Finally, the TiISS and 0-TUES properties for system
(35) can be assured using the Lyapunov function (39) in the
same manner as that has been done in Appendix D. The proof
is complete.

APPENDIX G
PROOF OF THEOREM 3.2

The proof is routine in the theory of direct adaptive control.
Suppose that [0, tmax) for tmax ≥ 0 or tmax = ∞ is the
argument of the maximal time interval such that the trajectory
of the closed-loop system (11) and (40) in question is well
defined. Using the same function V (t, z1, z2) as specified in
(39), let

U(t, z1, z2, Ω̃) = V (t, z1, z2) +
1

2
Ω̃Tλ−1Ω̃

with Ω̃(t) = Ω̂(t) − Ω be a Lyapunov function candidate. It
satisfies, with Ω in (35) replaced by Ω̂(t),

U̇ |(35)+(40) ≤ −α1(V1)− α2(V2) + r(|d0|), t ∈ [0, tmax).

By integration in both sides of the above, we have∫ t

0

[
α1(V1(s, z1(s))) + α2(V2(s, z2(s)))

]
ds

≤ c3

∫ t

0

|d0(s)|2ds+ U(0, z1(0), z2(0), Ω̃(0))

− U(t, z1(t), z2(t), Ω̃(t)), ∀t ∈ [0, tmax).
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Suppose d0(t) ∈ Ln2 . Then U(t, z1(t), z2(t), Ω̃(t)) is bounded
over [0, tmax) with tmax = ∞, and further by the continuity,
(z1(t), z2(t), Ω̃(t)) and (η(t), ζ(t), q(t), q̇(t)) are all bounded
over the time interval [0,∞).

In the rest, we show the convergence of e(t). Let E(t) =
1
2

∫ t
0
eT (s)e(s)ds, t ≥ 0. This together with V1(t, z1),

V2(t, z2) in (70) and the dissipation gain α1 and α2 in
(71) and (73) respectively implies, for t ≥ 0, E(t) ≤∫ t
0

[
α1(V1(s, z1(s))) + α2(V2(s, z2(s)))

]
ds <∞ and Ë(t) =

eT (−k0(e)e+δ+∆1(z1, e, x)) <∞. Hence, Ė(t) = |e(t)|2/2
is uniformly continuous. Using Barbalat’s Lemma [5, pp. 123],
it implies limt→∞ Ė(t) = 0, and immediately, limt→∞ e(t) =
0. The proof is complete.
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