6 research outputs found

    Comparison of PID Controller with Model Predictive Controller for Milk Pasteurization Process

    Full text link
    Proportional–Integral–Derivative (PID) controllers are used in many of the Industries for various process control applications. PID controller yields a long settling time and overshoot which is not good for the process control applications. PID is not suitable for many of the complex process control applications. This research paper is about developing a better type of controller, known as MPC (Model Predictive Control). The aim of the paper is to design MPC and PID for a pasteurization process. In this manuscript comparison of PID controller with MPC is made and the responses are presented. MPC is an advanced control strategy that uses the internal dynamic model of the process and a history of past control moves and a combination of many different technologies to predict the future plant output. The dynamics of the pasteurization process was estimated by using system identification from the experimental data. The quality of different model structures was checked using best fit with data validation, residual and stability analysis. Auto-regressive with exogenous input (ARX322) model was chosen as a model structure of the pasteurization process and fits about 80.37% with datavalidation. MPC and PID control strategies were designed using ARX322 model structure. The controller performance was compared based on settling time, percent of overshoot and stability analysis and the results are presented

    Design of Model Predictive Controller for Pasteurization Process

    Get PDF
    This research paper is about developing a better type of controller, known as MPC (Model Predictive Control) for pasteurization process plant. MPC is an advanced control strategy that uses the internal dynamic model of the process and a history of past control moves and a combination of many different technologies to predict the future plant output.. The dynamics of the pasteurization process was estimated by using system identification from the experimental data. The quality of model structures like ARX, ARMAX, BJ and CT model structures was checked based on  best fit with validation data, residual analysis and stability analysis. Auto-regressive with exogenous input (ARX322) model was chosen as a model structure of the pasteurization process dynamics and fits about 79.75% with validation data. Finally MPC control strategies were designed using ARX322 model structure.

    Variable Sign-Sign Wilcoxon Algorithm: A Novel Approach for System Identification

    Get PDF
    Behavioral study of a system is an important task. It is mostly used in real world environments and became an emergent research area. Various approaches have been proposed since last two decades. In this paper, we have proposed a Variable Step-Size Sign-Sign Wilcoxon Approach, that is robust against outliers in the desired data and also convergence speed is faster than Wilcoxon norm based approach. In initial stage, Sign-Sign Wilcoxon norm based approach has been verified. Next to it, the proposed approach is verified and compared for the application in Linear and Non-linear system identification problems in presence of outliers.DOI:http://dx.doi.org/10.11591/ijece.v2i4.83

    Comparison of PID Controller with Model Predictive Controller for Milk Pasteurization Process

    Get PDF
    Proportional–Integral–Derivative (PID) controllers are used in many of the Industries for various process control applications. PID controller yields a long settling time and overshoot which is not good for the process control applications. PID is not suitable for many of the complex process control applications. This research paper is about developing  a better type of controller, known as MPC (Model Predictive Control). The aim of the paper is to design MPC and PID for a pasteurization process. In this manuscript comparison of PID controller with MPC is made and the responses are presented. MPC is an advanced control strategy that uses the internal dynamic model of the process and a history of past control moves and a combination of many different technologies to predict the future plant output. The dynamics of the pasteurization process was estimated by using system identification from the experimental data. The quality of different model structures was checked using best fit with data validation, residual and stability analysis. Auto-regressive with exogenous input (ARX322) model was chosen as a model structure of the pasteurization process and fits about 80.37% with datavalidation. MPC and PID control strategies were designed using ARX322 model structure. The controller performance was compared based on settling time, percent of overshoot and stability analysis and the results are presented

    Application of Wilcoxon Norm for increased Outlier Insensitivity in Function Approximation Problems

    Get PDF
    In system theory, characterization and identification are fundamental problems. When the plant behavior is completely unknown, it may be characterized using certain model and then, its identification may be carried out with some artificial neural networks(ANN) (like multilayer perceptron(MLP) or functional link artificial neural network(FLANN) ) or Radial Basis Functions(RBF) using some learning rules such as the back propagation (BP) algorithm. They offer flexibility, adaptability and versatility, for the use of a variety of approaches to meet a specific goal, depending upon the circumstances and the requirements of the design specifications. The first aim of the present thesis is to provide a framework for the systematic design of adaptation laws for nonlinear system identification and channel equalization. While constructing an artificial neural network or a radial basis function neural network, the designer is often faced with the problem of choosing a network of the right size for the task. Using a smaller neural network decreases the cost of computation and increases generalization ability. However, a network which is too small may never solve the problem, while a larger network might be able to. Transmission bandwidth being one of the most precious resources in digital communication, Communication channels are usually modeled as band-limited linear finite impulse response (FIR) filters with low pass frequency response

    An Improved Generalized Predictive Control in a Robust Dynamic Partial Least Square Framework

    No full text
    To tackle the sensitivity to outliers in system identification, a new robust dynamic partial least squares (PLS) model based on an outliers detection method is proposed in this paper. An improved radial basis function network (RBFN) is adopted to construct the predictive model from inputs and outputs dataset, and a hidden Markov model (HMM) is applied to detect the outliers. After outliers are removed away, a more robust dynamic PLS model is obtained. In addition, an improved generalized predictive control (GPC) with the tuning weights under dynamic PLS framework is proposed to deal with the interaction which is caused by the model mismatch. The results of two simulations demonstrate the effectiveness of proposed method
    corecore