1,173 research outputs found

    Trajectory Clustering and an Application to Airspace Monitoring

    Get PDF
    This paper presents a framework aimed at monitoring the behavior of aircraft in a given airspace. Nominal trajectories are determined and learned using data driven methods. Standard procedures are used by air traffic controllers (ATC) to guide aircraft, ensure the safety of the airspace, and to maximize the runway occupancy. Even though standard procedures are used by ATC, the control of the aircraft remains with the pilots, leading to a large variability in the flight patterns observed. Two methods to identify typical operations and their variability from recorded radar tracks are presented. This knowledge base is then used to monitor the conformance of current operations against operations previously identified as standard. A tool called AirTrajectoryMiner is presented, aiming at monitoring the instantaneous health of the airspace, in real time. The airspace is "healthy" when all aircraft are flying according to the nominal procedures. A measure of complexity is introduced, measuring the conformance of current flight to nominal flight patterns. When an aircraft does not conform, the complexity increases as more attention from ATC is required to ensure a safe separation between aircraft.Comment: 15 pages, 20 figure

    Robust Geometry Estimation using the Generalized Voronoi Covariance Measure

    Get PDF
    The Voronoi Covariance Measure of a compact set K of R^d is a tensor-valued measure that encodes geometric information on K and which is known to be resilient to Hausdorff noise but sensitive to outliers. In this article, we generalize this notion to any distance-like function delta and define the delta-VCM. We show that the delta-VCM is resilient to Hausdorff noise and to outliers, thus providing a tool to estimate robustly normals from a point cloud approximation. We present experiments showing the robustness of our approach for normal and curvature estimation and sharp feature detection

    Detection of Small Holes by the Scale-Invariant Robust Density-Aware Distance (RDAD) Filtration

    Full text link
    A novel topological-data-analytical (TDA) method is proposed to distinguish, from noise, small holes surrounded by high-density regions of a probability density function whose mass is concentrated near a manifold (or more generally, a CW complex) embedded in a high-dimensional Euclidean space. The proposed method is robust against additive noise and outliers. In particular, sample points are allowed to be perturbed away from the manifold. Traditional TDA tools, like those based on the distance filtration, often struggle to distinguish small features from noise, because of their short persistence. An alternative filtration, called Robust Density-Aware Distance (RDAD) filtration, is proposed to prolong the persistence of small holes surrounded by high-density regions. This is achieved by weighting the distance function by the density in the sense of Bell et al. Distance-to-measure is incorporated to enhance stability and mitigate noise due to the density estimation. The utility of the proposed filtration in identifying small holes, as well as its robustness against noise, are illustrated through an analytical example and extensive numerical experiments. Basic mathematical properties of the proposed filtration are proven.Comment: 47 pages, 60 figures, GitHub repo: https://github.com/c-siu/RDA

    A systematic review of data quality issues in knowledge discovery tasks

    Get PDF
    Hay un gran crecimiento en el volumen de datos porque las organizaciones capturan permanentemente la cantidad colectiva de datos para lograr un mejor proceso de toma de decisiones. El desafío mas fundamental es la exploración de los grandes volúmenes de datos y la extracción de conocimiento útil para futuras acciones por medio de tareas para el descubrimiento del conocimiento; sin embargo, muchos datos presentan mala calidad. Presentamos una revisión sistemática de los asuntos de calidad de datos en las áreas del descubrimiento de conocimiento y un estudio de caso aplicado a la enfermedad agrícola conocida como la roya del café.Large volume of data is growing because the organizations are continuously capturing the collective amount of data for better decision-making process. The most fundamental challenge is to explore the large volumes of data and extract useful knowledge for future actions through knowledge discovery tasks, nevertheless many data has poor quality. We presented a systematic review of the data quality issues in knowledge discovery tasks and a case study applied to agricultural disease named coffee rust
    corecore