9 research outputs found

    Robust Optical Wireless Links over Turbulent Media using Diversity Solutions

    Get PDF
    Free-space optic (FSO) technology, i.e., optical wireless communication (OWC), is widely recognized as superior to radio frequency (RF) in many aspects. Visible and invisible optical wireless links solve first/last mile connectivity problems and provide secure, jam-free communication. FSO is license-free and delivers high-speed data rates in the order of Gigabits. Its advantages have fostered significant research efforts aimed at utilizing optical wireless communication, e.g. visible light communication (VLC), for high-speed, secure, indoor communication under the IEEE 802.15.7 standard. However, conventional optical wireless links demand precise optical alignment and suffer from atmospheric turbulence. When compared with RF, they suffer a low degree of reliability and lack robustness. Pointing errors cause optical transceiver misalignment, adversely affecting system reliability. Furthermore, atmospheric turbulence causes irradiance fluctuations and beam broadening of transmitted light. Innovative solutions to overcome limitations on the exploitation of high-speed optical wireless links are greatly needed.Spatial diversity is known to improve RF wireless communication systems. Similar diversity approaches can be adapted for FSO systems to improve its reliability and robustness; however, careful diversity design is needed since FSO apertures typically remain unbalanced as a result of FSO system sensitivity to misalignment. Conventional diversity combining schemes require persistent aperture monitoring and repetitive switching, thus increasing FSO implementation complexities. Furthermore, current RF diversity combining schemes may not be optimized to address the issue of unbalanced FSO receiving apertures.This dissertation investigates two efficient diversity combining schemes for multi-receiving FSO systems: switched diversity combining and generalized selection combining. Both can be exploited to reduce complexity and improve combining efficiency. Unlike maximum ratio combing, equal gain combining, and selective combining, switched diversity simplifies receiver design by avoiding unnecessary switching among receiving apertures. The most significant advantage of generalized combining is its ability to exclude apertures with low quality that could potentially affect the resultant output signal performance.This dissertation also investigates mobile FSO by considering a multi-receiving system in which all receiving FSO apertures are circularly placed on a platform. System mobility and performance are analyzed. Performance results confirm improvements when using angular diversity and generalized selection combining.The précis of this dissertation establishes the foundation of reliable FSO communications using efficient diversity-based solutions. Performance parameters are analyzed mathematically, and then evaluated using computer simulations. A testbed prototype is developed to facilitate the evaluation of optical wireless links via lab experiments

    Mitigation techniques through spatial diversity combining and relay-assisted technology in a turbulence impaired and misaligned free space optical channel.

    Get PDF
    Doctor of Philosophy in Electronic Engineering. University of KwaZulu-Natal, Durban, 2018.In recent times, spectrum resource scarcity in Radio Frequency (RF) systems is one of the biggest and prime issues in the area of wireless communications. Owing to the cost of spectrum, increase in the bandwidth allocation as alternative solution, employed in the recent past, does no longer offer an effective means to fulfilling high demand in higher data rates. Consequently, Free Space Optical (FSO) communication systems has received considerable attention in the research community as an attractive means among other popular solutions to offering high bandwidth and high capacity compared to conventional RF systems. In addition, FSO systems have positive features which include license-free operation, cheap and ease of deployment, immunity to interference, high security, etc. Thus, FSO systems have been favoured in many areas especially, as a viable solution for the last-mile connectivity problem and a potential candidate for heterogeneous wireless backhaul network. With these attractive features, however, FSO systems are weather-dependent wireless channels. Therefore, it is usually susceptible to atmospheric induced turbulence, pointing error and attenuation under adverse weather conditions which impose severe challenges on the system performance and transmission reliability. Thus, before widespread deployment of the system will be possible, promising mitigation techniques need to be found to address these problems. In this thesis, the performance of spatial diversity combining and relay-assisted techniques with Spatial Modulation (SM) as viable mitigating tools to overcome the problem of atmospheric channel impairments along the FSO communication system link is studied. Firstly, the performance analysis of a heterodyne FSO-SM system with different diversity combiners such as Maximum Ratio Combining (MRC), Equal Gain Combining (EGC) and Selection Combining (SC) under the influence of lognormal and Gamma-Gamma atmospheric-induced turbulence fading is presented. A theoretical framework for the system error is provided by deriving the Average Pairwise Error Probability (APEP) expression for each diversity scheme under study and union bounding technique is applied to obtain their Average Bit Error Rate (ABER). Under the influence of Gamma-Gamma turbulence, an APEP expression is obtained through a generalized infinite power series expansion approach and the system performance is further enhanced by convolutional coding technique. Furthermore, the performance of proposed system under the combined effect of misalignment and Gamma-Gamma turbulence fading is also studied using the same mathematical approach. Moreover, the performance analysis of relay-assisted dual-hop heterodyne FSO-SM system with diversity combiners over a Gamma-Gamma atmospheric turbulence channel using Decode-and-Forward (DF) relay and Amplify-and-Forward (AF) relay protocols also is presented. Under DF dual-hop FSO system, power series expansion of the modified Bessel function is used to derive the closed-form expression for the end-to-end APEP expressions for each of the combiners under study over Gamma-Gamma channel, and a tight upper bound on the ABER per hop is given. Thus, the overall end-to-end ABER for the dual-hop FSO system is then evaluated. Under AF dual-hop FSO system, the statistical characteristics of AF relay in terms of Moment Generating Function (MGF), Probability Density Function (PDF) and Cumulative Distribution Function (CDF) are derived for the combined Gamma-Gamma turbulence and/or pointing error distributions channel in terms of Meijer-G function. Based on these expressions, the APEP for each of the under studied combiners is determined and the ABER for the system is given by using union bounding technique. By utilizing the derived ABER expressions, the effective capacity for the considered system is then obtained. Furthermore, the performance of a dual-hop heterodyne FSO-SM asymmetric RF/FSO relaying system with MRC as mitigation tools at the destination is evaluated. The RF link experiences Nakagami-m distribution and FSO link is subjected to Gamma-Gamma distribution with and/or without pointing error. The MGF of the system equivalent SNR is derived using the CDF of the system equivalent SNR. Utilizing the MGF, the APEP for the system is then obtained and the ABER for the system is determined. Finally, owing to the slow nature of the FSO channel, the Block Error Rate (BLER) performance of FSO Subcarrier Intensity Modulation (SIM) system with spatial diversity combiners employing Binary Phase Shift Keying (BPSK) modulation over Gamma-Gamma atmospheric turbulence with and without pointing error is studied. The channel PDF for MRC and EGC by using power series expansion of the modified Bessel function is derived. Through this, the BLER closed-form expressions for the combiners under study are obtained

    Advanced Trends in Wireless Communications

    Get PDF
    Physical limitations on wireless communication channels impose huge challenges to reliable communication. Bandwidth limitations, propagation loss, noise and interference make the wireless channel a narrow pipe that does not readily accommodate rapid flow of data. Thus, researches aim to design systems that are suitable to operate in such channels, in order to have high performance quality of service. Also, the mobility of the communication systems requires further investigations to reduce the complexity and the power consumption of the receiver. This book aims to provide highlights of the current research in the field of wireless communications. The subjects discussed are very valuable to communication researchers rather than researchers in the wireless related areas. The book chapters cover a wide range of wireless communication topics

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    High capacity multiuser multiantenna communication techniques

    Get PDF
    One of the main issues involved in the development of future wireless communication systems is the multiple access technique used to efficiently share the available spectrum among users. In rich multipath environment, spatial dimension can be exploited to meet the increasing number of users and their demands without consuming extra bandwidth and power. Therefore, it is utilized in the multiple-input multiple-output (MIMO) technology to increase the spectral efficiency significantly. However, multiuser MIMO (MU-MIMO) systems are still challenging to be widely adopted in next generation standards. In this thesis, new techniques are proposed to increase the channel and user capacity and improve the error performance of MU-MIMO over Rayleigh fading channel environment. For realistic system design and performance evaluation, channel correlation is considered as one of the main channel impurities due its severe influence on capacity and reliability. Two simple methods called generalized successive coloring technique (GSCT) and generalized iterative coloring technique (GICT) are proposed for accurate generation of correlated Rayleigh fading channels (CRFC). They are designed to overcome the shortcomings of existing methods by avoiding factorization of desired covariance matrix of the Gaussian samples. The superiority of these techniques is demonstrated by extensive simulations of different practical system scenarios. To mitigate the effects of channel correlations, a novel constellation constrained MU-MIMO (CC-MU-MIMO) scheme is proposed using transmit signal design and maximum likelihood joint detection (MLJD) at the receiver. It is designed to maximize the channel capacity and error performance based on principles of maximizing the minimum Euclidean distance (dmin) of composite received signals. Two signal design methods named as unequal power allocation (UPA) and rotation constellation (RC) are utilized to resolve the detection ambiguity caused by correlation. Extensive analysis and simulations demonstrate the effectiveness of considered scheme compared with conventional MU-MIMO. Furthermore, significant gain in SNR is achieved particularly in moderate to high correlations which have direct impact to maintain high user capacity. A new efficient receive antenna selection (RAS) technique referred to as phase difference based selection (PDBS) is proposed for single and multiuser MIMO systems to maximize the capacity over CRFC. It utilizes the received signal constellation to select the subset of antennas with highest (dmin) constellations due to its direct impact on the capacity and BER performance. A low complexity algorithm is designed by employing the Euclidean norm of channel matrix rows with their corresponding phase differences. Capacity analysis and simulation results show that PDBS outperforms norm based selection (NBS) and near to optimal selection (OS) for all correlation and SNR values. This technique provides fast RAS to capture most of the gains promised by multiantenna systems over different channel conditions. Finally, novel group layered MU-MIMO (GL-MU-MIMO) scheme is introduced to exploit the available spectrum for higher user capacity with affordable complexity. It takes the advantages of spatial difference among users and power control at base station to increase the number of users beyond the available number of RF chains. It is achieved by dividing the users into two groups according to their received power, high power group (HPG) and low power group (LPG). Different configurations of low complexity group layered multiuser detection (GL-MUD) and group power allocation ratio (η) are utilized to provide a valuable tradeoff between complexity and overall system performance. Furthermore, RAS diversity is incorporated by using NBS and a new selection algorithm called HPG-PDBS to increase the channel capacity and enhance the error performance. Extensive analysis and simulations demonstrate the superiority of proposed scheme compared with conventional MU-MIMO. By using appropriate value of (η), it shows higher sum rate capacity and substantial increase in the user capacity up to two-fold at target BER and SNR values

    Proceedings of the Mobile Satellite Conference

    Get PDF
    A satellite-based mobile communications system provides voice and data communications to mobile users over a vast geographic area. The technical and service characteristics of mobile satellite systems (MSSs) are presented and form an in-depth view of the current MSS status at the system and subsystem levels. Major emphasis is placed on developments, current and future, in the following critical MSS technology areas: vehicle antennas, networking, modulation and coding, speech compression, channel characterization, space segment technology and MSS experiments. Also, the mobile satellite communications needs of government agencies are addressed, as is the MSS potential to fulfill them
    corecore