544 research outputs found

    Mitigating PAPR in cooperative wireless networks with frequency selective channels and relay selection

    Get PDF
    The focus of this thesis is peak-to-average power ratio (PAPR) reduction in cooperative wireless networks which exploit orthogonal frequency division multiplexing in transmission. To reduce the PAPR clipping is employed at the source node. The first contribution focuses upon an amplify-and-forward (AF) type network with four relay nodes which exploits distributed closed loop extended orthogonal space frequency block coding to improve end-to-end performance. Oversampling and filtering are used at the source node to reduce out-of-band interference and the iterative amplitude reconstruction decoding technique is used at the destination node to mitigate in-band distortion which is introduced by the clipping process. In addition, by exploiting quantized group feedback and phase rotation at two of the relay nodes, the system achieves full cooperative diversity in addition to array gain. The second contribution area is outage probability analysis in the context of multi-relay selection in a cooperative AF network with frequency selective fading channels. The gains of time domain multi-path fading channels with L paths are modeled with an Erlang distribution. General closed form expressions for the lower and upper bounds of outage probability are derived for arbitrary channel length L as a function of end-to-end signal to noise ratio. This analysis is then extended for the case when single relay selection from an arbitrary number of relay nodes M is performed. The spatial and temporal cooperative diversity gain is then analysed. In addition, exact form of outage probability for multi-path channel length L = 2 and selecting the best single relay from an arbitrary number of relay nodes M is obtained. Moreover, selecting a pair of relays when L = 2 or 3 is additionally analysed. Finally, the third contribution context is outage probability analysis of a cooperative AF network with single and two relay pair selection from M available relay nodes together with clipping at the source node, which is explicitly modelled. MATLAB and Maple software based simulations are employed throughout the thesis to support the analytical results and assess the performance of algorithms and methods

    Distributed space-time coding including the golden code with application in cooperative networks

    Get PDF
    This thesis presents new methodologies to improve performance of wireless cooperative networks using the Golden Code. As a form of space-time coding, the Golden Code can achieve diversity-multiplexing tradeoff and the data rate can be twice that of the Alamouti code. In practice, however, asynchronism between relay nodes may reduce performance and channel quality can be degraded from certain antennas. Firstly, a simple offset transmission scheme, which employs full interference cancellation (FIC) and orthogonal frequency division multiplexing (OFDM), is enhanced through the use of four relay nodes and receiver processing to mitigate asynchronism. Then, the potential reduction in diversity gain due to the dependent channel matrix elements in the distributed Golden Code transmission, and the rate penalty of multihop transmission, are mitigated by relay selection based on two-way transmission. The Golden Code is also implemented in an asynchronous one-way relay network over frequency flat and selective channels, and a simple approach to overcome asynchronism is proposed. In one-way communication with computationally efficient sphere decoding, the maximum of the channel parameter means is shown to achieve the best performance for the relay selection through bit error rate simulations. Secondly, to reduce the cost of hardware when multiple antennas are available in a cooperative network, multi-antenna selection is exploited. In this context, maximum-sum transmit antenna selection is proposed. End-to-end signal-to-noise ratio (SNR) is calculated and outage probability analysis is performed when the links are modelled as Rayleigh fading frequency flat channels. The numerical results support the analysis and for a MIMO system maximum-sum selection is shown to outperform maximum-minimum selection. Additionally, pairwise error probability (PEP) analysis is performed for maximum-sum transmit antenna selection with the Golden Code and the diversity order is obtained. Finally, with the assumption of fibre-connected multiple antennas with finite buffers, multiple-antenna selection is implemented on the basis of maximum-sum antenna selection. Frequency flat Rayleigh fading channels are assumed together with a decode and forward transmission scheme. Outage probability analysis is performed by exploiting the steady-state stationarity of a Markov Chain model

    Performance analysis of diversity techniques in wireless communication systems: Cooperative systems with CCI and MIMO-OFDM systems

    Get PDF
    This Dissertation analyzes the performance of ecient digital commu- nication systems, the performance analysis includes the bit error rate (BER) of dier- ent binary and M-ary modulation schemes, and the average channel capacity (ACC) under dierent adaptive transmission protocols, namely, the simultaneous power and rate adaptation protocol (OPRA), the optimal rate with xed power protocol (ORA), the channel inversion with xed rate protocol (CIFR), and the truncated channel in- version with xed transmit power protocol (CTIFR). In this dissertation, BER and ACC performance of interference-limited dual-hop decode-and-forward (DF) relay- ing cooperative systems with co-channel interference (CCI) at both the relay and destination nodes is analyzed in small-scale multipath Nakagami-m fading channels with arbitrary (integer as well as non-integer) values of m. This channel condition is assumed for both the desired signal as well as co-channel interfering signals. In addition, the practical case of unequal average fading powers between the two hops is assumed in the analysis. The analysis assumes an arbitrary number of indepen- dent and non-identically distributed (i.n.i.d.) interfering signals at both relay (R) and destination (D) nodes. Also, the work extended to the case when the receiver employs the maximum ratio combining (MRC) and the equal gain combining (EGC) schemes to exploit the diversity gain

    Cross-Layer Design for Multi-Antenna Ultra-Wideband Systems

    Get PDF
    Ultra-wideband (UWB) is an emerging technology that offers great promises to satisfy the growing demand for low cost and high-speed digital wireless home networks. The enormous bandwidth available, the potential for high data rates, as well as the potential for small size and low processing power long with low implementation cost, all present a unique opportunity for UWB to become a widely adopted radio solution for future wireless home-networking technology. Nevertheless, in order for UWB devices to coexist with other existing wireless technology, the transmitted power level of UWB is strictly limited by the FCC spectral mask. Such limitation poses significant design challenges to any UWB system. This thesis introduces various means to cope with these design challenges. Advanced technologies including multiple-input multiple-output (MIMO) coding, cooperative communications, and cross-layer design are employed to enhance the performance and coverage range of UWB systems. First a MIMO-coding framework for multi-antenna UWB communication systems is developed. By a technique of band hopping in combination with jointly coding across spatial, temporal, and frequency domains, the proposed scheme is able to exploit all the available spatial and frequency diversity, richly inherent in UWB channels. Then, the UWB performance in realistic UWB channel environments is characterized. The proposed performance analysis successfully captures the unique multipath-rich property and random-clustering phenomenon of UWB channels. Next, a cross-layer channel allocation scheme for UWB multiband OFDM systems is proposed. The proposed scheme optimally allocates subbands, transmitted power, and data rates among users by taking into consideration the performance requirement, the power limitation, as well as the band hopping for users with different data rates. Also, an employment of cooperative communications in UWB systems is proposed to enhance the UWB performance and coverage by exploiting the broadcasting nature of wireless channels and the cooperation among UWB devices. Furthermore, an OFDM cooperative protocol is developed and then applied to enhance the performance of UWB systems. The proposed cooperative protocol not only achieves full diversity but also efficiently utilizes the available bandwidth

    Adaptive relay techniques for OFDM-based cooperative communication systems

    Get PDF
    Cooperative communication has been considered as a cost-effective manner to exploit the spatial diversity, improve the quality-of-service and extend transmission coverage. However, there are many challenges faced by cooperative systems which use relays to forward signals to the destination, such as the accumulation of multipath channels, complex resource allocation with the bidirectional asymmetric traffic and reduction of transmission efficiency caused by additional relay overhead. In this thesis, we aim to address the above challenges of cooperative communications, and design the efficient relay systems. Starting with the channel accumulation problem in the amplify-and-forward relay system, we proposed two adaptive schemes for single/multiple-relay networks respectively. These schemes exploit an adaptive guard interval (GI) technique to cover the accumulated delay spread and enhance the transmission efficiency by limiting the overhead. The proposed GI scheme can be implemented without any extra control signal. Extending the adaptive GI scheme to multiple-relay systems, we propose a relay selection strategy which achieves the trade-off between the transmission reliability and overhead by considering both the channel gain and the accumulated delay spread. We then consider resource allocation problem in the two-way decode-and-forward relay system with asymmetric traffic loads. Two allocation algorithms are respectively investigated for time-division and frequency-division relay systems to maximize the end-to-end capacity of the two-way system under a capacity ratio constraint. For the frequency-division systems, a balanced end-to-end capacity is defined as the objective function which combines the requirements of maximizing the end-to-end capacity and achieving the capacity ratio. A suboptimal algorithm is proposed for the frequency-division systems which separates subcarrier allocation and time/power allocation. It can achieve the similar performance with the optimal one with reduced complexity. In order to further enhance the transmission reliability and maintaining low processing delay, we propose an equalize-and-forward (EF) relay scheme. The EF relay equalizes the channel between source and relay to eliminate the channel accumulation without signal regeneration. To reduce the processing time, an efficient parallel structure is applied in the EF relay. Numerical results show that the EF relay exhibits low outage probability at the same data rate as compared to AF and DF schemes

    Performance Analysis in Full-Duplex Relaying Systems withWireless Power Transfer

    Get PDF
    Energy harvesting (EH) technology has become increasingly attractive as an appealing solution to provide long-lasting power for energy-constrained wireless cooperative sensor networks. EH in such networks is particularly important as it can enable information relaying. Different from absorbing energy from intermittent and unpredictable nature, such as solar, wind, and vibration, harvesting from radio frequency (RF) radiated by ambient transmitters has received tremendous attention. The RF signal can convey both information and energy at the same time, which facilitates the development of simultaneous wireless information and power transfer. Besides, ambient RF is widely available from the base station, WIFI, and mobile phone in the current information era. However, some open issues associated with EH are existing in the state-of-art. One of the key challenges is rapid energy loss during the transferring process, especially for long-distance transmission. The other challenge is the design of protocols to optimally coordinate between information and power transmission. Meanwhile, in-band full-duplex (IBFD) communication have gained considerable attraction by researchers, which has the ability to improve system spectral efficiency. IBFD can receive information and forward information at the same time on the same frequency. Since the RF signal can be superimposed, the antenna of the IBFD system receives the RF signal from both desired transmitter and local transmitter. Due to the short distance of the local transmission signals, the received signal power is much larger than the desired transmission signals, which results in faulty receiving of the desired signals. Therefore, it is of great significance to study the local self-interference cancellation method of the IBFD system. In the recent state-of-art, three main types of self-interference cancellations are researched, which are passive cancellations, digital cancellations, and analog cancellations. In this thesis, we study polarization-enabled digital self-interference cancellation (PDC) scheme in IBFD EH systems which cancels self-interference by antenna polarization (propagation domain) and digital processing (digital domain). The theme of this thesis is to address the following two questions: how the selfinterference would be canceled in the IBFD EH system and how to optimize key performances of the system to optimal system performances. This thesis makes five research contributions in the important area of IBFD relaying systems with wireless power transfer. Their applications are primarily in the domains of the Internet of Things (IoT) and 5G-and-beyond wireless networks. The overarching objective of the thesis is to construct analytical system models and evaluate system performance (outage probability, throughput, error) in various scenarios. In all five contributions, system models and analytical expressions of the performance metrics are derived, followed by computer simulations for performance analysis

    Distributed space-time block coding in cooperative relay networks with application in cognitive radio

    Get PDF
    Spatial diversity is an effective technique to combat the effects of severe fading in wireless environments. Recently, cooperative communications has emerged as an attractive communications paradigm that can introduce a new form of spatial diversity which is known as cooperative diversity, that can enhance system reliability without sacrificing the scarce bandwidth resource or consuming more transmit power. It enables single-antenna terminals in a wireless relay network to share their antennas to form a virtual antenna array on the basis of their distributed locations. As such, the same diversity gains as in multi-input multi-output systems can be achieved without requiring multiple-antenna terminals. In this thesis, a new approach to cooperative communications via distributed extended orthogonal space-time block coding (D-EO-STBC) based on limited partial feedback is proposed for cooperative relay networks with three and four relay nodes and then generalized for an arbitrary number of relay nodes. This scheme can achieve full cooperative diversity and full transmission rate in addition to array gain, and it has certain properties that make it alluring for practical systems such as orthogonality, flexibility, low computational complexity and decoding delay, and high robustness to node failure. Versions of the closed-loop D-EO-STBC scheme based on cooperative orthogonal frequency division multiplexing type transmission are also proposed for both flat and frequency-selective fading channels which can overcome imperfect synchronization in the network. As such, this proposed technique can effectively cope with the effects of fading and timing errors. Moreover, to increase the end-to-end data rate, this scheme is extended for two-way relay networks through a three-time slot framework. On the other hand, to substantially reduce the feedback channel overhead, limited feedback approaches based on parameter quantization are proposed. In particular, an optimal one-bit partial feedback approach is proposed for the generalized D-O-STBC scheme to maximize the array gain. To further enhance the end-to-end bit error rate performance of the cooperative relay system, a relay selection scheme based on D-EO-STBC is then proposed. Finally, to highlight the utility of the proposed D-EO-STBC scheme, an application to cognitive radio is studied

    Adaptive relaying protocol multiple-input multiple-output orthogonal frequency division multiplexing systems

    Get PDF
    In wireless broadband communications, orthogonal frequency division multiplexing (OFDM) has been adopted as a promising technique to mitigate multi-path fading and provide high spectral efficiency. In addition, cooperative communication can explore spatial diversity where several users or nodes share their resources and cooperate through distributed transmission. The concatenation of the OFDM technique with relaying systems can enhance the overall performance in terms of spectral efficiency and improve robustness against the detrimental effects of fading. Hybrid relay selection is proposed to overcome the drawbacks of conventional forwarding schemes. However, exciting hybrid relay protocols may suffer some limitations when used for transmission over frequency-selective channels. The combination of cooperative protocols with OFDM systems has been extensively utilized in current wireless networks, and have become a promising solution for future high data rate broadband communication systems including 3D video transmission. This thesis covers two areas of high data rate networks. In the first part, several techniques using cooperative OFDM systems are presented including relay selection, space time block codes, resource allocation and adaptive bit and power allocation to introduce diversity. Four (4) selective OFDM relaying schemes are studied over wireless networks; selective OFDM; selective OFDMA; selective block OFDM and selective unequal block OFDM. The closed-form expression of these schemes is derived. By exploiting the broadcast nature, it is demonstrated that spatial diversity can be improved. The upper bound of outage probability for the protocols is derived. A new strategy for hybrid relay selection is proposed to improve the system performance by removing the sub-carriers that experience deep fading. The per subcarrier basis selection is considered with respect to the predefined threshold signal-to-noise ratio. The closed-form expressions of the proposed protocol in terms of bit error probability and outage probability are derived and compared with conventional hybrid relay selection. Adaptive bit and power allocation is also discussed to improve the system performance. Distributed space frequency coding applied to hybrid relay selection to obtain full spatial and full data rate transmission is explored. Two strategies, single cluster and multiple clusters, are considered for the Alamouti code at the destination by using a hybrid relay protocol. The power allocation with and without sub-carrier pairing is also investigated to mitigate the effect of multipath error propagation in frequency-selective channels. The second part of this thesis investigates the application of cooperative OFDM systems to high data rate transmission. Recently, there has been growing attention paid to 3D video transmission over broadband wireless channels. Two strategies for relay selection hybrid relay selection and first best second best are proposed to implement unequal error protection in the physical layer over error prone channels. The closed-form expressions of bit error probability and outage probability for both strategies are examined. The peak signal-to-noise ratio is presented to show the quality of reconstruction of the left and right views

    Distributed space time block coding and application in cooperative cognitive relay networks

    Get PDF
    The design and analysis of various distributed space time block coding schemes for cooperative relay networks is considered in this thesis. Rayleigh frequency flat and selective fading channels are assumed to model the links in the networks, and interference suppression techniques together with an orthogonal frequency division multiplexing (OFDM) type transmission approach are employed to mitigate synchronization errors at the destination node induced by the different delays through the relay nodes. Closed-loop space time block coding is first considered in the context of decode-and-forward (regenerative) networks. In particular, quasi orthogonal and extended orthogonal coding techniques are employed for transmission from four relay nodes and parallel interference cancellation detection is exploited to mitigate synchronization errors. Availability of a direct link between the source and destination nodes is studied. Outer coding is then added to gain further improvement in end-to-end performance and amplify-and-forward (non regenerative) type networks together with distributed space time coding are considered to reduce relay node complexity. A novel detection scheme is then proposed for decode-and-forward and amplify-and-forward networks with closed-loop extended orthogonal coding and closed-loop quasi-orthogonal coding which reduce the computational complexity of the parallel interference cancellation. The near-optimum detector is presented for relay nodes with single or dual antennas. End-to-end bit error rate simulations confirm the potential of the approach and its ability to mitigate synchronization errors
    corecore