601 research outputs found

    Fuzzy Distributed Cooperative Tracking For A Swarm Of Unmanned Aerial Vehicles With Heterogeneous Goals

    Get PDF
    Copyright © 2015 Taylor & Francis This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Systems Science on 29 December 2015, available online: http://www.tandfonline.com/10.1080/00207721.2015.1126380This article proposes a systematic analysis for a tracking problem which ensures cooperation amongst a swarm of UAVs, modelled as nonlinear systems with linear and angular velocity constraints, in order to achieve different goals. A distributed Takagi-Sugeno (TS) framework design is adopted for the representation of the nonlinear model of the dynamics of the UAVs. The distributed control law which is introduced is composed of both node and network level information. Firstly feedback gains are synthesised using a Parallel Distributed Compensation (PDC) control law structure, for a collection of isolated UAVs; ignoring communications among the swarm. Then secondly, based on an alternation-like procedure, the resulting feedback gains are used to determine Lyapunov matrices which are utilised at network level to incorporate into the control law the relative differences in the states of the vehicles, and to induce cooperative behaviour. Eventually stability is guaranteed for the entire swarm. The control synthesis is performed using tools from linear control theory: in particular the design criteria are posed as Linear Matrix Inequalities (LMIs). An example based on a UAV tracking scenario is included to outline the efficacy of the approach.Engineering and Physical Sciences Research Council (EPSRC

    A Survey of Resilient Coordination for Cyber-Physical Systems Against Malicious Attacks

    Full text link
    Cyber-physical systems (CPSs) facilitate the integration of physical entities and cyber infrastructures through the utilization of pervasive computational resources and communication units, leading to improved efficiency, automation, and practical viability in both academia and industry. Due to its openness and distributed characteristics, a critical issue prevalent in CPSs is to guarantee resilience in presence of malicious attacks. This paper conducts a comprehensive survey of recent advances on resilient coordination for CPSs. Different from existing survey papers, we focus on the node injection attack and propose a novel taxonomy according to the multi-layered framework of CPS. Furthermore, miscellaneous resilient coordination problems are discussed in this survey. Specifically, some preliminaries and the fundamental problem settings are given at the beginning. Subsequently, based on a multi-layered framework of CPSs, promising results of resilient consensus are classified and reviewed from three perspectives: physical structure, communication mechanism, and network topology. Next, two typical application scenarios, i.e., multi-robot systems and smart grids are exemplified to extend resilient consensus to other coordination tasks. Particularly, we examine resilient containment and resilient distributed optimization problems, both of which demonstrate the applicability of resilient coordination approaches. Finally, potential avenues are highlighted for future research.Comment: 35 pages, 7 figures, 5 table
    • …
    corecore