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Abstract

Energy harvesting (EH) technology has become increasingly attractive as an appealing

solution to provide long-lasting power for energy-constrained wireless cooperative sensor

networks. EH in such networks is particularly important as it can enable information re-

laying. Different from absorbing energy from intermittent and unpredictable nature, such

as solar, wind, and vibration, harvesting from radio frequency (RF) radiated by ambient

transmitters has received tremendous attention. The RF signal can convey both infor-

mation and energy at the same time, which facilitates the development of simultaneous

wireless information and power transfer. Besides, ambient RF is widely available from

the base station, WIFI, and mobile phone in the current information era. However, some

open issues associated with EH are existing in the state-of-art. One of the key challenges

is rapid energy loss during the transferring process, especially for long-distance trans-

mission. The other challenge is the design of protocols to optimally coordinate between

information and power transmission.

Meanwhile, in-band full-duplex (IBFD) communication have gained considerable at-

traction by researchers, which has the ability to improve system spectral efficiency. IBFD

can receive information and forward information at the same time on the same frequency.

Since the RF signal can be superimposed, the antenna of the IBFD system receives the

RF signal from both desired transmitter and local transmitter. Due to the short distance of

the local transmission signals, the received signal power is much larger than the desired

transmission signals, which results in faulty receiving of the desired signals. Therefore,

it is of great significance to study the local self-interference cancellation method of the

IBFD system. In the recent state-of-art, three main types of self-interference cancella-

tions are researched, which are passive cancellations, digital cancellations, and analog

iv
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cancellations. In this thesis, we study polarization-enabled digital self-interference can-

cellation (PDC) scheme in IBFD EH systems which cancels self-interference by antenna

polarization (propagation domain) and digital processing (digital domain).

The theme of this thesis is to address the following two questions: how the self-

interference would be canceled in the IBFD EH system and how to optimize key per-

formances of the system to optimal system performances. This thesis makes five research

contributions in the important area of IBFD relaying systems with wireless power trans-

fer. Their applications are primarily in the domains of the Internet of Things (IoT) and

5G-and-beyond wireless networks. The overarching objective of the thesis is to construct

analytical system models and evaluate system performance (outage probability, through-

put, error) in various scenarios. In all five contributions, system models and analytical

expressions of the performance metrics are derived, followed by computer simulations

for performance analysis

The first contribution (Chapter 3) is an analysis of an IBFD wireless power transfer

system, where the relay wirelessly harvests energy from the source and a single-carrier

system is assumed. The impact of both EH and self-interference cancellation on the

throughput and on the error performance of the system is evaluated. Our simulation results

show that the IBFD EH relaying system almost doubles the system throughput, compared

to the half-duplex (HD) EH relaying system, at the cost of about 5 dB inferior error

performance. We also show that to achieve a high throughput along with a good error

performance in the IBFD EH relaying system, a combined selection of a high transmit

SNR and a suitable EH duration is required.

The second contribution (Chapter 4) is an analysis of an extended model from Chap-

ter 3 where multi-carrier orthogonal frequency division multiplexing (OFDM) is assumed

instead. The impact of the number of OFDM sub-bands and the number of multipath on

the system performance of the whole OFDM band is studied. Our simulation results show

that the IBFD OFDM energy harvesting relaying system almost doubles the throughput

while maintaining the same bit error performance by a modest increase in the signal-

to-noise ratio compared to the HD OFDM energy harvesting relaying system. It is also
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revealed that the optimal time splitting factor should be less than 0.3 to maximize the

IBFD system throughput.

The third contribution (Chapter 5) is an analysis of a model similar to that considered

in Chapter 4, but at the OFDM sub-band level. The outage probability and throughput are

formulated in two different methods which aim to show the trade-off between accuracy,

especially at low signal-to-noise ratios, and the computational simplicity of the two meth-

ods. Our analysis and simulation results show that the throughput of the system is greatly

improved, approaching twice as the traditional HD system.

The fourth contribution (Chapter 6) considers that the source (rather than the relay) har-

vests energy and analyzes the performance in terms of outage probability and throughput.

This system is practical in some wireless sensor network settings, such as the scenarios

mentioned in Section 2.3.3 in Chapter 2. With the assistance of the relay, the source node

can consume a small amount of energy to transmit information to a distant destination.

We investigate the influences of dissimilarity between the polarization states of the an-

tennas on the PDC cancellation effect. The results show that the system throughput is

maximized when the polarization states are orthogonal. Besides, we provide the analysis

of outage probability and throughput of an IBFD relaying system and two HD relaying

systems. The first HD system has the same EH duration as the IBFD system while the

second HD one has the same transmitting power from the source as the IBFD one. The

results show that the IBFD system can double the system throughput while having the

outage probability as low as that of the first HD system, at a cost of adopting the PDC

scheme. Meanwhile, the IBFD system can nearly double the system throughput while

having the outage probability superior to that of the second HD system.

The fifth contribution (Chapter 7) considers a self-energy recycling relay system and

analyzes the throughput and power consumption of the system. The analytical character-

ization of throughput in the self-energy recycling system is provided and compared with

the non-recycling system. The results reveal that, with energy recycling, the consumed

power in the system can be saved by 80% to achieve the same level of throughput within

a small-to-medium relay-to-destination distance. Besides, the recycling architecture can
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boost the system throughput to 1.61 times higher than that of the non-recycling system

using the same amount of total consumption power.

The thesis has a considerable contribution to the research field to understand better the

performance of the IBFD EH relaying system in different settings in both flat fading and

frequency selective fading scenarios.
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Chapter 1

Introduction

1.1 Background and Objectives

In the recent era, the volume of data is growing significantly, and data interaction faces

severe challenges in terms of speed. Regardless of the transmission of TB-level large files

or massive small files, information transmission with low latency and high throughput

is increasingly pursued. In a wireless network, to meet this challenge, the following two

ways are used in industry. The first approach is to increase the system capacity by increas-

ing the spectrum resources. The second approach is to improve the system throughput by

increasing the spectrum efficiency. Considering the scarcity of spectrum resources and the

high cost of increasing spectrum resources, it is an effective solution to improve network

bandwidth utilization to increase transmission speed. This thesis focuses on researching

in-band full-duplex technology to improve system spectral efficiency. For simplicity, in

this chapter, we use full-duplex (FD) to represent in-band full-duplex (IBFD).

Cooperative communication is indispensable in wireless communication systems. In

a shadowing propagation environment, the source may have to rely on the assistance of

other nodes to forward information to the destination. Thus, relaying networks are nec-

essary and their characteristics are important to investigate. Some literature consider the

half-duplex (HD) communication system which allows the transceiver to communicate

in both directions on the same frequency, but not simultaneously. It means that once a

transceiver begins to transmit signals, it cannot receive information from other nodes.

Differently, FD communication can improve spectral efficiency by allowing transceivers

1
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to transmit and receive signals at the same time on the same frequency. Therefore, FD sys-

tems have attracted significant attention from researchers and have become a hot research

field in wireless communication in recent years. However, the challenge of implement-

ing the FD lies in canceling the self-interference (SI) signal. This interference occurs in

the FD communication when a transceiver is transmitting and receiving simultaneously.

It is because that the double direction communication in FD systems uses the same fre-

quency, thus the transmitting and receiving signals are mixed. Typically, for a transceiver,

its own transmitted signal will also be received by itself, which will damage the desired

signal from the far end. In this situation, the transmitted signal is regarded as SI for the

mentioned transceiver, which usually overwhelms the desired signal received from the

far-end. The SI dictates the overall throughput of the FD system. The system throughput

significantly degrades, which is even worse than that of the HD system if the interference

is not sufficiently canceled. Hence, self-interference cancellation (SIC) techniques are

often deployed to enable the FD communication.

Contemporarily, through various information sensors, things are connected, and the

application field of the Internet of Things (IoT) system involves all aspects. One of the

important issues of IoT is how to charge these wireless devices for their normal operation.

The traditional method of replacing the battery is very inconvenient. In some extreme

conditions, it is even impossible to replace the battery. In addition, the replacement of

the battery is prone to waste of resources and environmental pollution. Therefore, it is

of great significance to study wireless energy and power transmission. Wireless energy

harvesting (EH) is a hot research topic that has the advantages of extending the lifetime of

energy-constrained wireless networks and avoiding frequent battery replacement. Thus,

in this project, the FD communication for cooperative wireless networks with wireless

power transfer (WPT) is researched to facilitate the development of FD in IoT and 5G-

and-beyond wireless networks. The primary research objectives are listed as follows.

• To achieve the FD relaying networks with WPT, the biggest challenge is handling

the SI. To cancel the SI, SIC techniques can be applied in the propagation domain,

analog domain, and digital domain. This thesis will adopt a digital cancellation
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scheme associated with antenna polarizations in the propagation domain to cancel

the SI.

• The literature of the FD relaying systems with WPT is far from being mature.

Their performance analyses are still insufficiently in-depth. Thus, in this thesis, the

throughput and bit error rate (BER) of both single-carrier systems and multi-carrier

systems will be investigated. Simulation results and analyses will be illustrated with

the objective of understanding thoroughly the potential and maximum ability of the

FD-WPT relaying networks.

• The thesis also aims at proposing a new FD relaying system with an EH-enabled

source to improve system coverage and throughput. The analytical expressions of

the outage probability and throughput are derived to verify the simulation results.

• Energy efficiency is also an important aspect in the EH systems. Thus, the the-

sis aims to propose a self-energy recycling system to improve the overall energy

efficiency of the system.

1.2 Research Approaches

The flow chart of the research approaches is illustrated in Fig. 1.1. The research starts with

the review of the related research areas, which includes the HD and FD transmissions, co-

operative networks, WPT mechanisms, SIC approaches, and self-energy recycling (SER)

mechanisms. Motivated by the literature, we identify open research problems and deter-

mine the primary research objectives. The key challenges of EH are rapid energy loss

during the transferring process especially for long-distance transmission and the design

of protocols to optimally coordinate between information and power transmission. The

key challenge of FD transmission is cancelling SI signals. To address these concerns, this

thesis focuses on investigating the performance, i.e., outage probability, throughput, and

BER, of FD relaying systems with wireless power transfer.

The thesis first considers an FD EH, a single-carrier system for flat fading channels,

followed by an orthogonal frequency division multiplexing (OFDM) system for multipath
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Figure 1.1: The flow chat of research approaches.
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fading channels. It considers EH at the relay, followed by the EH at the source, and then

the SER at the relay alongside the EH at the source. In all cases, the performance of

the proposed system is compared with the HD or non-energy recycling counterpart. The

performance evaluations of analytical and simulation results are detailed to elaborate our

discussions.

1.3 Contributions of the Thesis

The main contributions of this thesis are summarized as follows.

1. Adaptation of the PDC scheme to deploy in both single-carrier and OFDM FD

relaying systems with WPT from the source to the relay.

The PDC scheme effectively eliminates the SI signal and suppresses a part of the

noise in both single-carrier Rayleigh flat fading channels and OFDM multipath fre-

quency selective fading channels. Simulation results of these two systems are pro-

vided and compared to the HD EH relaying system. The PDC scheme does not

require knowledge of the instantaneous CSI of the SI channels. Therefore, the

complexity and overhead of the FD system are reduced.

2. Derivation of the analytical expressions of the outage probability and the system

throughput in two different methods in the OFDM FD EH relaying systems.

The optimal time split between the EH and information exchange phases to max-

imize the system throughput is calculated numerically. At a high transmit SNR,

we simplify the expressions of the outage probability and the system throughput to

obtain the corresponding asymptotic lines. By comparing the FD and HD relaying

architectures, the thesis demonstrates that FD relaying can boost significantly the

system throughput in many cases.

3. Development of a two-hop FD relaying system with the WPT from the relay to the

source.

The mathematical expressions of the outage probability and throughput are pre-

sented. Besides, we research the influence of the dissimilarity between the polar-
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ization states of the relay antennas on the cancellation effect of the PDC scheme.

It reveals that when the dissimilarity factor is 1 (i.e., polarization states are orthog-

onal), the PDC scheme can suppress best interference and noise. However, even

the dissimilarity factor is smaller, the FD relaying can still boost significantly the

system throughput in various scenarios.

4. Proposal of a two-hop PDC-based FD-SER system with EH capabilities at both the

source node and the relay node.

The trade-off between the proposed system and the FD non-energy-recycling (NER)

one (i.e., the system proposed in the point 3 mentioned above), using the same to-

tal consumption power, is examined. It is revealed that, with energy recycling, the

consumed power in the system can be saved by up to 80% to achieve the same level

of throughput in the non-recycling system for a small-to-medium distance range

between the source and the destination. Alternatively, the proposed FD-SER sys-

tem can boost the system throughput by 1.61 times, compared to the non-recycling

counterpart using the same amount of total consumption power.

1.4 Outline of the Thesis

This thesis includes 8 chapters as outlined in the following.

In Chapter 1, the research background and objectives of this thesis are first discussed.

Then, we elaborate on the research approaches, followed by the main contributions of the

thesis, the outline of the thesis, and our publications.

In Chapter 2, the background information and the state of the art related to our re-

searches are discussed, which include cooperative networks, wireless energy harvesting,

FD communication, self-interference cancellations, and SER techniques.

In Chapter 3, the performance evaluation, i.e., throughput and BER, of a single-carrier

FD relaying system with the radio frequency (RF) WPT from the source to the relay is dis-

cussed. Besides, the working principles and properties of the PDC scheme are explained

in this chapter. We quantify the impact of the EH and PDC scheme on the throughput and



CHAPTER 1. Introduction 7

BER performance of the FD EH relaying system in comparison with the HD EH relaying

system.

In Chapter 4, the performance of a PDC-based FD OFDM relaying system with the

WPT from the source to the relay in multipath fading channels is investigated. The simu-

lation results of throughput and BER of this system are then presented.

In Chapter 5, a two-hop PDC-based FD OFDM relaying network, where the relay op-

erates based on a time-switching architecture to harvest energy from the RF signals, is

considered. We provide a comprehensive analysis of the system performances in terms

of the outage probability and throughput over multipath Rayleigh fading channels. The

analytical expressions of the outage probability and throughput are derived in two differ-

ent approaches. Besides, we also derive the asymptotic approximations to simplify the

expressions of outage probability and throughput at a high transmit SNR.

In Chapter 6, we investigate a two-hop PDC-based FD communication system in which

the source utilizes the RF EH for the transmission of information. Besides, the influence

of the polarization dissimilarity factor of the antennas on the system throughput is inves-

tigated.

In Chapter 7, a PDC-based FD relaying network with an EH-enabled source and a SER-

enabled relay is proposed. In-depth analyses and comparisons of the system throughput

of the proposed system with that of the non-recycling system, presented in Chapter 6, are

presented.

In Chapter 8, we present the summaries of this thesis and discuss possible future works.

1.5 Publications

This thesis is based on the following five papers, which have been published as three

journal papers at the IEEE Access – a high standard journal in this discipline, and two

conference papers.



CHAPTER 1. Introduction 8

Journal Papers

1. J. Li, L. C. Tran, and F. Safaei, “Wireless information and power transfer using

full-duplex self-energy recycling relays,” IEEE Access, vol. 9, pp. 158808–158819,

Nov. 2021.

– The contents of this publication are included in Chapter 7.

2. J. Li, L. C. Tran, and F. Safaei, “Throughput analysis of in-band full-duplex trans-

mission networks with wireless energy harvesting enabled sources,” IEEE Access,

vol. 9, pp. 74989–75002, May 2021.

– The contents of this publication are included in Chapter 3 and 6.

3. J. Li, L. C. Tran, and F. Safaei, “Outage probability and throughput analyses in full-

duplex relaying systems with energy transfer,” IEEE Access, vol. 8, pp. 150150–150161,

Aug. 2020.

– The contents of this publication are included in Chapter 3 and 5.

Conference Papers

1. J. Li, L. C. Tran, and F. Safaei, “Full-duplex OFDM relaying systems with energy

harvesting in multipath fading channels,” in Proc. IEEE VTC2019- Fall, Honolulu,

HI, USA, Sep. 2019, pp. 1–5.

– The contents of this publication are included in Chapter 4.

2. J. Li, L. C. Tran, and F. Safaei, “Performance evaluation of full-duplex energy

harvesting relaying networks using PDC self-interference cancellation,” in Proc.

IEEE ICSPCS, Cairns, QLD, Australia, Dec. 2018, pp. 1–6.

– The contents of this publication are included in Chapter 3.



Chapter 2

Literature Review

2.1 Cooperative Networks

Relay-assisted cooperative communication has been proposed in the literature to expand

the transmission coverage [1]–[10]. So, a deep understanding of what cooperative com-

munication is and how its models are constructed is significantly important. Cooperative

communication is different from conventional point-to-point communication. Its trans-

missions from the source to the destination depend on the help of relays. As illustrated in

Fig. 2.1, signals are transmitted from the base station (BS) to users through relays.

Since the core idea of relay-assisted cooperative networks is to expand the communi-

cation range from the source to the destination, most works in the literature, such as [11]–

[13], have researched relaying systems without a direct link between the source and the

destination. This assumption is applicable to the situations where the distance between

the source and the destination is large so that the destination is not within the coverage

area of the source or where the direct link is heavily shadowed by obstructions. In co-

operative communication, the two most commonly used relaying protocols include the

amplify-and-forward (AF) relaying protocol and the decode-and-forward (DF) relaying

protocol. Their main difference is the signal processing manner of the relay nodes. In

the AF protocol, the relay node amplifies the received signal from the source and then

forwards to the destination [12], [14]–[18] while the DF protocol decodes the received

signal at the relay before forwarding it to the destination [11], [16], [17], [19], [20].

9
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Figure 2.1: Illustration of a wireless cooperative network.

2.2 IBFD Communication

Currently, the HD for wireless communication is relatively mature while FD is still under

development. In the HD transmission, data can be transmitted in both directions on one

carrier, but not at the same time. Specifically, the HD relaying system consists of one-

way transmission and bidirectional transmission. A single node in a one-way transmission

system is either transmitting or receiving the data, but it can switch between the role of

a transmitter and a receiver in a bidirectional mode. The authors in [21] research the

HD communication where the source node broadcasts its information to both the relay

and the destination. The relay node then uses an auxiliary channel to forward the same

information to the destination. In this case, the end-node receives duplicated versions

of transmitted packets. This specific system benefits significantly when the source-to-

destination channel is very bad. The paper also provides symbol error rate analysis of

both DF and AF protocols. The limitation of [21] is that the system ignores the path loss

effect during signal transmission. In fact, it is usually the case that the transmit signal

experiences an obvious path loss, especially for a long-distance transmission from the

source to the destination. To overcome this problem, the path loss is considered in [14],

[22], where the path loss is related to the transmission distance and the path loss exponent.
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The HD relaying architecture is widely used in conventional wireless networks due to its

simpler system design. However, HD transmission leads to a loss of spectrum efficiency

because a transceiver cannot transmit and receive signals at the same time.

In contrast, IBFD communication allows simultaneous transmission and reception in

the same frequency band, which possesses multiple advantages. The IBFD wireless com-

munication systems can mainly be classified into end-to-end bi-directional systems and

cooperative systems, which have the potential of double the spectral efficiency, compared

to the HD system [23]. The results in [24] show that the channel capacity of the FD system

is nearly doubled even with the phase noise of the oscillator. Besides, in relay systems,

transmission delay in the end-to-end system can be reduced by the FD transmission [25].

In [16], the throughput performance and the optimal time splitting in the FD relaying

system with wireless power transfer for single-carrier communication systems are stud-

ied. In [17], a partial relay selection scheme is proposed to implement FD transmission,

where the best relay is selected based on the maximum SNR of the received information

signal at the relay. However, these works neither consider multipath frequency-selective

fading channels nor any specific SIC method. The work in [26] simulates the throughput

and BER performances of an FD EH relaying system in comparison with those of an HD

EH relaying system. It considers flat-fading channels with a single carrier system. The

authors in [27] derive the analytical expressions of outage probability and throughput for

a multi-carrier system and frequency selective fading channels. In [28], a joint antenna

and relay selection technology in one-source, one-destination, and multiple-AF relay net-

works is proposed. The relays work in an FD mode, and each relay has two antennas

where one for transmission and the other for reception. The optimal relay is jointly se-

lected according to the instantaneous channel conditions. Besides, each activated relay

can also choose certain transmit and receive antennas to optimize the performance of

the system. Therefore, this proposed scheme has the merit of increasing the degree of

freedom and providing better performances than the conventional relay selection scheme.

However, it has a performance floor at a high SNR because of the existence of SI in the

FD relaying system [28]. This means that although IBFD communication is an impor-
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tant technique to improve system throughput by concurrent transmission and reception in

the same band [29], [30], SIC schemes must be included to recover the desired signal.

A comprehensive SIC solution includes three stages, which occur in the propagation do-

main, analog domain, and digital domain. The SIC schemes in each domain have been

extensively researched in the literature.

2.3 Wireless Energy Harvesting

In the previous part, the cooperative communication is discussed. The conventional

energy-constrained wireless networks, such as wireless sensor networks, have a limited

lifetime. For the energy-limited sensors, recharging or replacing batteries is periodically

performed to sustain network operations, which is costly, time-consuming, and some-

times infeasible due to some physical limitations, such as hazardous environments [31].

Wireless EH techniques provide a solution to realize the long-term operation of the sen-

sors in this kind of scenarios. Some preliminary works [32]–[34] rely on natural energy

sources, such as solar, wind, and thermoelectric effects to provide EH. However, these

sources cannot be easily controlled and often intermittent. Recently, EH techniques using

RF signals and electromagnetic (EM) induction to achieve energy transfer have attracted

significant interest because the man-made RF signal and EM induction can steadily de-

liver energy to the destination to provide a reliable energy supply. In [35], the authors

consider a system with a single transmit antenna and multiple receive antennas, where the

energy is transferred to the destination through RF signals. The diversity combining tech-

nique is used to improve the EH performance. The works in [36]–[38] propose methods

that use the EM induction mechanism to achieve EH, where the EM energy conversion is

based on Faraday’s law. However, wireless EH from an EM induction usually works in a

short distance while RF signals can readily carry both energy and information at the same

time to the receiver at distance. Besides, since the information signals are usually RF

signals, adopting the RF EH to the conventional wireless networks is easily compatible

with the hardware, which makes the system cost-effective [26], [27], [39]–[41]. Thus, the

EH from RF signals is an advanced promising method to prolong the lifetime of wireless
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communication systems.

2.3.1 EH Relaying Networks

In recent years, the combination of the EH technique with the relay cooperative com-

munication technique is attractive to researchers [42]. In [14], the authors consider an

HD system in which the relay transmits and receives information in different time slots

over Rayleigh flat-fading channels. They derive the analytical expression of the outage

probability and the ergodic capacity to determine the throughput performance and inves-

tigate the effect of various system parameters on the performance of wireless EH relaying

systems. In [11], a relay selection protocol for EH systems with no direct link between

the source and destination is proposed, where the highest energy signal is chosen by the

relay for harvesting energy. The system performance in terms of outage probability is re-

searched over Rayleigh fading channels. In [14], the expressions of the ergodic capacity

and the outage probability are derived to determine the throughput performance of the HD

relay system. In [15], the average throughput is analyzed for the EH cooperative system

by considering both continuous-time and discrete-time EH protocols over Rician fading

channels. In [18], the non-linear energy harvester at the relay is studied over Nakagami-m

fading channels. The work in [19] considers the Nth best-relay selection scheme in EH

systems, where the destination selects the relay based on the Nth-order channel gains.

The authors evaluate the exact outage probabilities of the time-switching-based relaying

(TSR) protocol and the power-splitting-based relaying (PSR) protocol. In [13], the au-

thors investigate the achievable information rate in the MIMO OFDM networks with a

wireless powered relay. However, it is worth noting that all these works are limited to the

HD mechanism, i.e., the relay node cannot receive and transmit information simultane-

ously in the same frequency band.

The authors in [43] research the characteristics of HD and FD EH systems with the AF

and DF relaying protocols. The system has one source node, one destination node, and

one EH relay. It is assumed that there is no direct link between the source and the destina-

tion, which means all communication goes through the cooperative relay. The EH relay
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node harvests energy from the source-transmitted signal and uses the harvested energy

to forward the information to the destination node. The main attribution of [43] is the

consideration of FD communication in log-normal fading channels. The log-normal fad-

ing statistically characterizes indoor propagation scenarios, shadowing effects in outdoor

scenarios, and wide-band channel scenarios [44]. The quasi-static block-fading channel

is also usually considered in relay networks [14]. The channel gains are constant within

each block but change randomly from one block to another, which are assumed to be in-

dependent and identically distributed following the Rayleigh distribution. There are two

well-known EH relaying protocols, namely TSR and PSR [14], [43]. The optimal value

of the EH time in the TSR protocol and the optimal value of the power splitting ratio

in the PSR protocol are investigated in [14] to study the influence of various system pa-

rameters. The TSR protocol for EH can be further divided into continuous-time EH and

discrete-time EH. In the continuous-time EH, each block consists of an EH part and an

information transmission (IT) part. The relay needs to harvest enough amount of energy

within each block and uses it to complete the subsequent data transmission processes.

In contrast, the discrete-time EH protocol allows each block to be used either for EH or

IT. The protocol presets a threshold value. At the beginning of each block, the initial

energy E(0) is compared with the threshold. If E(0) is less than the threshold, the relay

will work in the EH mode within the whole block. If E(0) is bigger than the threshold at

the beginning of the block, the relay starts IT. In summary, the ergodic capacity [43] for

delay-tolerant systems, throughput for delay limited systems, energy efficiency, and BER

are usually used to quantify the performance of EH systems.

2.3.2 WPT from Sources to Relays

Two commonly used EH cooperative networks include the relaying system with EH relay

nodes [14], [16], [17], [27], [45], [46], [54]–[56] and the ones with EH source nodes [47]–

[51]. Comparisons of some recent works in the literature are shown in Table 2.1. Chapter

6 of this thesis is also added in this table for comparison. The authors in [14], [16], [17],

[27], [45], [46], [56] consider two-hop scenarios with EH relay nodes, of which [14], [45]
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deploy the HD mechanism while [16], [17], [27], [46], [56] deploy the FD mechanism. In

[14], an HD “harvest-then-transmit” time switching-based relaying protocol is proposed.

The throughput is determined by deriving the outage probability and the ergodic capacity

for delay-limited and delay-tolerant transmission modes, respectively. In [45], a multiple-

antenna relay system with a “harvest-then-transmit” strategy is considered. In the first

phase, the relay receives signals from the source where some antennas are used to process

information while the remaining antennas are used to harvest energy based on the power

splitting protocol. In the second phase, the relay uses the harvested energy to forward

signals to the destination. The presented joint power splitting and antenna selection tech-

nique outperforms the conventional relay-assisted transmission. However, the deployed

HD mode in [14], [45] cannot achieve bi-directional transmission simultaneously in the

same frequency band, thus having a low spectral efficiency.

With the advances in signal processing technologies, FD transmission has attracted the

interest of researchers, which can transmit and receive information concurrently in the

same frequency band. This FD mode is a solution to improve spectral efficiency and de-

crease transmission delay in the networks. In [17], a two-phase protocol is used to conduct

FD transmission in the multi-relay system where the total transmission block time is di-

vided into two subslots equally. In the first subslot, the source node transmits information

to relays. Then a suitable relay is selected based on the best instantaneous signal-to-noise

ratio (SNR) received from the source. In the second subslot, the chosen relay receives the

energy signal from the source and, at the same time, forwards information signals to the

destination. The authors in [16], [27] adopt the protocol where a fraction of time is used

for harvesting energy and the remaining time is used for FD information transmission.

The authors in [16] consider a single-carrier system while the authors in [27] consider a

multi-carrier system and adopt the polarization-enabled digital cancellation scheme with

orthogonal polarization states to cancel SI signals. However, the works in [14], [16], [17],

[27], [45] consider that the source has its own power supply and does not need EH.
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Figure 2.2: An unmanned aerial vehicle assisted sensor network with EH sources.

2.3.3 WPT from Relays to Sources

The two-hop relaying system where the energy-limited relay relies on the energy har-

vested from RF signals to transmit information to the destination usually has a short com-

munication range. This is because of two main reasons. Firstly, the source-relay distance

is limited due to the path loss from the source to the relay and the available transmit-

ting power at the source. The RF energy emitted from the WPT transmitter is always

attenuated severely when it propagates toward the relay due to the high path loss [57].

Secondly, the relay-destination distance is constrained by the path loss from the relay to

the destination and the harvested energy at the relay [58]. This means that the inadequate

energy at the relay restricts further the transmission distance. Thus, the system throughput

decreases significantly for a long-distance transmission. The relay-assisted system with

an EH-capable source and a relay powered by a fixed and perpetual power supply is less

reliant on the distance [58]. Such a system is preferred in many practical scenarios, such

as the ones shown in Figs. 2.2 and 2.3. In Fig. 2.2, an unmanned aerial vehicle (UAV)

works as a relay that transfers RF energy to nearby sensors S1 − S5 and then relays the

sensing data, e.g., position, temperature, or timing, from the sources to the destination.

Fig. 2.3 shows the scenario that an energy-limited source is placed within a tunnel. The

unsafe environment in the tunnel leads to the difficulty of replacing its battery. An EH

source system can ensure its proper operations, and with the assistance of the relay, the

source node can consume a small amount of energy to transmit information to a distant
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Figure 2.3: A relaying network that an EH source within a tunnel filled with toxic gas.

destination.

The two-hop relay-assisted networks with WPT from the relay to the source are studied

in [47]–[51]. The authors in [47] consider a DF HD system where the two proposed

schemes, namely, jointly optimal power-and-time fraction allocation and optimal power

allocation with a fixed time fraction, are superior to fixed power and fixed time fraction

allocations. A two-way relaying system with two EH sources and K relays is researched

in [48]. The transmission nodes work in an HD time-division mode. A joint beam-

forming and relay selection method is investigated to improve system throughput. The

works in [49], [50] consider HD transmissions as well as simultaneous energy transfer and

information transmission by utilizing the characteristics of RF signals. In the first time

slot, the source transmits data to the relay. In the second phase, the relay forwards signals

to both source and destination. The source harvests energy from the RF signal from the

relay while the destination receives the desired information from the relay-transmitted

signal. A communication system consists of an EH source and an out-of-band full-duplex

relay node is investigated in [51]. The channel capacity is derived in two scenarios that

the EH source can store energy using a battery and the EH source does not have a storage

capacity. The above works consider HD and out-of-band FD transmission. As a result,

these schemes have a limited throughput or a low spectral efficiency.

Conversely, the system proposed in Chapter 6 of this thesis considers EH-enabled

source and IBFD transmission with the PDC scheme, thus it possesses a higher spectral

efficiency and a higher system throughput.
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2.4 Self-Interference Cancellations

2.4.1 Overview

IBFD is a technology in which simultaneous transmission and reception of information

are achieved in the same frequency band. The definition and advantages of FD commu-

nication are mentioned in Section 2.2. However, because a local transmitter is way closer

to the local receiver than the far-end transmitters, the SI signal usually thousands of times

stronger than the signal of interest received from the far end. In [59], the results show

that the power of SI is 80 dB stronger than the desired signal and 95 dB stronger than the

noise floor. The desired signal is contaminated, which leads to unsuccessful decoding of

the received signals. Therefore, SIC methods are required to enable the FD communica-

tion. By now many techniques to suppress SI signals have been researched. Generally,

SIC is divided into three types, which are passive cancellation, analog cancellation, and

digital cancellation, respectively. Passive cancellation is to isolate the transmitted signal

from the received signal by, for example, exploiting a circulator, an isolation technol-

ogy, or directional antennas. The analog cancellation aims to design a RF circuit with a

corresponding control algorithm to cancel SI in the analog domain. Digital cancellation

involves designing an interference cancellation module in the base-band. In general, the

SIC algorithms aim to mimic the linear distortion and the non-linear distortion that the

transmitted signal has gone through. The algorithms then reconstruct the SI signal. The

impact of the SI signal will be canceled by subtracting the estimated SI from the received

signal. Usually, these three cancellation techniques are combined in order to minimize SI

in FD systems. The three SIC types will be mentioned in more details as below.

2.4.2 Passive Cancellations

Passive cancellation techniques cancel SI before it reaches the RF chain circuits of the

receive node [60], [61]. It mainly utilizes pass loss to achieve cancellation [60]. As

demonstrated in [62], the passive SIC is researched which includes directional isolation,

absorptive shielding, and cross-polarization. Although [62] shows that over 70 dB of

passive cancellation can be obtained in a certain environment, the passive method alone
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is still insufficient to cancel all the SI completely. According to Duarte and Sabharwal in

[63], the amount of SI linearly ascends with the transmitting power.

Numerous research papers focus on improving hardware designs to suppress SI in the

IBFD systems. The paper [64] proposes a transceiver prototype that relies on the electrical

balance duplexer to suppress SI. The electrical duplexer is automatically tuned by a digital

base-band algorithm that can track antenna impedance variations. Different factors, such

as antenna movements and surrounding conditions, affect the antenna impedance. The

results show that the electrical balance duplexer can suppress SI by 20 dB without any

tuning algorithm over a bandwidth of 20 MHz. If the electrical balance duplexer combines

with the proposed tuning algorithm, the SIC performance is significantly improved. The

average SIC suppression achieves up to 50 dB among different scenarios [64]. Similarly,

Zhuang et al. in [65] design a novel duplexer to implement SIC. This method improves the

traditional parallel directional coupler to prevent power leakage from the transmit circuit

to the receive circuit. The coupler consists of four ports. Port 1 and Port 4 are on the left

opposing to Port 2 and Port 3, respectively. Port 1 is connected to the transmit antenna and

Port 2 is connected to the receive antenna. Port 4 produces an impedance mismatching

effect by adding an open-circuit line in this port to reflect the coupling signal from Port

1 to Port 3. Ideally, the leak signal and the reflected signal cancel each other to achieve

the desired cancellation. Evidently, the key point affecting the cancellation performance

is the reflection coefficient. Therefore, the optimal reflection coefficient is calculated in

Port 4. The SI suppression capacity of the proposed technique is significant with more

than 36 dB suppression for both 4MHz and 8MHz bandwidth [65].

2.4.3 Analog Cancellations

The analog cancellation techniques suppress SI in the analog circuit to prevent SI enters

the analog-to-digital converter (ADC) [60], [66]. There are two types of analog cancel-

lations. The first type works by attenuating and delaying the digital base-band signal,

up-converting it to the analog domain, and then injecting it to the input of the low noise

amplifier (LNA) to cancel the SI [63], [67]. The block diagram is shown in Fig. 2.4. It is
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Figure 2.4: Block diagram of the first type analog cancellation.

complex in hardware but has the advantage of taking the non-linearity of the transmitter

chain into account to achieve maximum SIC.

The second type replicas the RF transmit signal then applies attenuation and phase to

it before injecting it to the LNA [66], [68]–[71], as shown in Fig. 2.5. The control unit in

this figure is in the digital domain but it can also be in the analog domain. An adaptive

RF SIC method tuned by a digital variable-step steepest descent algorithm is presented

in [69]. The results show that this SIC can provide a maximum of 33 dB cancellation

for a 20 MHz bandwidth. Besides, a digital-controlled RF SIC method and a complete

demonstrator board have been proposed in [72]. This paper focuses on an FD system with

frequency-selective fading channels. This developed canceller is able to adaptively track

time-varying SI signals in a wide band. The results show that over 40 dB RF cancellation

is obtained when the transmission bandwidth of the FD system is below 80 MHz. In [73],

a novel multi-tap RF canceller is proposed for a wideband cancellation. This cancella-

tion has self-adaptive properties to automatically track SI-channel changes caused by, for

examples, reflections from the antenna and surrounding objects. This paper reports the

bandwidth up to 100 MHz in circulator and dual-antenna scenarios. For the circulator

case, 18 dB suppression is achieved while for the dual-antenna one, 15 dB suppression is

reported. In [30], an analog least mean square (ALMS) loop is employed to suppress SI in

IBFD OFDM systems. The SIC performance relies on the windowing function used in the

system. The ALMS loop is simple and adaptive for SI mitigation which does not require
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Figure 2.5: Block diagram of analog cancellation case 2.

the CSI of the SI channel. However, it may face an in-phase/quadrature (I/Q) imbalance

problem. The authors in [74] investigate the impact of I/Q imbalance on the cancellation

performance of the ALMS loop. In [75], a promising ALMS adaptive filter is proposed

to be implemented by an analog domain for an IBFD MIMO system. The ALMS loops

have a clear advantage that they can prevent a receiver from being saturated caused by SI

before signals proceed to the ADC.

2.4.4 Digital Cancellations

Digital cancellation techniques are usually used in the last stage, which handle any resid-

ual SI after the ADC [60], [76]. The block diagram is shown in Fig. 2.6. Digital cancella-

tion mainly handles two types of residual SI, which is channel estimation error [66], [69]

as well as transceiver impairment [77].

The authors in [78] propose a digital cancellation method and research three different

estimators, which are least squares (LS), normalized least mean squares (NLMS), and

minimum mean square error (MMSE), to estimate the SI signal. The defined SI chan-

nel here contains the transmitter chain, electrical balance circuit, and receiver chain. In

this way, multiple elements are considered in the SI channel estimation process, so the

estimated SI is approaching reality. The results show that, for the quadrature phase-shift

keying modulation, LS, NLMS, and MMSE estimations all estimators perform well be-

cause the BER performances are all close to the interference-free case. However, for the
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Figure 2.6: Block diagram of digital cancellation.

16 quadrature amplitude modulation, LS and NLMS have relatively a high BER while the

performance of MMSE closes to the interference-free case. The paper [79] proposes a

single channel digital cancellation method. The main challenge is to create a cancellation

signal which is a resembled duplicate of the SI signal by adaptively adjusting the filter’s

parameters. The adaptive filter adopts the least mean square (LMS) algorithm to track the

amplitude and phase variations of the SI signal. In this paper, the digital SIC technique

has a great convergence rate and can cancel about 20 dB interference alone.

The transceiver impairments include the power amplifier (PA) non-linearity, I/Q im-

balance, oscillator phase noise, and the resolution of the ADC. The paper [77] proposes

an adaptive nonlinear digital SI canceller to suppress the PA non-linearity. Besides, [77]

employs an orthogonalization procedure before utilizing an LMS-based parameter learn-

ing algorithm to track the time-varying SI channel and to suppress the PA non-linearity.

In [80], for a relatively low transmit power ranged from 0 dBm to 10 dBm, the pro-

posed adaptive real-time digital canceller achieves 25 dB to 35 dB suppression. For the

bandwidth of 20 MHz, the proposed nonlinear digital cancellation with orthogonaliza-

tion provides 46 dB SI reduction, compared to 22 dB for the linear digital cancellation

method. In [81], the parallel Hammerstein model is extended to modeling the nonlin-

ear SI channel, including the nonlinear PA, the linear multipath channels, and the RF

SI canceller. The results show that the proposed digital cancellation technique allows

the FD system to use a higher transmit power, i.e., up to 20 dBm, or a lower-quality

PA. The digital SIC developed in [82] focuses on overcoming the problem of transmitter
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nonlinearity caused by a power amplifier, but it is different from the previous nonlinear

SIC methods. The proposed pre-calibration method employs a pre-calibrator before the

digital-to-analog converter (DAC) to linearize the transmitter. This method has the ad-

vantages of low computational complexity than the nonlinear method and provides 43 dB

cancellation performance in fast fading channels. However, the pre-calibration method

is unstable because there are unwanted peaks. The reason is that the system generates

an inaccurate pre-calibrator in certain frames. In [83], four canceller structures, includ-

ing linear-digital canceller, widely linear-digital canceller, nonlinear digital canceller, and

augmented nonlinear digital canceller, are proposed. These solutions are corresponding to

different approximation models. The maximum suppression is provided by the augmented

nonlinear digital canceller with 30 dB suppression alone. Oscillator phase noises are re-

searched in [24], [84]. The method in [84] considers the inter-carrier interference (ICI)

caused by phase noises and uses the MMSE algorithm to jointly estimate phase noises

of the transmitter and the receiver. The results show that the proposed digital canceller

provides 9 dB more suppression than the scheme that ignores ICI.

In [85], a PDC scheme is proposed to distinguish the desired signal from the SI signal.

This method differs from most existing cancellation approaches [77] in reconstructing the

SI signal. This scheme distinguishes and cancels effectively the unexpected SI signal from

the desired information signal. The PDC scheme is associated with antenna polarization,

and includes two steps, namely, oblique projection and scalarization. The objective of

the oblique projection is to cancel the residual SI. The scalarization aims to transform

the vector signal to the scalar form. The PDC is powerful, which has the advantages of

suppressing both SI and additive white Gaussian noise (AWGN). In addition, the channel

estimation of the SI channel is not required in the PDC scheme, and the polarization

states can be unchanged among different blocks. This means that the relay only needs to

synchronize its polarization state with the source and destination once. For these reasons,

the PDC scheme will be researched deeply in this thesis.
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2.4.5 Combination of Cancellations

The total SIC achieved by combining the cancellation techniques in the analog domain

and digital domain have been investigated in the literature. In [86], a single antenna sys-

tem with both analog and digital cancellations is researched. For the analog approach,

a significant SI suppression of 75 dB is observed in the 10 MHz bandwidth. For the

digital approach, the LMS algorithm is used. The performances show that, with the dig-

ital canceller, BER is decreased while the system throughput is increased. In [66], a

compressed-sensing-based SI channel estimation technique is proposed in the analog do-

main and a subspace-based algorithm is developed in the digital domain to further cancel

the residual SI. In the first stage, the compressed-sensing-based technique reduces the

power of the SI signal to the same level as the desired signal. In the second stage, the

subspace-based algorithm takes the IQ imbalance and PA non-linearity into account and

estimates both the coefficients of the residual SI channel and the desired channel in order

to improve cancellation performance. The suppression level of 40 dB is observed in the

OFDM systems. In [63], the cancellation performances of passive, digital, and analog SIC

mechanisms are investigated. A maximum of 80 dB suppression is achieved when those

three methods are combined and the local transmitter and receiver are separated by a 40

cm distance. However, the limitation of this research is that a narrow bandwidth of only

625 kHz is considered. In paper [87], a single antenna cancellation method is proposed to

cancel the antenna reflection and circulator leakage. The network consists of two quadra-

ture hybrids, two circulators, and a single circularly polarized patch antenna. The signal

at the transmitter is split into two portions by the first quadrature hybrids before reaching

the antenna. Then, the two-port antenna reflects two signals which have 180-degree phase

differences at the receiver. The balanced network combines the reflected signal at the Rx

output port to cancel the antenna reflection and circulator leakage. The results show that

this technique achieves 40 dB isolation alone and 59 dB cancellation when combining

with the analog cancellation technique. A novel analog cancellation circuit and digital

cancellation method are researched in [88] which provide totally 110dB SIC. However,

this solution is limited to WiFi 802.11ac single-antenna circulator systems.
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The combination of FD and MIMO relaying in simultaneous wireless information and

power transfer systems is promising as spectral efficiency is improved. However, the as-

sociated interference control is challenging [56]. The work in [46] assumes an imperfect

analog/digital interference cancellation scheme is applied at the relay. The residual loop-

back interference channels are without a line-of-sight component between transmit anten-

nas and receive antennas [46]. The spatial cancellation technique is deployed to suppress

the residual interference. However, the instantaneous CSI of the SI channel is required in

such a SI cancellation method. A new framework of interference mitigation is considered

in [52], [53]. The residual SI is suppressed by using the information of direction-of-arrival

(DOA) and direction-of-departure (DOD) of the SI channel instead of the instantaneous

CSI. The long-term estimation of DOA/DOD is feasible as the DOA/DOD changes more

slowly than the instantaneous CSI. However, since the DOA/DOD is required, the system

complexity and overhead are significant.

2.5 Self-Energy Recycling Techniques

Energy harvesting technologies have become increasingly attractive as an appealing solu-

tion to provide long-lasting power for energy-constrained wireless sensor networks. Dif-

ferent from absorbing energy from the intermittent and unpredictable natural resources,

such as solar, wind, and vibration, harvesting energy from the RF signal radiated by am-

bient transmitters has received tremendous attentions. The RF signal can convey both

information and energy at the same time, which facilitates the development of simulta-

neous wireless information and power transfer (SWIPT). Besides, ambient RF is widely

available from base stations, WIFI hot spots, and mobile phones in the current informa-

tion era. The RF approach is cost-effective for communication networks as peripheral

equipment needed to utilize external energy sources can be avoided.

Relaying and FD techniques have gained considerable attraction from researchers for

their ability to improve system throughput. Besides, the demand for low-labor-cost and

long-lifetime wireless communication systems has been increasing in recent years. Thus,

the FD relaying system with wireless power transfer has also attracted the attention of
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Table 2.2: The literature comparison of wireless power transfer-aided SER relaying
systems, where (

√
) represents Yes, (×) represents No, (−) represents SIC Schemes are

Not Applicable, and (⧹) represents No Specific Scheme is Mentioned.

No.
of
nodes

Assumption
of direct
link from S
to D

Energy
harvesting
at S

Energy
harvesting
at R

Self-energy
Recycling
at R

Antennas Protocol Simultaneous
transmission
and reception
of information
at R

Active
SIC
scheme

[89] 4
√

×
√ √

Single at S
and D; Two
at R

Decode-and-
Forward;

× −

[90] 3 × ×
√ √

Multiple-
Input
Single-
Output

Amplify-and-
Forward;

× −

[91] 3 × ×
√ √

Multiple at
S and R;
Single at D

Amplify-and-
Forward;

× −

[92] 3 × ×
√ √

Single at S
and D; Two
at R

Amplify-and-
Forward;

× −

[93] 3 × ×
√ √

Multiple at
S and R;
Single at D

Amplify-and-
Forward;

× −

[94] 4 × ×
√ √

Multiple at
S and R;
Single at D

Amplify-and-
Forward;

× −

[95] 3
√

×
√ √

Single at S
and D; Two
at R

Amplify-and-
Forward;
Decode-and-
Forward;
Quantize-
Map-Forward;

× −

[96] 3 × ×
√ √

Multiple at
S, R, and D

Amplify-and-
Forward;

× −

[97] 3 × ×
√ √

Single at S
and D; Two
at R

Decode-and-
Forward;

× −

[98] 3 × ×
√ √

Multiple at
S and R;
Single at D

Decode-and-
Forward

√
⧹

[99] 3 × ×
√ √

Single at S
and D; Two
at R

Decode-and-
Forward;

√
⧹

[100] 3 × ×
√ √

Multiple at
R; Single at
S and D

Decode-and-
Forward

√
⧹

[101] 3 × ×
√ √

Multiple at
S and R;
Single at D

Amplify-and-
Forward

√
⧹

Chapter 7 3 ×
√ √ √

Dual-
polarized
antennas;
Single at S
and D; Two
at R

Amplify-and-
Forward

√ √
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many scholars. However, the main challenge for the FD transmission is to deal with the

SI signal. SI signals can be suppressed by SIC methods. As mentioned in Section 2.4,

the three main types of SIC methods are passive cancellations, digital cancellations, and

analog cancellations, which can be applied jointly to maximize the SI suppression [102].

The FD EH relaying systems are studied in [26], [27], [40], [103] to increase system

spectral efficiency, where SIC methods are applied to suppress SI signals. Alternatively,

SI signals can also be utilized in a self-energy recycling (SER) process [89]–[101] to

improve the energy efficiency.

The literature comparison of wireless power transfer-aided SER relaying systems is

illustrated in Table 2.2, where Chapter 7 of this thesis is also added for comparison. More

specifically, in [89], a buffer-aided HD wireless-powered SER relay system with two

antennas at the relay and one antenna at the source and destination is considered. A

fixed-antenna assignment and an adaptive-antenna assignment are proposed to improve

the system throughput. The authors in [90]–[97] consider two-phase SWIPT systems

with SER at the relay node. With T representing the total block duration, the first phase

of the duration T/2 is used by the source for sending information to the relay. The second

phase of the remaining time T/2 is used by the relay for receiving energy signals from

the source, and concurrently, transmitting information to the destination. Particularly,

a portion of its own transmit signal can be harvested and reused by the relay via the

loopback channel. The SI signal at the relay is in fact beneficial since the relay not only

harvests energy from the source, but also recycles energy from the self-interfering link. In

all these time-switching-based SWIPT relaying systems [90]–[97], the information signal

is transmitted and received in two different phases, so that the SIC is not required to

eliminate SI. However, this also means that the relay cannot receive information from

the source and transmit information to the destination at the same time, thus limiting the

system throughput.

In [98], [99], the SER-based decode-and-forward FD relaying networks are studied

with an efficient power allocation strategy. The relay in these systems works in an FD

mode and receives information from the source and its own transmitter. A portion of the
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received signal is used for the EH process while the remaining portion of the received

signal is used for the decoding and forwarding information to the destination. However,

the disadvantage of the methods proposed in [98], [99] is that the practical EH circuits

cannot forward the received information and simultaneously extract power from the same

received signal [104]. In [100], the authors consider an FD relaying system with multi-

ple transmit and receive antennas at the relay. The proposed antenna allocation scheme

can allot the antennas at both transmit and receive ends for either SER or information

relaying. The spectral efficiency and energy efficiency are improved at the cost of a com-

plicated antenna allocation technique. In [101], the authors study a power-splitting based

amplify-and-forward FD system, where the signal transmission and reception and SER

are performed in one phase. However, there are no specific SIC schemes mentioned in

[98]–[101].

Chapter 7 of this thesis will propose a SER-based system to improve the energy effi-

ciency and overcome the aforementioned shortcomings.

2.6 Open Issues and Research Objectives

In this chapter, we first provide an overview and up-to-date literature review of cooper-

ative networks, IBFD communication, and wireless EH techniques. Especially, SI can-

cellations, including passive cancellations, analog cancellations, and digital cancellations,

are reviewed as they are the keys to facilitating the IBFD transmission. The state-of-art

of SER techniques is also reviewed which is proposed to improve energy efficiency. The

literature review reveals that the open research question is how to construct an IBFD EH

relaying network that is cost-effective and has high throughput and energy efficiencies,

as well as long-distance coverage. The project mainly focuses on the SIC technique of

IBFD communication and improving the throughput of the system. The IBFD system has

a serious SI problem, which makes it impossible to receive signals from the transmitter.

So the first objective of this thesis is implementing IBFD communication based on sig-

nal processing technology. The second objective of this thesis is combining IBFD and

WPT technologies, designing protocols, and optimizing parameters to allocate the time
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for signal transfer and energy transfer to optimize the throughput of the system. Thus,

this thesis proposes novel IBFD relaying systems, utilizing the emerging PDC, antenna

polarization, EH, and SER techniques with necessary adaptations. The proposed IBFD

EH relaying system will be mentioned in detail in the following chapters.



Chapter 3

Performance Evaluation of
Single-Carrier PDC-Based Full-Duplex
Networks with EH-Enabled Relay

3.1 Introduction

In a system where there is no direct link between the source node and the destination

node, the assistance of other nodes is needed to forward information to the destination.

Thus, relaying networks and their characteristics are important to investigate. Meanwhile,

EH techniques, which allow nodes to harvest energy from RF electromagnetic radiation,

have attracted a significant interest, since the lifetime of wireless sensor nodes can be pro-

longed. For example, the work in [14], [22] investigates relaying systems with wireless

EH. The relay node converts the energy from the source into its own energy to forward the

signal to the destination, but the relay is limited to the HD mechanism. In [16], an IBFD

relaying network is investigated, which allows simultaneous transmission and reception

of information in the same frequency band. The network provides higher spectrum effi-

ciency compared to time division duplex and frequency division duplex. In such an IBFD

relaying system, the signal received at the relay from the distant transmitter is referred to

as the desired signal, while the transmitted signal from the local relaying transmitter is the

SI signal. Because transmission and reception in an IBFD system occur at the same time

and in the same frequency band, the SI signal is mixed with the desired signal, leading

to a signal corruption at the receiver of the relay. Thus, it is crucial that the SI signal is

31
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suppressed in the relay node before the desired signal is amplified and forwarded to the

destination. Referring to Chapter 2, some pioneering work about suppressing SI signals

has been researched. Most of the existing cancellation methods depend on reconstructing

the SI signal and then subtracting it from the received signal to extract the desired signal.

In contrast, the PDC scheme proposed by Liu et al. in [85] distinguishes the SI signal from

the desired signal in the propagation domain and cancels the SI using an oblique projec-

tion in the digital domain. However, this proposal does not consider the EH mechanism

and is not applied to relaying systems. To the best of our knowledge, no works, especially

in the antenna polarization domain, have considered the performance of SIC methods in

the IBFD relaying system with EH. Given that both IBFD communications and EH are

important emerging technologies for 5G systems and beyond, the performance evalua-

tion of IBFD EH relaying networks is of considerable importance. This is the motivation

of our researches. For simplicity, in the following chapters of this thesis, we use FD to

represent IBFD.

In this chapter, we consider a two-hop FD relaying system, where the relaying node

harvests the RF energy from the source node, then uses this energy to amplify and forward

the signal to the destination. We assume there is no direct link between the source node

and the destination node. Thus, the relay is used to assist the transmission from the source

to the destination. We also assume that the time switching method [16] is used at the relay

to harvest the RF energy and the PDC scheme is used to cancel SI at the relay. The main

contributions of the chapter are summarized as follows.

• We investigate the throughput of an FD relaying system assisted by RF EH and the

PDC scheme. We consider the system throughput in relation with the fraction of

time α used to harvest energy for a range of transmit SNR and modulation meth-

ods. We show that the maximum throughput appears at a lower range of α values

for a higher transmit SNR, while this optimal α is invariant for different modula-

tion methods. This observation means that to achieve a high throughput, a joint

combination of a high transmit SNR value and a low α value is expected.

• The BER performances under the impacts of RF EH and the PDC scheme are ex-
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Figure 3.1: Single carrier FD-EH relaying system.

amined. It is revealed that for the same transmit SNR, the BER performance of

the system only improves slightly when α increases. Combined with the above

observation, this result means that the EH scheme can be optimized to improve sig-

nificantly the system throughput without sacrificing much the BER performance.

• The impacts of the EH and PDC schemes on the BER performance are qualified

in comparison with the HD EH relaying system. Our results show that the PDC

scheme can effectively cancel the SI in the FD system. In particular, if the relay

transmission power (per symbol) is the same in both FD and HD systems, the BER

performance curve of the former is within 2 dB inferior compared to that of the

latter. Thus, applying the PDC cancellation scheme to achieve a high throughput

and reasonable BER for our FD EH relaying system is feasible.

The content of this chapter has been published in our paper [26] and partly in our paper

[27], [105].

The rest of chapter is organized as follows. In Section 3.2, the system model is pre-

sented. In Section 3.3, the theory of the PDC scheme is discussed in detail, and in Sec-

tion 3.4, the signal model is described. The simulation results and performance analysis

are presented in Section 3.5. Section 3.6 concludes this chapter.
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Figure 3.2: Time-switching EH architecture in an FD system.

3.2 System Model

In this chapter, the two-hop FD relaying system with EH at the relay node is considered.

We assume that there is no direct link between the source node and the destination node.

Thus, an intermediate relay is used to assist the transmission from the source to the des-

tination as shown in Fig. 3.1. The system has a single source node, a relay node, and a

destination node. Denote a1 to a4 as orthogonally dual-polarized antennas, in which the

antennas a1 and a3 are used for transmission, while a2 and a4 are used for reception. The

flat-fading channel gains from the source to the relay and from the relay to the destination

are denoted as hSR and hRD, and the distances between them are presented as d1 and d2 re-

spectively. As the system is an FD one, the relay is able to receive signals from the source

while transmitting signals to the destination at the same time in the same frequency band.

Thus the local transmit antenna a3 causes the SI signals, which will be mixed with the

desired signal at the receive antenna a2. Denote hRR as the propagation coefficient of the

SI channel which is assumed to follow a Rayleigh distribution. The PDC scheme [85] is

applied at the relay to cancel SI signals.

In addition, the relay node is equipped with the TSR protocol [16] for EH and infor-

mation processing. The FD TSR protocol is depicted in Fig. 3.2. The whole signal block

lasting T (seconds) is divided into an EH section and an information transmitting section.

We define α , where 0 < α < 1, as the fraction of time in which the relay harvests the en-

ergy from its received signals. Thus, αT time is used for the EH and the remaining block

time (1−α)T is used to transmit the desired signal in an FD transmission mode. The

intermediate relay harvests energy from the RF signal transmitted from the source within

the duration αT . Then, the relay uses the harvested energy as a source of transmitting
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power to amplify and forward the source information to the destination within the dura-

tion (1−α)T . Besides, the PDC scheme is activated during this period to cancel the SI

signal. After SIC, the resulting signal is amplified by the relay before being forwarded to

the destination. Finally, the received signal at the destination is detected by the maximum

ratio combining (MRC) method.

3.3 PDC Scheme

In this section, we introduce the theory of using the PDC scheme at the relay to eliminate

the loop-back SI. The PDC scheme [85], [106] in our system requires the orthogonal dual-

polarized antennas at the three nodes as well as the adoption of the oblique projection at

the relay node.

We first introduce the Jones vector J = [JH JV ]
T = [cos(ε) sin(ε)exp( jδ )]T to ex-

press the signal polarization, where (.)T represents the transpose of a vector, JH represents

the horizontal component, JV represents the vertical component of the transmitted signal,

ε ∈ [0,π/2] represents the polarization angle, and δ ∈ [0,2π] represents the phase dif-

ference between the vertical and horizontal components. The polarization states of the

desired information signal and the SI signal are denoted as S and I respectively.

S =
[

cos(εs) sin(εs)exp( jδs)
]T

I =
[

cos(εi) sin(εi)exp( jδi)
]T
, (3.1)

where εi,εs ∈ [0,π/2] are polarized angles of the dual-polarized antennas, δi,δs ∈ [0,2π]

are phase differences between the vertical and horizontal polarized components of the

dual-polarized antennas. S and I are unit vectors, i.e., SHS = IHI = 1 and S ̸= I, where

(.)H is the complex conjugate. In the source-to-relay (S-R) link, the polarization state S

is used, while, in the relay-to-destination (R-D) link, the polarization state I is used. It is

worth noting that the re-transmitted signals from the relay to destination and the SI signal

at the relay have the same polarization state I.

To explain the oblique projections, we first introduce the orthogonal projections. An

orthogonal projection has a null space that is orthogonal to its range [106]. For an orthog-
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onal projection PS whose range is ⟨S⟩ and null space is ⟨I⟩= ⟨S⟩⊥, we have

PSS = S,

PSI = 0, (3.2)

where 0 is a zero vector, i.e., 0 =
[
0 0

]T.

The well-known formulas to build orthogonal projections with the range ⟨S⟩ and ⟨I⟩,

respectively, are given by

PS = S(SHS)−1SH,

PI = I(IHI)−1IH, (3.3)

where (.)H is the Hermitian transposition of a complex vector or matrix, and (.)−1 is the

matrix inversion. PS is called the projector onto ⟨S⟩. The orthogonal projection with the

range ⟨S⟩⊥ is

P⊥
S = E−PS

= E−SSH, (3.4)

where

E =

1 0

0 1

 . (3.5)

Then, we introduce the vector V as the received signal at the relay, which includes both

desired information signal received from the source node and its SI signal. In order to

preserve the information signal and cancel the SI signal at the same time, the oblique pro-

jection is applied. As shown in Fig. 3.3, the orthogonal projection in the space ⟨A,S,S⊥⟩

is denoted as P with subscripts, which includes two components, PSI and PA projections.

The oblique projection is denoted as E with the subscripts indicating the respective ranges.
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Figure 3.3: Three-way resolution of Euclidean space.

Based on (3.3), the orthogonal projection onto the linear subspace ⟨S I⟩ is given by [106]

PSI =

[
S I

]SHS SHI

IHS IHI


−1SH

IH

 , (3.6)

where the sub-spaces ⟨S⟩ and ⟨I⟩ are non-overlapping or disjoint. This orthogonal projec-

tion can be decomposed as

PSI = ES +EI, (3.7)

where ES and EI are two oblique projections with the respective ranges ⟨S⟩ and ⟨I⟩ and

the respective null spaces ⟨I⟩ and ⟨S⟩, which are given by

ES =

[
S 0

]SHS SHI

IHS IHI


−1SH

IH

 ,

EI =

[
0 I

]SHS SHI

IHS IHI


−1SH

IH

 . (3.8)

We choose QSI = ES to be the oblique projection operator of the PDC scheme as we aim

to maintain the desired signal with the polarization state S while canceling the SI signal

with the polarization state I [85]. From (3.8), the oblique projection with the range ⟨S⟩
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can be simplified to

QSI = S
[
SHP⊥

I S
]−1SHP⊥

I , (3.9)

where P⊥
I = E−PI = (E− IIH), which is the orthogonal projection with the range ⟨I⟩⊥,

i.e., P⊥
I I = 0. The operator QSI is used at the relay as a digital signal processing module

to cancel SI.

It can be easily shown that

QSIS = S
[
SHP⊥

I S
]−1SHP⊥

I S = S, (3.10)

QSII = S
[
SHP⊥

I S
]−1SHP⊥

I I = 0. (3.11)

In (3.11), we use the fact that P⊥
I I = 0 as mentioned before. Eqs. (3.10) and (3.11)

indicate the oblique projection QSI has the range ⟨S⟩ and null space ⟨I⟩. The property

QSI[S I] = [S 0] is the key to canceling SI in the PDC scheme. Although the incoming

signal yin of the PDC scheme consists of the desired signal and the SI signal, the product

of the matrix SHQSI and yin can effectively preserve the desired signal and cancel the

SI signal at the same time. The detailed analyses will be presented in Section 3.4. The

PDC scheme at the relay node may consume some power. In this work, we do not consider

processing power consumption of the PDC cancellation technique, which is an interesting

future direction worth more research [46].

3.4 Signal Model

3.4.1 Energy Harvesting

In Phase I of the FD TSR protocol, the RF signal xe is sent from the source to the EH

receiver at the relay node. During this EH phase, the received energy signal at the relay

can be expressed as

ye[i] =

√
Ps

dm
1

hSRxe[i]+nr[i], (3.12)
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where hSR is the channel coefficient of the S−R channel and d1 is the distance between

the source and relay. Ps is the constant transmitted power of the source node, xe is the

energy symbol transmitted from the source at the time instant i with the expectation value

E{|xe[i]|2} = 1, and nr[i] is the AWGN at the relay with the variance of N0. We assume

that the harvested energy due to the noise is small and thus ignored [46], [56]. Hence, the

harvested energy at the relay during the time αT is

Er = ηαT
(Ps|hSR|2

dm
1

)
, (3.13)

where 0 < η < 1 is the energy conversion efficiency. We assume all the harvested energy

Er at the relay is used in Phase II for relaying information signals to the destination. The

transmission power of the relay is

Pr =
Er

(1−α)T
=

αηPs|hSR|2

(1−α)dm
1
. (3.14)

3.4.2 Information Transmission

Denote m as the path loss exponent, Ps as the source transmit power, and Pi as the interfer-

ence power at the receive antenna of the relay. The channel coefficients are presented in

Fig. 3.1. Then, in a conventional non-polarized FD system, the received temporal signal

yr[i] at the relay is

yr[i] =

(
1√
dm

1

)
√

Ps hSR xs[i]+nr[i]. (3.15)

However, in our proposed system, since the orthogonally dual-polarized antennas are used

to transmit and receive the polarized signals, the relay receives the polarized signals, each

of which has a horizontally polarized component (H) and a vertically polarized component

(V). Thus, the polarized received signal at the relay node, namely the input signal of the

PDC scheme, can be written as

yr[i] =

√
Ps

dm
1

hSRSxs[i]+
√

Pi hRRIxr[i]+Nr[i], (3.16)
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where xs[i] is the information signal transmitted by the source and xr[i] is the loopback

interference due to the FD transmission at the relay with E{|xs[i]|2}= 1 and E{|xr[i]|2}=

1. hSR is the channel coefficient of the S−R channel and hRR is the loopback interference

channel gain. Pi is the power of the loopback interference signal, which is assumed to

be less than the transmitting power of the relay Pr, due to some passive SIC technologies

used at the relay, such as absorptive shielding [62], the difference in polarization of the

transmit and receive antennas at the relay, and the path loss between the transmit antenna

and the receive antenna of the relay. In the later simulation, for illustration and without

loss of generality, we assume Pi is 25 dB smaller than Pr. Nr[i] is the AWGN at the relay

node, which can be represented as

Nr[i] =

nH [i]

nV [i]

 , (3.17)

where nH [i] represents the horizontal polarized component and nV [i] represents the verti-

cal polarized component. nH [i] and nV [i] obey the Gaussian distribution with a zero mean

and a variance of N0
2 . From (3.16), the relay not only receives the information signal xs[i]

from the source but also receives the SI signal from its own transmitter. The signal yr[i] is

then processed by the PDC scheme. The output signal yout of the PDC scheme is

yout [i] = SHQSI yr[i]

=

√
Ps

dm
1

hSRxs[i]+SHQSI Nr[i], (3.18)

where SHQSI Nr[I] is the noise of the output of the PDC scheme. This noise term can

be considered as the side-effect of the PDC scheme. The signal yout in (3.18) is then

amplified and forwarded by the relay. Denote the variance of SHQSI Nr[i] as δ 2
p . The

transmitted signal at the relay xr[i] is given by

xr[i] =

√√√√ Pr
|hSR|2Ps

dm
1

+δ 2
p

yout [i− τ], (3.19)
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where τ is the time delay caused by the relay processing. The received signal at the

destination is

yd[i] =
1√
dm

2
hRDxr[i]+nd[i]

=

√
ηαPsε

(1−α)dm
1 dm

2
hSRhRDxs[i]+

√
ηαε

(1−α)dm
2

hRDSHQSI Nr[i]+nd[i], (3.20)

where nd[i] is the AWGN at the destination with the variance of N0, and ε = |hSR|2Ps
|hSR|2Ps+dm

1 δ 2
p
.

The signal yd[i] is then processed by the maximum ratio combining (MRC) detection

method. Denote (.)∗ as the conjugate of a single number, the resulting signal yde[i] used

for demodulation is

yde[i] = h∗SRh∗RDyd[i]

= h∗SRh∗RD

(√
ηαPsε

(1−α)dm
1 dm

2
hSRhRDxs[i]+

√
ηαε

(1−α)dm
2

hRDSHQSI Nr[i]+nd[i]

)
.

(3.21)

3.5 Simulation Results

In this section, simulation results are presented to reveal the throughput and BER perfor-

mances of both HD EH relaying system and FD EH relaying system. In the first part, we

investigate the impact of transmit SNR ,i.e., transmit SNR= Ps
N0

, and modulation schemes

on the system throughput when the value of α is varied. In the second part, we investigate

the impact of α and modulation schemes on the BER with the change of transmit SNR

from 0 dB to 40 dB. Ps and Pr represent the transmission power of the source and the re-

lay, respectively. The source transmission rate is set as Rc1 = 2 bits/sec/Hz for quadrature

phase-shift keying (QPSK) modulation and Rc2 = 4 bits/sec/Hz for 16 phase-shift keying

(16-PSK) modulation, hence, the total numbers of transmitted symbols in both QPSK and

16-PSK cases are the same. We set the corresponding outage SNR threshold to achieve

the desired transmission rates R1 and R2 as γth1 = 2Rc1 − 1 = 3 and γth2 = 2Rc2 − 1 = 7,

respectively. The path loss exponent is m = 4, the source-relay distance d1 and relay-

destination distance d2 are 1 meter, and the EH efficiency η = 1. Besides, we assume that
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the signal channels and the SI channels satisfy Rayleigh flat fading.

3.5.1 Throughput Performances

The system outage probability can be calculated as

pout = P(γ < γth), (3.22)

where γ is the instantaneous SNR per symbol of the received signal at the destination and

γth is the SNR threshold. Specifically, the threshold of QPSK modulation is γth1 while

that of 16-PSK modulation is γth2. The system throughput R can be calculated as

R = (1− pout)Rc(1−α), (3.23)

where Rc is the transmission rate. Recall that the transmission rate of QPSK modulation is

Rc1 while that of the 16-PSK modulation is Rc2. The simulation results of the throughput

are shown in Figs. 3.4 and 3.5.

Fig 3.4 illustrates the throughput of both HD and FD relaying systems for different

values of α . In both systems, the relay node is powered by the EH technique and the

modulation scheme is 16-PSK. From Fig 3.4, we have three observations. Firstly, a con-

tinuous increase of α is not necessary to improve the system throughput. For the four

different scenarios in Fig 3.4, the throughput curves are concave, i.e., the throughput

reaches its maximum value at a certain α . This is because the system throughput R is

a function of both pout and (1−α) as shown in (3.23). Any increase in α results in a

larger transmission power Pr of the relay, i.e., a smaller outage probability pout , but also

a shorter time duration (1−α)T used for transmission of information. For a small value

of α , the throughput depends more on pout , while it depends more on (1−α) when α

becomes larger. Secondly, for different values of the transmit SNR, the throughput of the

FD system in all cases is around 1.6 times of the HD case. The reason is that although

FD carries a doubled amount of symbols compared to HD during the duration (1−α)T ,

the total harvested energy during the αT time for relay transmission is the same. This

means the relay transmission powers per symbol Pr of FD is half of HD, which decreases
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Figure 3.4: Throughput comparison between HD EH relaying system and FD EH relay-
ing system using 16-PSK modulation.

the throughput by 0.4 times. Thirdly, when the transmit SNR is larger, the maximum

throughput appears at a lower α value. For example, at SNR = 20 dB, the throughput in

FD is peaked at around α = 0.18, while for SNR = 10 dB, it is maximum at α = 0.33.

The reason is that, for the same transmission rate Rc, the throughput is a function of both

pout and α . The maximum throughput appears at the intersection of the two curves repre-

senting 1− pout and Rc(1−α). When the transmit SNR increases, the function Rc(1−α)

is unchanged while 1− pout increases. This results in the intersection point of the two

curves to be shifted to the left-hand side. Thus, the maximum throughput appears at a

lower α value.

Fig 3.5 compares the throughputs of the FD and HD systems for QPSK and 16-PSK

modulations at SNR = 20 dB, which shows that the 16-PSK modulation significantly

improves the throughput, compared to the QPSK modulation. The optimal α value for

achieving the maximum throughput is invariant for these two modulation methods. The

modulation method also has influences on the BER performance as detailed in the follow-

ing section.



CHAPTER 3. Performance Evaluation of Single-Carrier PDC-Based Full-Duplex
Networks with EH-Enabled Relay 44

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

T
h
ro

u
g
h
p
u
t 
(b

its
/s

e
c/

H
z)

FD, 16-PSK

FD, QPSK

HD, 16-PSK

HD, QPSK

Figure 3.5: Throughput comparison between QPSK and 16-PSK modulations with the
transmit SNR = 20 dB.

3.5.2 Bit Error Rate

In this section, we examine the influence of modulation schemes and α on BER of the

FD-EH relaying system. Besides, we quantify the SIC performance of the PDC scheme

in the FD system and compare it with the HD system.

Fig. 3.6 compares the BER for QPSK and 16-PSK modulation schemes. The result

shows that the BER of QPSK is superior to 16-PSK and the difference between them is

about 7.9 dB in FD systems and 8.6 dB in HD systems when the transmit SNR is 40 dB.

This is because, in our EH system, the relay transmission power per symbol is the same

in the two modulation schemes, thus power per bit of QPSK is double that of 16-PSK

while the Euclidean distance between the two nearest constellation points is much larger,

compared to 16-PSK. Fig. 3.6 also compares the BER of an HD EH relaying system and

that of an FD EH relaying one with α = 0.2. As mentioned in Section 3.5.1, α = 0.2 can

provide a large throughput but a low harvested energy. Within the duration αT , the total

harvested energy of HD and FD systems are equal, but in the information transmission

period, the number of the transmitted information bits is doubled for the FD scenario,

compared to the HD one. This means that the transmission power per bit at the relay of
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the FD system is half that in the HD one. The PDC system achieves a BER around -32

dB for QPSK and -24 dB for 16-PSK at SNR = 40 dB. The HD system achieves a BER

around -38 dB for QPSK and -29 dB for 16-PSK at SNR= 40 dB. Thus, although the BER

performance curve of the FD system is 5 dB inferior to that of the HD one in the 16-PSK

modulation schemes, 3 dB of its inferiority is accounted for the less transmission power

per bit at the relay. Equivalently, the BER curve of the FD system is only 2 dB inferior

to that of the HD one if the two powers are equal. Without the PDC scheme, the desired

signal cannot be detected as it is seriously corrupted by the SI signal. However, the side

effect of the PDC scheme is the resulting noise as discussed in (3.18) in Section 3.4.

Fig. 3.7 examines the impact of the time fraction α on BER of the FD-EH relaying

system using the QPSK modulation. The value of α decides the total harvested energy.

At a high SNR value, e.g., SNR = 40 dB, BER can reach 10−3 even with α being as small

as 0.1. When α is getting larger, especially when α > 0.5, BER continues to be improved,

but the additional BER improvement becomes smaller.

We recall from Figs. 3.4 and 3.5 that, the system throughput is high when α is in the

lower half of its range; a higher value of SNR leads to a higher system throughput for

all values of α , and when SNR increases, the maximum throughput appears at a lower α

value. From Figs. 3.6 and 3.7, when SNR increases, the BER decreases. These obser-

vations suggest that if we want to achieve a relatively high throughput along with a low

BER in an FD-EH relaying system, a joint combination of a high transmit SNR value and

a low α value is expected.

3.6 Chapter Summary

In this chapter, we propose an FD relaying system assisted by the RF EH technique and

the PDC scheme. In particular, the relay node harvests power from the wireless RF signal

transmitted from the source node and uses this power to amplify and forward signals to the

destination. Meanwhile, the PDC scheme is used at the relay node to cancel the SI signal

in order to facilitate the concurrent in-band transmission and reception. The throughput

and bit error performances of our system are then investigated. The simulation results
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show that the EH mechanism has an influence on the system throughput and BER. An FD

EH relaying system using the PDC can almost double the system throughput, compared

to an HD EH relaying one. However, this high throughput in the FD system is achieved

at the cost of an inferior BER performance due to the characteristics of our EH system

that the FD system uses the same harvested energy as in the HD one to transmit a doubled

amount of information. A relatively good performance from both throughput and BER

performance perspectives can be achieved in the FD system by jointly optimizing SNR

and α . For example, for the case of a medium or high transmit SNR, the value of α should

be in its lower range.

This chapter considers a single-carrier FD-EH relaying system in flat fading channels

with the deployment of the PDC scheme. The next chapter will consider adapting the

PDC scheme to a multi-carrier OFDM FD-EH relaying system in frequency selective

fading channels.



Chapter 4

Performance Evaluation of Full-Duplex
OFDM Relaying Systems with Energy
Harvesting in Multipath Fading
Channels

4.1 Introduction

Orthogonal frequency division multiplexing (OFDM) is a spectrum-efficient technology

that has been widely used in practice and is one of the candidates for 5G systems and

beyond. On the other hand, EH is capable of prolonging the lifetime of energy-constrained

devices. RF EH has become an important concept in 5G. An EH device fulfills its role

by collecting energy from the ambient or received RF signals to replenish its energy. EH

can be applied in HD single carrier relaying systems [14], HD MIMO-OFDM relaying

systems [13], and orthogonal frequency division multiple access (OFDMA) downlink

networks [107].

In this chapter, the performance of FD OFDM relaying systems with EH and SI cancel-

lation using the PDC scheme is analyzed. Specifically, we use the time switching-based

relaying protocol to implement EH. The harvested energy is used by the relay to forward

the transmitted information from the source. To cancel the SI, the PDC scheme mentioned

previously in Chapter 3 is deployed at the relay. To the best of our knowledge, our work

is the pioneering work to analyze the performance of FD OFDM EH relaying networks

48
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with the PDC cancellation method in multipath fading channels and compare it with the

performance of the HD OFDM EH relaying system.

For brevity, unless otherwise stated, we refer to the full-duplex OFDM energy har-

vesting relaying system as the FD system and the half-duplex OFDM energy harvesting

relaying system as the HD system in this chapter. The main contributions of the chapter

include

• The throughput and BER performance of the FD OFDM system are investigated. It

is shown that the system throughput is maximized when the time splitting factor for

EH is in its lower range, typically less than 0.3. However, a small factor increases

the BER. Thus, there exists a trade-off between the throughput and the BER when

selecting the time splitting factor.

• We reveal that the PDC scheme effectively cancels the SI in the FD system in multi-

path fading channels. For the case of 16 discrete Fourier transform points, the SNR

of the FD PDC system needs to increase by no more than 1 dB to achieve the same

BER as the ideal full-duplex (IFD) system (without SI) and no more than to match

the BER of the HD counterpart. It is worth noting that the HD counterpart only has

half system throughput of the FD system. Therefore, the FD system can double the

throughput and has the same BER as the HD system with a modest SNR increase.

• The maximum throughput of the FD system almost doubles that of HD system at

medium-to-high SNR ranges.

The content of this chapter has been published in [40].

The rest of this chapter is organized as follows. Section 4.2 introduces the system

model of our FD EH relaying system. Section 4.3 presents mathematical formulas of the

signal processing. Section 4.4 provides simulation results and discussions on optimiza-

tion. Finally, Section 4.5 summarizes the chapter.
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Figure 4.1: System model with multipath propagation.

4.2 System Description

We consider a dual-hop AF relaying system with FD transmission and wireless power

transfer, as shown in Fig. 4.1, in which the source (S) communicates with the destina-

tion (D) with the help of the relay (R) as the direct link does not exist. The source and

destination are equipped with one orthogonal dual-polarized antenna while the relay is

equipped with two orthogonal dual-polarized antennas [85], i.e., one for transmission and

one for the reception during the information transmission phase [40], [108]. The source

node has a fixed energy supply while the relay only has a limited power supply and relies

on EH from the source transmitting signals [14]. The EH model at the relay is assumed

as a linear RF model [12], [14], which is applicable to the scenario when the input RF

power is high [109], [110]. Besides, we adopt the OFDM technique that divides the total

system bandwidth B into N sub-bands, which effectively produce N frequency-flat fading

channels. At the relay, we adopt the PDC scheme to remove the SI signals in our FD

system.

Let d1 and d2 be the distances from S to R and from R to D respectively. We use the

model λ1 = d−m
1 and λ2 = d−m

2 to take into account path loss, where m denotes the path

loss exponent. The channel coefficient vector of S−R is hSR = [hSR,1, · · · ,hSR,L], R−D

is hRD = [hRD,1, · · · ,hRD,L], and the loop-back self-interference channel of the relay is

hRR = [hRR,1, · · · ,hRR,L], where L is the number of multipath channels.

To enable FD communication in our system, we adopt the FD TSR protocol in [16],

[26], hence the whole communication process includes two phases as shown in Fig. 4.2.
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Figure 4.2: Time-switching EH architecture in a HD system.

Figure 4.3: Time-switching EH architecture in a FD system.

We define T (seconds) as the whole block time, and 0 < α < 1 as the time splitting factor,

then the first duration αT is used for the relay to harvest energy. The remaining block

time (1−α)T is used for information transmission. In particular, during this phase, the

transmissions between the source and relay as well as the transmission between the relay

and destination occur at the same time and in the same frequency band to increase spectral

efficiency. For comparison, we also consider the HD EH relaying system with the TSR

protocol as shown in Fig. 4.3, where the whole process is divided into three phases. The

αT duration is used for EH, the first (1−α)T/2 time is used for information transmission

from the source to the relay, and the remaining (1−α)T/2 time is used for information

transmission from the relay to the destination.

4.3 Signal Modeling

In this chapter, the lower case letter denotes the time domain scalar signal while the capital

letter denotes the frequency domain scalar signal. The bold letter represents a vector or

matrix in the corresponding domain. The notation ifft denotes the inverse fast Fourier

transform (IFFT) and fft denotes the fast Fourier transform (FFT).

Define x and z as the macro OFDM symbols transmitted by the source and the relay

with the length of N. After adding a cyclic prefix (CP) with the length of NCP, xcp is
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Figure 4.4: Signal diagram of a relaying, FD OFDM system with PDC scheme.

transmitted to the relay through the channel hSR and simultaneously zcp is transmitted

to the destination through the channel hRD, where xcp and zcp are of the length NSYM =

N + NCP. Since the relay works in the FD mode, there exists the looped-back signal

denoted as zsi, being propagated to its local receiver. As shown in Fig. 4.4, the relay

receives the desired signal ycp1 and SI signal ycp2 from its own transmitter. Define Ps

as the source transmit power, and Pr as the relay transmit power harvested within the

duration αT . The power of the SI signal is Pi which is assumed to be 25 dB less than Pr,

i.e., Pi = Pr −25 dB, because of the passive cancellation technique at the relay [62], such

as absorptive shielding, circulators and directional isolation, and the path loss due to the

distance between the transmit and receive antennas of the relay.

Referring to Section 3.3 (cf. Eq. (3.16)), the input time-domain signal yin,i of the PDC

scheme at the relay after adding noise is

yin,i =
√

Ps Sycp1,i +
√

Pi I ycp2,i +nr,i, (4.1)

where nr,i = [nH nV ]
T for i = 1, 2, · · · ,NSYM +L− 1 is the polarized noise, (.)T repre-

sents transpose, ycp1,i ∈ ycp1 and ycp2,i ∈ ycp2 are the i− th time samples of ycp1 and ycp2,
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respectively. The expressions of ycp1 and ycp2 are

ycp1 = d
−m

2
1 (xcp ∗hSR),

ycp2 = zsi ∗hRR, (4.2)

where * denotes the linear convolution between two vectors and m denotes the path loss

exponent. Note that the path loss of the signal ycp2 has been considered in Pi as mentioned

above.

The signal yin,i is then processed by the PDC scheme to cancel the received SI signal

ycp2,i. The output signal yout,i of the PDC scheme is

yout,i = SH(QSI yin,i)

=
√

Ps SH(QSI S)ycp1,i +
√

Pi SH(QSI I)ycp2,i +SH QSI nr,i

=
√

Ps ycp1,i +Nr,i, (4.3)

where Nr,i = SH QSI nr,i is the scalar time-domain noise signal at the output of the PDC

scheme. The overall output signal in a vector form for transmitting one OFDM symbol is

yout . We have

yout =
√

Ps ycp1 +Nr = (Ps/dm
1 )

1
2 (xcp ∗hSR)+Nr, (4.4)

where yout = {yout,i}NSY M+L−1
i=1 , ycp1 = {ycp1,i}NSY M+L−1

i=1 , and Nr = {Nr,i}NSY M+L−1
i=1 =

SH QSI nr. The output signal yout after removing CP is denoted as y

y = (Ps/dm
1 )

1
2 (x⊕hSR)+Nr

=
√

Pa {ifft[fft(x) .∗ fft(hSR)]}+Nr

=
√

Pa {ifft[fft(ifft(X)) .∗ fft(hSR)]}+Nr

=
√

Pa {ifft(X .∗ fft(hSR))}+Nr, (4.5)

where Pa =
Ps
dm

1
, ⊕ denotes the cyclic convolution and .* denotes the element-wise multi-
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plication. After applying FFT to y, the received signal is

Y =
√

Pa(X .∗HSR)+ fft(Nr), (4.6)

where HSR = fft(hSR). Denote Pr as the average harvested power per symbol at the relay

[26], and ./ as the element-wise division between vectors. The relay transmitted signal Z

is

Z = (Pr/Pa)
1
2 (Y./HSR)

=
√

Pr X+[(Pr/Pa)
1
2 fft(Nr)]./HSR, (4.7)

which will be converted to the time domain, denoted as z in Fig. 4.4, and added with

the CP. The transmitted signal from the relay in the time domain is denoted as zcp. The

received signal ycpz at the destination is

ycpz = d
−m

2
2 (zcp ∗hRD)+nd. (4.8)

After removing CP, the received signal at the destination is

yz = d
−m

2
2 (z⊕hRD)+nd

= d
−m

2
2 [ifft(fft(z) .∗ fft(hRD))]+nd

= d
−m

2
2 [ifft(Z .∗ fft(hRD))]+nd, (4.9)

where nd is the noise at the destination with zero mean and variance σ2. The received

signal at the destination after FFT is

Yz = fft(yz)

= d
−m

2
2 (Z .∗HRD)+ fft(nd)

=
√

Pb

[
X+

fft(Nr)√
Pa

./HSR

]
.∗HRD + fft(nd), (4.10)

where HRD = fft(hRD) and Pb = Pr
dm

2
. The signal Yz is then processed by the equalizer,
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resulting the output signal Ỹ

Ỹ = Yz ./(
√

Pb HRD)

= X+
fft(Nr)√

Pa
./HSR +

fft(nd)√
Pb

./HRD. (4.11)

where X is the signal vector transmitted from the source node presented in the frequency

domain.

4.4 Simulation Results

In this section, the throughput and BER performances of the proposed FD OFDM system

with an EH relay associated with the PDC scheme are analyzed. The throughput R is

defined as

R = Rc(1−Pout)(1−α) bits/sec/Hz, (4.12)

where Rc ≜ log2(1+ γth) is the source transmission rate normalized by the system band-

width, Pout is the system outage probability, defined as the probability that the received

SNR is less than the threshold, i.e., Pout = p(γ < γth), γ is the received instantaneous SNR

per symbol at the destination and the threshold γth = 2Rc −1.

For illustration, we set the total bandwidth of the OFDM system as B = 20 MHz [111],

distances as d1 = d2 = 1 m (except Fig. 4.5), the energy harvesting efficiency as η = 1

[14], the path loss exponent as m = 4, the source transmission rate as Rc = 1bits/sec/Hz,

the CP length as NCP = 4, and the modulation scheme as binary phase-shift keying

(BPSK). We define the transmit SNR as the ratio of transmitted power per OFDM symbol

to the noise power. The study range of transmit SNR in this chapter is up to 50 dB [16],

[17]. The noise power is N0 = −100 dBm at the temperature 290◦K. The performance

analysis is divided into two subsections. Subsection 4.4.1 investigates the influences of

the discrete FFT size N, the number of multipaths L, and SNR on the throughput. In Sub-

section 4.4.2, we evaluate the impact of α on the throughput for these scenarios within

the range 0 < α < 1 and examines the BER when N, α and L vary.
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Figure 4.5: Throughput performances for different numbers of OFDM sub-bands in the
FD PDC system with SNR = 50 dB and L = 3.

4.4.1 Throughput Performances

Fig. 4.5 examines the throughput performances in the FD system when varying the FFT

size N and distances d1 and d2 while keeping the transmit SNR = 50 dB and L = 3 for

a fair comparison. We assume each sub-band is a flat fading channel. Simulation results

show that a higher throughput can be achieved by using a smaller N. This is because

a large N narrows the sub-bands since we keep the total bandwidth of the OFDM sys-

tem unchanged, which results in the increase of the inter-carrier interference (ICI) [112].

Thus, the throughput decreases when N increases. The results also show that increasing

the distance significantly decreases the system throughput. This is because, in our EH

relaying system, the distance affects both energy transfer and information transmission

due to the path loss.

Fig. 4.6 compares the throughput performances between the FD system (solid lines)

and the HD system (dashed lines) for different transmit SNR values. The system param-

eters are N = 16 and L = 3. Fig. 4.6 shows that, with 4 dB increase in SNR, the FD

system possesses the maximum throughput of about 2.1 times higher than the HD sys-

tem (e.g., R = 0.55 at SNR = 34 dB in the FD system vs. R = 0.26 at SNR = 30 dB

for the HD counterpart). As pointed out later in Fig. 4.9, with this 4 dB higher SNR,



CHAPTER 4. Performance Evaluation of Full-Duplex OFDM Relaying Systems with
Energy Harvesting in Multipath Fading Channels 57

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
h

ro
u

g
h

p
u

t 
(b

it/
se

c/
H

z)

PDC,SNR=44dB

HD,SNR=40dB

PDC,SNR=34dB

HD,SNR=30dB

Figure 4.6: Throughput comparisons between HD system and FD PDC system for dif-
ferent SNR with N = 16 and L = 3.

the two systems have the same BER performances. In addition, as shown in Fig. 4.6,

the maximum throughput of the HD system can only increase by 1.5 times when SNR

increases by 10 dB. These two observations clearly show that our FD system significantly

improves throughput compared to the HD system with only a modest SNR increase. Fig.

4.6 also shows that, a higher SNR leads to an increase of throughput for all values of α

due to the fact that a high transmission power results in a lower Pout . Finally, when SNR

increases, the optimal value of α decrease (e.g., α = 0.2 for SNR = 34 dB and α = 0.1

for SNR = 44 dB). The reason is that a high transmission power decreases the harvesting

time required for collecting the same amount of power Pr at the relay, thus lowering the

optimal time fraction α .

Fig. 4.7 illustrates the influence of the number of multipaths L on the throughput of the

FD system, when N = 16 and SNR = 30 dB. It indicates a larger L results in a smaller

peak throughput because the inter-symbol interference (ISI) caused by the multipath prop-

agation increases. However, when L increases, the signal diversity also increases, which

counteracts the above effect to some degree. Hence the throughput deterioration rate be-

comes smaller.

Fig. 4.8 compares the maximum throughput of the FD and HD systems when N = 16
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Figure 4.7: The influence of L on the system throughput in the FD system with SNR =
30 dB and N = 16.
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Figure 4.9: The BER performance comparison among HD, IFD and FD PDC systems
for different numbers of OFDM sub-bands with L = 3 and α = 0.2.

and N = 64. Clearly, when SNR increases, the advantage of the FD system in terms

of throughput is more significant. At the high transmit SNRs, e.g., SNR = 50 dB, the

throughput of FD systems is almost twice the HD case when N = 16 and 1.8 times higher

when N = 64.

4.4.2 Bit Error Rate

Fig. 4.9 compares the BER of the HD system, the IFD system without SI, and the FD

system with SI canceled by the PDC scheme when varying N. We assume L = 3 and

α = 0.2. For a given SNR value, the HD system performs better than the IFD system

and the PDC system. To match the BER performance of the HD system in case N = 16,

for instance, the increases of 1 dB and 4 dB in SNR are needed for the IFD system and

the PDC system, respectively. Recall from Fig. 4.6 that, with this extra 4 dB in SNR,

the throughput in the PDC system increases about 2.1 times over that of the HD system.

This observation proves that the PDC relaying system improves the system throughput

significantly at the cost of a modest SNR increase. Fig. 4.9 also shows that a smaller N

results in a lower BER due to the less ICI. Recall from Fig. 4.5 that, the system throughput
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Figure 4.10: The influence of α and L on BER in FD PDC system with N = 16.

increases for smaller values of N. Thus the FFT size N should be chosen to be small

enough, provided that each sub-band still experiences a flat fading channel, to achieve a

higher throughput and a better BER performance.

Fig. 4.10 presents the impact of L and α on the BER performance of the FD system

for N = 16. From Figs. 4.7 and 4.10, clearly, both the system throughput and BER

become worse when the channels are more dispersive. Further, from Figs. 4.6 and 4.10, a

higher α results in a better BER performance, but at the same time, reduces the maximum

throughput. Thus there is a trade-off between throughput and BER when selecting α .

4.5 Chapter Summary

This chapter provides comprehensive throughput and BER analyses of an FD OFDM EH

relaying system, where SI is eliminated by the PDC scheme, in multipath fading chan-

nels. The numerical results for the whole OFDM band are discussed in detail. The FD

system substantially improves the system throughput, while maintaining the same BER

by a modest increase in SNR compared to the HD counterpart. For selecting the optimal

value of α , there is a trade-off between the system throughput and BER performance.
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In addition, for a given α , the number of sub-bands should be chosen small enough,

provided that each sub-band still experiences a flat fading channel, to achieve both high

system throughput and a good BER performance. It is also revealed that the optimal time

splitting factor should be less than 0.3 to maximize the FD system throughput.

In the next chapter, the analytical and numerical results of a sub-band for an FD OFDM

EH relaying system will be researched.



Chapter 5

Outage Probability and Throughput
Analyses in Full-Duplex OFDM
Relaying Systems with Energy
Harvesting

5.1 Introduction

The main aim of this chapter is to focus on a two-hop scenario where the direct link from

the source to destination is not available due to obstructions or distance. An intermedi-

ary relay is deployed, which is powered by the wireless RF signal in the first phase and

implements simultaneous transmission and reception at the same frequency band in the

second phase. This system model can be potentially applied in various energy-constrained

scenarios. For example, in wireless sensor networks, a node with a fixed power supply

wants to send information to a sensor. The direct link between them is not available. So,

the node needs an intermediary sensor to assist its information transmission. To prolong

the lifetime of the intermediary sensor, the EH sensor is used instead of a battery-limited

sensor. Another example is that a source station wants to transmit data to a destination

station that is far away from the source. A relay node with a fixed energy supply is un-

available due to the rugged environment. In this scenario, deploying an EH relay is a

more convenient solution to help information transmission from the source to the desti-

nation. As for the SIC, we consider the combination of antenna polarization and oblique
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projection, i.e., the polarization-enabled digital self-interference cancellation scheme, to

eliminate the SI at the relay. In order to demonstrate the outage probability and through-

put of our proposed system, the performance of the HD EH relaying system in [14] is used

as a benchmark. In this chapter, we consider a two-hop FD, amplify-and-forward, OFDM

relaying network, where the relay operates based on a time-switching architecture to har-

vest energy from RF signals. We use a PDC scheme to cancel the self-interference signal

at the relay in order to achieve FD communications. The chapter provides a comprehen-

sive analysis of the system performances in terms of outage probability and throughput

over multipath Rayleigh fading channels. Furthermore, the optimal time split between the

duration of energy harvesting and signal transmission to maximize the system throughput

is numerically calculated. We also derive the asymptotic lines for the expressions of out-

age probability and throughput at high transmit SNR. Our analysis and simulation results

show that the proposed FD relaying system by utilizing a proper time split fraction can

boost the system throughput significantly over an appreciable range of transmitting SNR

values compared to HD relaying systems.

The main contributions of the chapter include:

• We present analytical expressions of the outage probability and the system through-

put for a OFDM sub-band. Specifically, the expressions of the outage probability

are derived using two methods. Our findings show that, the method that considers

the product distribution of the source-relay channel and relay-destination channel

is more accurate at low SNRs, and both methods are accurate at high SNRs.

• The optimal time split between the EH and information exchange phases is cal-

culated numerically to maximize the system throughput. The outage probability

decreases with the increase of the EH duration.

• A PDC scheme is used at the relay to cancel the SI signal. The results show that

with this cancellation technique, the throughput of our FD relaying system can be

nearly doubled compared to that of the HD relaying system.

• By comparing the FD and HD relaying architectures, the chapter demonstrates that
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FD relaying can boost the system throughput with a proper time split and trans-

mit SNR. Although HD relaying outperforms the FD relaying in terms of outage

probability, the performance gap gradually diminishes when the time split factor is

large.

• At a high transmit SNR, we simplify the expressions for the outage probability and

the system throughput to obtain the corresponding asymptotic lines.

The content of this chapter has been published in [27].

The rest of this chapter is organized as follows. Section 5.2 introduces the system model

of our FD EH relaying system and the theory of using oblique projection to cancel the SI

signals at the relay. Section 5.3 models EH and information transmission processes and

illustrates the analytical expressions of the outage probability, throughput, and optimal

time splitting. Section 5.4 illustrates numerical results to validate the theoretical analyses

and provides comparisons with a existing solution in the literature to demonstrate system

performances. Section 5.5 concludes this chapter.

5.2 System and Signal Model

The system model in this chapter is same as Chapter 4. The two-hop AF FD relaying

system with wireless power transfer is shown in Fig. 4.1, where no direct link between

the source node and the destination node is considered. The OFDM system has M sub-

bands and the FD TSR protocol is shown in Fig. 4.2. For comparison, we also consider

the HD EH relaying system with the TSR protocol as shown in Fig. 4.3.

5.2.1 Relay-Assisted Transmission

In this chapter, we assume the channel coefficients |hSR,l|2 and |hRD,l|2 are independent

and identically distributed (i.i.d.) exponential random variables. We have the following

theorem.

T heorem 1: If hSR = [hSR,1,hSR,2, · · · ,hSR,L] where hSR,l ∼ C N (0,Ω) (i.e. |hSR,l| ∼

Rayleigh(Ω), l = 1, · · · ,L), and HSR = [HSR,1, · · · ,HSR,M] = fft(hSR), where M is the num-
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ber of sub-bands in the OFDM system, then HSR,m, where m= 1, · · · ,M, are also Rayleigh

random variables |HSR,m| ∼ Rayleigh(LΩ/M) if M ⩾ L [71].

Proo f : A Rayleigh random variable hSR,l ∼ C N (0,Ω) with E{|hSR,l|2} = 1 can be

considered as a Nakagami-m random variable, i.e., hSR,l ∼ Nakagami-m(1,Ω). It is

known that |HSR,m| follows Nakagami-m(k′,Ω′), where k′ = L/(L−1+1) = 1 and Ω′ =

(1/M)∑
L−1
l=1 Ω = LΩ/M [72]. Thus, |HSR,m| ∼ Rayleigh(LΩ/M) [71].

From T heorem 1, it is clear that X = |HSR,m|2 and Y = |HRD,m|2 are exponentially dis-

tributed random variables. We set the mean values of X and Y as λs and λd respectively.

The probability density function (PDF) fX(x) of X , the cumulative distribution function

(CDF) FY (y) of Y and the cumulative distribution function FZ(z) of Z = XY can be ex-

pressed as [11], [16]

fX(x) = f|HSR,m|2(x) =
1
λs

e−
x

λs , (5.1)

FY (y) = Pr(Y < y) = 1− e
− y

λd , (5.2)

FZ(z) = 1−2
√

z
λsλd

K1

(
2
√

z
λsλd

)
, (5.3)

where K1(·) is the first-order modified Bessel function of the second kind [21]. In this

chapter, we consider the normalised channels for fair comparisons, thus λs = 1 and λd = 1.

Let us begin with the EH phase. Define Xe = [Xe,1, · · · ,Xe,M] as the original trans-

mitted vector in the frequency domain which contains modulated energy symbols and

e = [e1, · · · ,eM] as the transmitted symbol vector used to deliver energy from the source

to the relay before cyclic prefix (CP) is added. The received base-band energy signal after

CP removal at the relay is expressed as

ye =
√

Pa(e⊕hSR)+ne

=
√

Pa
[
ifft(fft(e) .∗ fft(hSR))

]
+ne, (5.4)

where Pa =
Ps
dm

1
and Ps represents the transmission power at the source, ⊕ represents cyclic
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convolution, .∗ represents element-wise multiplication, ne represents the AWGN at the

relay with the variance of N0, fft represents fast Fourier transform and ifft represents

inverse fast Fourier transform. Then, the received signal in the frequency domain is

Ye = fft(ye) =
√

Pa(Xe.∗HSR)+Ne, (5.5)

where Xe = fft(e), HSR = fft(hSR) and Ne = fft(ne). Using (5.5), the harvested energy

Eh,m for the m-th sub-carrier at the relay during αT time is given by [61]

Eh,m =
ηPs|HSR,m|2

dm
1

αT, (5.6)

where m = 1, · · · ,M and 0 < η < 1 is the energy conversion efficiency. The relay trans-

mitting power for the m-th sub-carrier is

Pr,m =
Eh,m

(1−α)T
=

ηαPsX
(1−α)dm

1
. (5.7)

Now, we consider the FD information transmission phase. Denote x = [x1, · · · ,xM] as

the transmitted information signal at the source before adding CP with the assumption of

E{|xm|2}= 1. Denote z = [z1, · · · ,zM] as the SI signal, which is the delayed version of x

caused by the processing time of the relay. In the system with multipath transmissions,

the desired received signal from the source transmitter and received SI signal from the

local transmitter at the relay are denoted by ycp1 and ycp2 respectively. As a result, the

overall received signal at the relay in the conventional system, i.e., without polarization,

is given by

yr = ycp1 +ycp2 +nr, (5.8)

where nr is the AWGN at the relay with the variance of N0.

As opposed to the conventional system, our system uses the dual-polarized antennas

for transmission and reception. In particular, xcp is polarized by the PS of the information

signal S, and zcp is polarized by the PS of the SI signal I. Thus, the desired received signal

and SI signal have both horizontal and vertical components. The overall received signal
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at the relay in our system is represented as

yr = Sycp1 + Iycp2 +nr

=

y1H

y1V

+
y2H

y2V

+
nH

nV

 , (5.9)

where y1H , y2H and nH represent the horizontal components and y1V , y2V and nV repre-

sent the vertical components. After applying FFT to yr, the received OFDM symbol at

the relay in the frequency domain is

Yin = fft(yr)

=

S1
√

Pa X .∗HSR

S2
√

Pa X .∗HSR

+
I1
(√

Pi .∗Z
)
.∗HRR

I2
(√

Pi .∗Z
)
.∗HRR

+Nr

= S(
√

Pa X .∗HSR)+ I(
√

Pi .∗Z .∗HRR)+Nr, (5.10)

where X = fft(x), HSR = fft(hSR), Z = fft(z), HRR = fft(hRR) and Nr =

fft(nH)

fft(nV )

. Pi

is the power of the SI signal at the relay. Pi is assumed to be smaller than the trans-

mitted power (by the relay) by 25 dB, where Pi = [Pi,1, · · · ,Pi,M], due to the difference

in polarization schemes as well as some passive SI cancellation techniques, such as ab-

sorptive shielding, circulator and directional isolation [70]. Then, Yin is processed by

the PDC scheme, which includes two main operations. Firstly, we use the oblique pro-

jection operator QSI to maintain the desired signal and cancel the SI signal of Yin, i.e.,

QSI[S I] = [S 0]. Secondly, we use SH to de-polarize the desired signal, i.e., SHS = 1.

Thus, the output signal Yout of the PDC scheme is given by

Yout = SHQSIYin

= SHQSI S(
√

Pa X .∗HSR)

+SHQSI I(
√

Pi .∗Z .∗HRR)+SH QSI Nr

=
√

Pa(X .∗HSR)+Nr, (5.11)
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where Nr = SH QSI Nr is the additional noise component caused by the PDC scheme,

which has a variance of MN0
2 . After applying equalization to the signal Yout , we obtain Yr

Yr =
√

PaX+Nr./HSR. (5.12)

With the AF protocol, the power of the input signal for the m-th sub-carrier will be am-

plified at the relay by a factor ξ
1
2

m which is given by

ξm =
Pr,m

Ps
dm

1
+ N0

2
1
X

, (5.13)

where the denominator Ps
dm

1
+ N0

2X is the power constraint factor, i.e., the power of the re-

ceived signal per sub-carrier at the relay using (5.12). Substitute (5.7) into (5.13), we

obtain

ξm =
2αηPsX2

(1−α)(2PsX +N0dm
1 )

. (5.14)

Thus, the polarized received OFDM symbol at the destination after FFT is

Yp =
√

d−m
2 I

(
ξξξ

1
2 .∗Yr .∗HRD

)
+Nd, (5.15)

where ξξξ = [ξ1, · · · ,ξM], HRD = fft(hRD) and Nd =

fft(ndH)

fft(ndV )

 is the AWGN at the desti-

nation with variance of N0, where ndH represents the horizontal component and ndV rep-

resents the vertical component. The signal Yp then is de-polarized by IH. The received

OFDM symbol at the destination after de-polarization and equalization is

Yd =
[√

d−m
2 IHI

(
ξξξ

1
2 .∗Yr .∗HRD

)
+Nd

]
./HRD

=
√

d−m
2

[
ξξξ

1
2 .∗

(√
PaX+Nr./HSR

)]
+Nd./HRD

=

√
Psξξξ

dm
1 dm

2
.∗X︸ ︷︷ ︸

signal

+

√
ξξξ

dm
2
.∗Nr./HSR +Nd./HRD︸ ︷︷ ︸

noise

, (5.16)

In theory, as illustrated in (3.10), (3.11), and (5.11), the oblique projection operator of

the PDC scheme is able to completely cancel the SI signal. However, as a side effect,
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the cancellation scheme changes the power of the noise at the relay as shown in (5.11),

which will impact the outage probability and throughput. As a result, the impact of the

cancellation scheme is considered in the new noise term, indicated as
√

ξξξ

dm
2
.∗Nr./HSR in

(5.16). Thus, the instantaneous SNR of m-th sub-carrier at the destination is considered,

which is denoted as γD = signal power
noise power . The expression of γD is represented below in (5.17),

where X = |HSR,m|2 and Y = |HRD,m|2.

5.2.2 Outage Probability

In our system, the outage probability Pout is defined as the instantaneous system SNR γD

in a sub-carrier being smaller than a threshold SNR γth, where γth = 2Rth −1 and Rth is the

threshold transmission rate in bits/sec/Hz. Using (5.17), the outage probability of m-th

sub-carrier at the destination is given by

Pout = Pr{γD < γth}

= Pr
{ b1X2Y

b2X + c1 + c2XY
< 1
}
, (5.18)

where

b1 = 2αηP2
s ,

b2 = γth2PsN0dm
1 dm

2 (1−α),

c1 = γthN2
0 (d

m
1 )

2dm
2 (1−α),

c2 = γthαηN0dm
1 Ps. (5.19)

The outage probability of our FD EH relaying system is calculated by two methods, which

are then compared with that in the HD EH relaying system proposed in [14]. The cor-

responding time-switching architectures are shown in Fig. 4.3. The aim of deriving two

different methods to compute the outage probability is to show a trade-off between ac-

γD =

Psξm
dm

1 dm
2

ξmN0
2dm

2 X + N0
Y

=
2αηP2

s X2Y
2PsN0dm

1 dm
2 (1−α)X +N2

0 (d
m
1 )

2dm
2 (1−α)+αηN0dm

1 PsXY
. (5.17)
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curacy, especially at low SNRs, and the computational complexity of the two methods.

Theoretically, Method 1 considers the distributions of the exponential random variables X

and Y independently. This method is simpler than Method 2, i.e., Method 1 only involves

a Bessel function, while Method 2 involves the integral of a Bessel function. However,

Method 2 considers the product distribution of the independent random variables X and

Y , which we believe is a better model for relaying systems as the outage probability of the

source-relay link affects the outage probability of the relay-destination link in practice.

The detailed expressions and analyses are elaborated as follows.

Method 1

This method directly employs the PDF of the exponential random variable X in (5.1) and

the CDF of the exponential random variable Y in (5.2). The outage probability derived by

Method 1 is

Pout1 = Pr
{ b1X2Y

b2X + c1 + c2XY
< 1
}

= Pr
{(

b1X2 − c2X
)

Y < b2X + c1

}
=

Pr
{

Y < b2X+c1
b1X2−c2X

}
, X > c2

b1

1, X ⩽ c2
b1

. (5.20)

The third equality in (5.20) follows from the fact that if X ⩽ c2
b1

, then b1X2−c2X will be a

negative number, and the probability of Y being greater than a negative number is always

1. Substituting (5.1) and (5.2) into (5.20), we have

Pout1 =
∫

∞

c2
b1

Pr
(

Y <
c1 +b2x

b1x2 − c2x

)
fX(x)dx+

∫ c2
b1

0
fX(x)dx

=
∫

∞

c2
b1

[
1− e

− b2x+c1
λd (b1x2−c2x)

]
fX(x)dx+

∫ c2
b1

0
fX(x)dx

= 1− 1
λs

∫
∞

c2
b1

e
−
(

b2x+c1
λd (b1x2−c2x)

+ x
λs

)
dx. (5.21)

Equation (5.21) involves the integral of an exponential function in terms of the compu-

tational complexity. To obtain the closed-form analytical result of the outage probability,
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we simplify (5.21) at high transmit SNRs. The factor c1 = γthN2
0 (d

m
1 )

2dm
2 (1−α) ≈ 0 at

a high SNR because the noise variance terms N2
0 is negligible. Using

∫
∞

0 e−
β

4x−γxdx =√
β

γ
K1(
√

βγ) [21, §3.324.1], we obtain the approximated outage of Method 1 at high

transmit SNRs as below

P̃out1 ≈ 1− 1
λs

∫
∞

c2
b1

e
−
(

b2
λd (b1x−c2)

+ x
λs

)
dx. (5.22)

We define a new variable z ≜ b1x− c2.

P̃out1 ≈ 1− 1
λs

∫
∞

0
e
−
(

b2
zλd

+ z+c2
b1λs

)
dz

= 1− e−
c2

b1λs

b1λs

∫
∞

0
e
−
(

b2
zλd

+ z
b1λs

)
dz

= 1− e−
c2

b1λs uK1(u), (5.23)

where u =
√

4b2
b1λsλd

and K1(·) is the first-order modified Bessel function of the second

kind [21]. Thus, we obtain the closed-form expression of the approximated outage proba-

bility of Method 1. In (5.23), the expression involves the Bessel function. Although (5.23)

is relatively simple to compute numerically by common mathematical software packages

such as MATLAB and MAPLE, it can be simplified further in high transmit SNRs using

the series expansion of uK1(u) at u = 0 to approximate the Bessel function by a poly-

nomial. The derived asymptotic line of the outage probability of Method 1 against the

transmit SNR values can be represented as

P∞ = 1− e−
c2

b1λs

(
lim

SNR→∞
uK1(u)

)
= 1− e−

c2
b1λs

(
1+

1
4

u2(2log(u)+2γ −1− log(4))

+
1

64
u4(4log(u)+4γ −5−4log(2))+O(u6)

)
, (5.24)

where γ is the Euler-Mascheroni constant[73] and O is the Big-O notation[76].
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Method 2

This method considers the product distribution of the independent random variables X

and Y in (5.3). Using the definition of outage probability in (5.18), we have

Pout = Pr{γD < γth}. (5.25)

Substituting the instantaneous SNR in (5.17), the outage probability is

Pout = Pr
{ b1X2Y

b2X + c1+ c2XY
< 1
}

= Pr
{(

b1X − c2

)
XY < b2X + c1

}
, (5.26)

where X = |Hsr,m|2 and Y = |Hrd,m|2. Utilizing the expression in (5.1) and (5.3), the

system outage probability can be derived by Method 2

Pout2 =

Pr
{

XY < c1+b2X
b1X−c2

}
, X > c2

b1

1, X ⩽ c2
b1

=
∫

∞

c2
b1

Pr
(

Z <
c1 +b2x
b1x− c2

)
fX(x)dx+

∫ c2
b1

0
fX(x)dx. (5.27)

Using conditional probability, (5.27) can be rewritten as

Pout2 =
∫

∞

c2
b1

FZ

(c1 +b2x
b1x− c2

)
fX(x)dx+

∫ c2
b1

0
fX(x)dx

=
∫

∞

c2
b1

[
1− vK1

(
v
)]

fX(x)dx+
∫ c2

b1

0
fX(x)dx

= 1− 1
λs

∫
∞

c2
b1

e−
x

λs

[
vK1(v)

]
dx, (5.28)

where v = 2
√

c1+b2x
λsλd(b1x−c2)

. The derivation of (5.28) is illustrated in Appendix A. The

expression of the outage probability involves the integral of a product of an exponential

function and a Bessel function. Finding a closed-form solution of the outage probability

in this case is thus very challenging.
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5.2.3 Throughput and Optimization

In the FD EH system with the AF protocol, the instantaneous throughput of m-th sub-

carrier at the destination is defined as

RAF(α) = (1−PAF
out )(1−α)Rth. (5.29)

Using (5.23), if SNR → ∞, uK1(u)→ 1 we have the upper bound of the throughput

Rup(α) = e−
c2

b1λs (1−α)Rth. (5.30)

The optimal α could be obtained by solving the equation dRAF (α)
dα

= 0. The first derivative

DAF of the throughput is given in (5.31), where σ1 =
√

N0dm
1 dm

2 γth(1−α)
λsλdPsαη

. Thus, optimal α

could be obtained by solving the following optimization problem

σ1K0(2σ1) = αK1(2σ1)

subject to 0 < α < 1. (5.32)

However, because the Bessel function is involved in the analytical expression, finding a

closed-form solution of α is difficult. Therefore, the optimal α will be numerically eval-

uated using the Matlab build-in function “solve” based on the given system parameters,

including, source power Ps, energy harvesting efficiency η , source to relay distance d1,

relay to destination distance d2, path loss exponent m, noise variance N0, threshold SNR

γth, mean value λs of the variable X and mean value λd of the variable Y .

5.3 Numerical Results

In this section, we present simulation results to validate our previous analytical expression

and investigate the influence of key system parameters, including the optimal time split-

DAF =
dRAF(α)

dα
=

2N0Rthdm
1 dm

2 γthe−
N0dm

1 γth
2λsPs (1−α)(σ1K0(2σ1)−αK1(2σ1))

λsλdPsα2ησ1
. (5.31)
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ting factor α in the TSR protocol and the SNR in the transmitter, on the outage probability

and throughput of the system. The optimal α is numerically obtained, which results in the

maximum system throughput. The channels are Rayleigh fading channels which contain

random values drawn from the standard normal distribution. The 1024-point FFT is used

in the OFDM system. Ns OFDM symbols are transmitted in total. The instantaneous SNR

of a sub-carrier at the destination is calculated and compared with the threshold SNR γth.

The outage probability in the simulation is calculated as the number of times when the

instantaneous SNR of a sub-carrier is smaller than the threshold SNR γth divided by the

total numbers of transmitting symbols Ns. Unless otherwise stated, we set the targeted

source transmission rate as Rth = 3 bits/sec/Hz [11], [14], hence the outage SNR thresh-

old is γth = 2Rth −1 = 7. The EH efficiency is set to η = 0.9. The path loss exponent is set

to m = 3, which typically represents a path loss exponent in a wireless sensor network en-

vironment [113]. The mean values λs and λd are assumed to be one. We consider a small

sensor network, where the direct link between the source and the destination is not avail-

able, for example, due to the obstructions. Therefore, a relay is deployed to assist their

communications. For illustration, the S-R and the R-D distances are set to d1 = d2 = 1.2

m, except in Fig. 5.7 where distances vary up to 4 meters. It is worth noting that the

analyses, mentioned in this chapter, is valid for any distance values.

Figs. 5.1 and 5.2 show the outage probability with respect to the transmit SNR. The

derived analytical expressions of Method 1 and its approximation (defined in figure as

“A.M1” and “A.M̃1”) are shown in (5.20) and (5.23) respectively. The analytical ex-

pression of Method 2 in (5.28) is shown in Figs. 5.1 and 5.2 as “A.M2”. The simulation

result of the FD system defined in figures as “S. L=50” and the analytical result of the HD

system defined as “A. HD”.

Fig. 5.1 shows that the closed-form approximation result of Method 1 is reasonably

accurate for calculating the system outage probability as it is very close to the exact an-

alytical results. Besides, Fig. 5.1 also shows that analytically the outage probability of

Method 2 is slightly higher than the Method 1 when the transmit SNR is smaller than

30 dB, especially in the large α (α = 0.6) case. The similarity of these two methods
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Figure 5.1: Outage probability vs. transmit SNR. Three analytical results compared
with simulation in an FD system.
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Figure 5.2: Outage probability vs. transmit SNR. The analytical result of Method 2
compared with analytical result in an HD system.
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is that the variables X and Y are considered to be independent since there are Rayleigh

fading channels in our system. However, the difference is that the Method 1 considers the

PDF and CDF of the variables separately, i.e., Pr{Y < c1+b2X
b1X2−c2X }, while Method 2 con-

structs the product of two independent random variables to model the relaying system,

i.e., Pr{XY < c1+b2X
b1X−c2

}. By comparing the analytical results with the simulation results,

we find that Method 2 is more accurate than Method 1, i.e., the simulation result is much

closer to Method 2, in the lower range of SNRs, while computationally more complex.

Both methods have similar accuracy at high SNRs. This means that in the relaying sys-

tem, the theoretical expression of outage probability is more accurate if we consider the

product distribution of X and Y , rather than the PDF and CDF of X and Y respectively.

Fig. 5.2 compares the outage probabilities in our FD EH relaying system and the HD

EH relaying system in [14]. As shown in Figs. 4.2 and 4.3, if FD systems spend the same

amount of time on EH as in HD systems, theoretically double the amount of information

can be transmitted in the former systems. This means the energy used to re-transmit each

information symbol will be half than that in the HD counterpart. Thus, in Fig. 5.2, for a

fair comparison, the transmitted power per OFDM symbol in FD systems at the relay is

intentionally set to half of that in the HD systems. Fig. 5.2 shows that in 40 dB SNR, the

outage probabilities of FD are 0.043 and 0.010 while those of HD are 0.026 and 0.007

respectively. The performance difference of the FD system and the HD system becomes

smaller with an increase of α .

Fig. 5.3 plots the outage probability of analytical results and simulation results in the

FD system for different values of α with the transmit SNR = 30 dB. The HD system is

also plotted as the reference. The results show that with the increase of the number of

multipath L, the system outage probability also increases. Besides, the simulation results

match very well our theoretical results. In addition, the outage probability of the FD

system is about 1.5 times higher than the HD system. Similar to Fig. 5.2, the reason for

the HD communication being better than the FD communication in terms of the outage

probability is that the HD consumes the same amount of harvested energy at the relay to

transmit half the amount of information to the destination, compared with the FD. Note



CHAPTER 5. Outage Probability and Throughput Analyses in Full-Duplex OFDM
Relaying Systems with Energy Harvesting 77

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

10
-1

10
0

O
u
ta

g
e
 p

ro
b
a
b
ili

ty

Figure 5.3: Outage probability vs. α for transmit SNR = 30 dB.

that although the HD system has a better outage probability, its spectral efficiency and

throughput are significantly lower than those in the FD system as detailed below.

Fig. 5.4 illustrates the throughput comparison between the HD scenario and the FD

scenario with the transmit SNR= 30 dB. Fig. 5.4 shows that for both FD and HD systems,

throughput increase as α increases from 0 to the optimal α (0.2 for FD case and 0.16 for

HD case) but later decreases from its optimal value. This is because if α is less than its

optimal value, less energy is harvested, which results in a larger outage probability (cf.

in (5.29)). On the other hand, more time is wasted on EH and less time is available for

information transmission when α is greater than the optimal value. Thus, smaller values

of throughput are observed when α is away from the optimal α value. In addition, when

both the FD system and HD system choose their optimal α , the throughput of the former

is 1.85 times than that of the latter even though the same amount of time is spent on EH.

This figure also shows that the analytical result agrees with the simulation results, which

verifies the analytical expression presented in (5.29).

Fig. 5.5 plots the first derivative of the FD system throughput (cf. in (5.31)) within

the range 0 < α < 1. As shown in the figure, when DAF = 0, we obtain the optimal α

values, which are 0.41, 0.19, and 0.08 for transmit SNR values of 20 dB, 30 dB, and
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Figure 5.4: Throughput vs. α for transmit SNR = 30 dB.
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Figure 5.6: Throughput vs. transmit SNR for α = 0.2.

40 dB respectively. This result shows that the optimal value decreases with the increase

of the transmit SNR. Besides, the optimal value we obtained from the first derivative for

the transmit SNR = 30dB is consistent with the optimal α obtained in Fig. 5.4. Thus, it

is clear that the optimal α can be numerically calculated by giving system parameters as

shown in (5.32).

Fig. 5.6 illustrates the throughput performances of three analytical results for the FD

system with the analytical throughput of the HD system serving as a benchmark. The

derived analytical expressions of Method 1 in (5.20) and its approximation in (5.23) are

denoted in this figure as “A.M1” and “A.M̃1” respectively. The expression of Method 2

in (5.28) is defined as “A.M2”. This figure also shows the simulated throughput of our

FD system for L = 300. Referring to Figs. 5.1 and 5.6, Method 2 is seen to be a more

accurate approach than Method 1 for both the outage probability and throughput when

transmit SNR is less than 30 dB. When above 30 dB, all the theoretical results match

the simulation results closely, so either approach would be accurate at high SNRs. From

(5.7), it is clear that the relay transmitting power, i.e., the SI signal power, increases with

the increase of transmit SNR. However, the superiority of the FD system over the HD

counterpart is more significant when transmit SNR increases. In particular, the throughput
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Figure 5.7: Maximum throughput vs. d1 and d2 for transmit SNR=40 dB.

gains of the FD system over the HD are 1.2, 1.85, and 1.95 at SNR values of 20, 30,

and 50 dB, respectively. This result shows that, in FD systems, the PDC scheme can

effectively cancel the loopback SI even when the power of the SI signal is high, which

ensures the high system throughput. Besides, increasing the transmit SNR can improve

more significantly the system throughput than in HD systems. Thus, it is important to

research the throughput performance of FD systems in a high SNR regime.

Fig. 5.7 plots the system performances of the maximum throughput when considering

different distances where d1 is the S-R distance and d2 is the R-D distance. The maximum

throughput is obtained when the optimal α is calculated by using (5.32). Fig. 5.7 shows

that when d1 is fixed the maximum throughput exponentially decreases with the increase

of d2 due to the impact of the path loss between the relay and destination. Besides, the

difference between the two lines increases from 0.16 bits/sec/Hz when d2 equals to 0.6 m

to a maximum value of 0.61 bits/sec/Hz when d2 equals to 4 m. Then, the gap narrows

to 0.18 bits/sec/Hz when d2 equals to 12 m. The reason is that the increase of distance d1

increases the path loss from the source to the relay and decreases the harvested energy at

the relay. Thus, the decrease of the maximum throughput is more significant for d1 = 2 m

than that of d1 = 1.2 m when d2 is relatively small, i.e., d2 is less than 4 m. However, with
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Figure 5.8: Validation of high SNR assumption. Outage probability for different α .

the increase of d2 so that the difference between d1 = 1.2 m and d1 = 2 m is negligible

to d2, the maximum throughput is mainly affected by the path loss from the relay to

destination. Thus, the difference of the maximum throughput reduces when d2 is large.

Figs. 5.8 and 5.9 illustrate the impact of α on the outage probability and the system

throughput as well as validating the high SNRs assumption. The derived analytical ex-

pressions of the approximation of Method 1 and the asymptotic line of outage probability

against the transmit SNR, are denoted as “A.M1” and “P∞” respectively. Fig. 5.8 shows

that the increase of the EH duration always improves the outage probability. Also, when

SNRs are higher than 40dB, the asymptotic line which uses the series expansion at u = 0

matches the approximation of Method 1. According to Figs. 5.1 and 5.8, we can conclude

that, at high SNRs, the outage probability of the FD EH relaying system can be accurately

modeled using any of the theoretical Method 1, Method 1 approximation, series expan-

sion, and Method 2. (cf. in (5.20), (5.23), (5.24) and (5.28), respectively). However, the

theoretical Method 2 is preferred since it also matches the practice better at low SNRs. As

shown in Fig. 5.9, the asymptotic line of throughput with a high transmit SNR assumption

is defined in the figure as “Rup”, which is the upper-bound of the system throughput. Note

that the SNR in Figs. 5.6 and 5.9 is the transmit SNR, which is proportional to the trans-
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Figure 5.9: Validation of high SNR assumption. Throughput for different α .

mit power, thus a high SNR regime is a reasonable range to be considered. Fig. 5.9 also

shows that an increase of the EH duration slightly improves system throughput if SNRs

are low. However, at high SNRs, the system throughput for the case α = 0.2 outperforms

the case α = 0.6 since the relay harvests enough energy from the transmitted signal and

more time is spent on information transmission.

5.4 Chapter Summary

This chapter investigates an OFDM FD relaying system with no direct link from the

source to the destination. An FD time switching-based relaying protocol is used to im-

plement EH from the RF signals in the first phase as well as simultaneously receive and

amplify-and-forward information in the second phase at the relay node. The performances

of outage probability and throughput are evaluated for our FD system, in which the mul-

tipath propagated SI signals at the relay are eliminated by the PDC scheme. Specifically,

the analytical expressions of the outage probability are derived in two different approaches

over the Rayleigh frequency-selective fading channels, in which the approach considers

product distribution of the source-relay channel and relay-destination channel is more ac-
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curate. Based on the mathematical expression of the system throughput, the optimal time

split has also been derived to obtain the largest system throughput. In addition, comparing

FD with HD relaying systems, the results show that the throughput of the former is nearly

doubled than the latter at high transmit SNRs. For simplification, the asymptotic lines of

outage probability and throughput are researched and validated at high SNRs.

The next chapter will consider a PDC-based FD relaying system with WPT from the

relay to the source in single-carrier Rayleigh flat fading channels.



Chapter 6

Throughput Analysis of Full-Duplex
Transmission Networks with Wireless
Energy Harvesting Enabled Sources

6.1 Introduction

In this chapter, we propose a two-hop PDC-based FD communication system in which

the source harvests from the RF signal for the transmission of information signal to the

relay. As reviewed in Chapter 2, the relay-assisted EH techniques can be classified into

WPT from the source to the relay [14], [16], [27], [45] and WPT from the relay to the

source [47]–[50]. It is worth noting that Chapter 5 considers a relaying system with

an EH-capable relay while this chapter examines a relaying system with an EH-enabled

source. WPT from the relay to the source is practical in many cases as introduced in

Section 2.3.3 and attracts the attention of researchers. For example, the HD transmission

and out-of-band FD transmission with WPT from the relay to the source are considered in

[47]–[50] and [16] respectively. In [46], [52], [53], multiple-antenna technologies and FD

transmission are studied. The SIC scheme in [46] requires the instantaneous channel state

information (CSI) of the SI channel. In [52], [53], it is possible to use the information

of direction-of-arrival (DOA) and direction-of-departure (DOD) of the SI channel for

interference mitigation. Clearly, the estimations of DOA/DOD or the instantaneous CSI

of the SI channels are usually required, thus the computational complexity and overhead

are significant.

84
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Motivated by literature, we propose an emerging system model where the PDC scheme

is adopted at the relay to cancel the SI. This system does not require the instantaneous CSI

of the SI channels. In particular, we consider an FD system as shown in Fig. 6.1 where the

harvested energy at the source in the first phase is used to transmit data to the relay in the

second phase. Besides, the relay works in the FD mode, receiving data from the source

and simultaneously transmitting data to the destination. The purpose of this chapter is to

analyze the throughput of the two-hop FD relaying system with the EH-capable sources

using the PDC scheme for SI cancellation. Unlike our previous work [27] in Chapter 5,

which considers the polarization state of the transmitter at the source to be orthogonal

with that at the relay, this chapter not only considers orthogonal polarization states as

a special case but also considers the effect of non-orthogonal polarization states on the

FD EH-relaying system. Besides, the two-hop FD system with an EH relay in Chapter 5

shows that its outage probability is worse than that of the HD EH system. In contrast, the

outage probability of the FD relaying system comprising an EH source can be as small as

the outage probability of the HD1 EH system and superior to that of the HD2 one.

To the best of our knowledge, there is no existing work that has the similar system

model, which constitutes one of the novelties of this chapter. Therefore, two HD trans-

mission systems both of which have the WPT capability from the relay to the source are

examined as benchmarks. The reason is that the performance of the HD systems can be

considered as the boundary of the FD system. The numbers of nodes and antennas of the

HD systems are the same as those in the FD system. The first HD system, denoted as

HD1, has the same EH duration as the FD system, and the second HD system, HD2, has

the same transmitting power at the source as the FD system. The detailed descriptions of

HD systems will be illustrated in Section 6.2.3.

The main contributions of this chapter are summarized as follows.

• The analytical expressions of the system outage probability and throughput are pre-

sented and validated by simulations for both FD EH and HD EH relaying systems.

• The optimal time splits for FD and HD relaying systems are obtained numerically.
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• In FD relaying systems, we find that the dissimilarity ρ between the polarization

states of the relay antennas influences the PDC cancellation effect in terms of noise

power. When ρ > 0.5, the output noise power of the PDC scheme is suppressed.

When ρ < 0.5, its output noise power is amplified. The system throughput is more

sensitive to ρ when the background noise power is higher.

• When the dissimilarity factor is ρ = 1 (i.e., their polarization states are orthogo-

nal), the PDC scheme performs the best in suppressing the interference and noise.

Thus, the polarization states should be selected as close to orthogonal as possible

to maximizes the FD system throughput.

• The PDC scheme is adopted for the SI cancellation at the relay because this tech-

nique does not require the knowledge of the instantaneous CSI of the SI channels.

Thereby, the complexity and overhead of the FD system are reduced.

• Comparisons of the FD and HD relaying architectures show that, at the cost of dual-

polarized antennas and self-interference cancellation module, the outage probability

of the FD system with the optimal ρ can be as small as that of the HD1 system and

superior to that of the HD2 system. Besides, with the optimal time split and a proper

transmit power of the relay node, the FD system can double the system throughput

of the HD1 counterpart and nearly double that of the HD2 counterpart.

The content of this chapter has been published in [41].

The rest of chapter is organized as follows. Section 6.2 provides the system descrip-

tion and signal modeling of both FD EH systems and HD EH systems. Section 6.3 and

Section 6.4 are the throughput analyses and numerical results, respectively. Section 6.5

concludes this chapter.



CHAPTER 6. Throughput Analysis of Full-Duplex Transmission Networks with Wireless
Energy Harvesting Enabled Sources 87

Figure 6.1: System model comprised of an EH source (S), a relay (R) and a destination
(D).

6.2 System Model

6.2.1 FD System Description

In Chapter 5, we consider an FD OFDM relaying system with an an EH relay. This chap-

ter considers an AF single-carrier relaying system which is comprised of an EH source

(S), a relay (R), and a destination (D) as shown in Fig. 6.1. S and D are equipped with

one dual-polarized antenna each while R is equipped with two sets of dual-polarized an-

tennas, i.e., one for transmission and the other for reception. The direct link between S

and D is not available because of the long-distance or heavy shadowing effects (i.e., ob-

structions, such as skyscrapers). hRS, hSR, hRR and hRD denote the channel coefficients of

the Rayleigh block fading channels between R and S, S and R, the transmit and receive

antennas at R, and R and D, respectively. We assume their expectation values satisfy

E{|hRS|2} = E{|hSR|2} = E{|hRR|2} = E{|hRD|2} = 1. A “harvest-then-transmit” FD

time switching-based relaying (TSR) protocol is considered in this chapter as shown in

Fig. 6.2. The overall block time is T seconds in which energy is harvested at the source

and then information is transmitted from S to D through R. The time split factor for EH

is α , where 0 < α < 1. Phase I is the EH phase with the duration of αT . In this phase,

the antenna in S works in the receiving mode and S harvests energy from the RF signal

transmitted from R. Phase II is the information transmission phase, which occupies the re-

maining time (1−α)T . It is assumed that D can estimate the S-R and R-D channels at the

start of this phase in each block by using the pilots signal sent from S. It is worth noting

that, the channel estimation of the SI channels at the relay is not needed because the PDC
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Figure 6.2: The FD TSR protocol for energy transfer and information transmission.

scheme does not require the knowledge of the instantaneous CSI of the SI channels. We

assume the overhead for pilot transmission is negligible, which is in line with the works

in [55], [114]. The antenna in S works in the transmitting mode and R works in the FD

mode. R receives information from S and at the same time forwards information to D in

the same frequency band. The PDC scheme proposed in [85], including polarization and

digital signal processing technology, is adopted in this chapter to enable FD transmission.

Detailed explanations of the working concepts of the PDC scheme can be found in Sec-

tion 3.3. This digital SIC module is placed at the relay and is powered by the fixed power

supply of the relay node. It is assumed that the power consumed by the SIC module is

negligible compared to the signal power. In the information transmission process during

Phase II, the polarization state used in the transmitter of S and the transmitter of R are

denoted as S and I respectively. The selection of polarization states and the theory of SI

signal cancellation have been discussed in Section 3.3.

6.2.2 Signal Modeling of FD EH System

Energy Harvesting

In Phase I of the FD TSR protocol, the RF signal xe is sent from the relay to the EH

receiver at the source node. During this EH phase, the received energy signal at the

source can be expressed as

ys[i] =

√
Pr

dm
1

hRSxe[i]+ns[i], (6.1)
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where hRS is the channel coefficient of the relay-to-source (R-S) channel and d1 is the dis-

tance between the source and relay. Pr is the constant transmitted power of the relay node,

xe is the energy symbol transmitted from the relay at the time instant i with the expecta-

tion value E{|xe[i]|2} = 1 and ns[i] is the AWGN. Hence, if noise power is significantly

smaller than Pr
dm

1
, the harvested energy at the source during the time αT is

Es = αT
(

ηPr|hRS|2

dm
1

)
, (6.2)

where 0 < η < 1 is the energy conversion efficiency. We assume all the harvested energy

Es at the source is used in Phase II for transmitting information signals. The transmission

power of the source is

Ps =
Es

(1−α)T
=

αηPr|hRS|2

dm
1 (1−α)

. (6.3)

Information Transmission

In Phase II of the FD TSR protocol, the duration (1−α)T is used for transmitting infor-

mation from the source to the relay and, at the same time, transmitting information from

the relay to the destination. The polarization state of the desired information signal is S

and the polarization state of the SI signal is I, which are illustrated in Section 3.3.

We introduce ρ as the polarization dissimilarity factor of S and I. The expression of ρ

can be defined as

ρ = 1−∥IHS∥2 = 1−SHIIHS

= SHP⊥
I S, (6.4)

where ∥ · ∥ denotes the Euclidean norm and (.)H denotes the Hermitian transposition.

From (6.4), it is clear that when the vectors S and I are orthogonal, i.e., IHS = 0, ρ gets

the maximum value 1. The value ρ = 0 occurs when IHS = 1. However, S ̸= I leads to

ρ ̸= 0. Thus, the range of ρ is ρ ∈ (0,1].
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The received signal at the relay can be expressed as

yr[i] =

√
Ps

dm
1

hSRSxs[i]+
√

Pi hRRIxr[i]+Nr[i], (6.5)

where xs[i] is the information signal transmitted by the source and xr[i] is the loopback

interference due to the full-duplex transmission at the relay with E{|xs[i]|2} = 1 and

E{|xr[i]|2}= 1. hSR is the channel coefficient of the S−R channel and hRR is the loopback

interference channel gain. Pi is the power of the loopback interference signal, which is

assumed to be less than the transmitting power of the relay Pr, due to some passive SIC

technologies used at the relay, such as absorptive shielding [62], and the difference in

polarization of the transmit and receive antennas at the relay. In the later simulation, for

illustration and without loss of generality, we assume Pi is 25 dB smaller than Pr. Nr[i] is

the AWGN at the relay node, which can be represented as

Nr[i] =

nH [i]

nV [i]

 , (6.6)

where nH [i] represents the horizontal polarized component and nV [i] represents the verti-

cal polarized component. nH [i] and nV [i] obey the Gaussian distribution with a zero mean

and a variance of N0
2 . From (6.5), the relay not only receives the information signal xs[i]

from the source but also receives the SI signal from its own transmitter. A cancellation

scheme as shown in Section 3.3, i.e., an oblique projection, is needed to maintain the

desired signal with the polarization state S while canceling the SI signal with the polar-

ization state I. Equations (3.10) and (3.11) indicate the oblique projection QSI has the

range ⟨S⟩ and null space ⟨I⟩. From (6.4), if ρ = SHP⊥
I S = 1, the oblique projection QSI is

simplified to the orthogonal projection whose range and null space are orthogonal. These

equations are the key of the PDC scheme to protect the information and cancel the SI in
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the FD transmission. After the PDC scheme, the post cancellation signal at the relay is

yout [i] = SHQSI yr[i]

=

√
Ps

dm
1

hSRxs[i]+SHQSI Nr[i], (6.7)

where SHQSI Nr is the residual noise because of the imperfect cancellation of the PDC

scheme. If the input noise power of the PDC scheme is denoted as Pni and its output noise

power as Pno, we have [85]

Pno

Pni
=

E
[
∥SHQSI Nr∥2

]
N0

=
1

2ρ
. (6.8)

Since Pni = N0, the power of the residual noise is N0
2ρ

. From (6.7), the relay amplifies the

input signal by a factor β in the AF protocol, which is given by

β
2 =

Pr
|hSR|2Ps

dm
1

+ N0
2ρ

. (6.9)

Hence, the transmitted signal from the relay can be expressed as

xr[i] = βyout [i− τ], (6.10)

where τ is the time delay caused by the relay processing. The received signal at the

destination is

yd[i] =
hRD√

dm
2

xr[i]+nd[i]

=
hSRhRDβ

√
Ps√

dm
1 dm

2
xs[i− τ]︸ ︷︷ ︸

signal part

+
hRDβ√

dm
2

SHQSI Nr[i− τ]+nd[i],︸ ︷︷ ︸
noise part

(6.11)

where hRD and d2 are the channel coefficient of the R−D channel and the distance between

the relay and destination, respectively. nd[i] is the AWGN at the destination. It can be seen

from (6.7) and (6.11) that the cancellation scheme can eliminate the effect of SI channel

hRR and maintains the information signal with the same power. However, the oblique

projection also causes the residual noise at the relay SHQSI Nr with the variance N0
2ρ

(cf.
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(6.8)). This output noise power is regarded as the side-effect of the PDC scheme. From

(6.9) and (6.11), the instantaneous end-to-end SNR can be expressed as

γ =

Psβ
2|hSR|2|hRD|2

dm
1 dm

2

|hRD|2β 2N0
2dm

2 ρ
+N0

=

PrPs|hSR|2|hRD|2

dm
1 dm

2

(
N0
2ρ

+
Ps|hSR|2

dm
1

)
N0Pr|hRD|2

2dm
2 ρ

(
N0
2ρ

+
Ps|hSR|2

dm
1

) +N0

. (6.12)

6.2.3 HD System Description

For comparison, we consider two HD EH relaying systems, denoted as HD1 and HD2, as

benchmarks. This is because that the performance of the HD systems can be considered

as the boundary of the FD system. More specifically, in theory, the throughput in FD sys-

tems can be twice the HD systems. Similar to the FD system, these two HD systems are

comprised of an EH source (S), a relay (R), and a destination (D). S and D are equipped

with one dual-polarized antenna each while R is equipped with two sets of dual-polarized

antennas, i.e., one for transmission and the other for reception. The number of RF chains

of HD1, HD2 and FD systems is the same. The direct link between S and D is not avail-

able. We also assume the CSI of S−R and R−D channels is available at the destination

and the overhead of the channel estimation is negligible. Besides, the PDC scheme does

not require the knowledge of the instantaneous CSI of the SI channel at the relay, thus

the overhead complexity is the same as that in the HD systems. So, from the overhead

complexity perspective, this allows a fair comparison between our system and the HD

counterparts. In addition, the FD system and HD systems are equipped with the same

number of antennas at the source and destination nodes for a fair comparison in terms of

the system diversity. Both throughput and outage probability comparisons between our

FD system and the HD counterparts have been included.

For the HD1 TSR protocol shown in Fig. 6.3, the RF signal x̂e is sent from the relay to

the EH-enabled receiver at the source node in Phase I during the time αT . The remaining

time (1−α)T is divided into two time slots where Phase II with duration (1−α)T
2 is used

for transmitting information from the source to the relay and Phase III with the remaining

duration (1−α)T
2 is used for transmitting information from the relay to the destination.
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Figure 6.3: The HD1 TSR protocol for energy transfer and information transmission.

Figure 6.4: The HD2 TSR protocol for energy transfer and information transmission.

This HD1 system has the same total frame duration and EH duration as the FD system

considered in Section 6.2.1. However, given that the duration of EH is the same but the

duration of transmission is half of the FD system, the transmit power per symbol is larger

in this scheme than the FD. For the HD2 TSR protocol shown in Fig. 6.4, the EH duration

in Phase I is reduced to α ′T to ensure the transmitting power per symbol in the HD2

system to be the same as that of the FD system. Then, Phase II and Phase III have the

duration of (1−α ′)T
2 each for information transmission. From (6.3), the time split factor α ′

is calculated as

αηPr|hRS|2

dm
1 (1−α)

=
2α ′ηPr|hRS|2

dm
1 (1−α ′)

. (6.13)

Hence,

α
′ =

α

2−α
. (6.14)

As a result, the duration (1−α ′)T
2 = (1−α)T

2−α
.

6.2.4 Signal Modeling of HD EH System

Energy Harvesting

In the EH phase of the HD1 system, the RF energy harvested during the duration αT at

the source is the same as that in the FD system with Es = αT
(

ηPr|hRS|2
dm

1

)
, which is used by
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the source to transmit information to the relay (cf. Eq. (6.2)). The transmitting power of

the source node is given by

P̂s =
Es

(1−α)T
2

=
2αηPr|hRS|2

dm
1 (1−α)

. (6.15)

From (6.3) and (6.15), it can be seen that the transmitting power of the source in HD1

is doubled, compared to that in FD because the source in HD1 only transmits half the

amount of information in the FD counterpart.

In the HD2 system, the EH phase is reduced from αT to α ′T . The transmitting power

of the source node is

P′
s =

Es
(1−α ′)T

2

=
α ′T

(
ηPr|hRS|2

dm
1

)
(1−α ′)T

2

=
αηPr|hRS|2

dm
1 (1−α)

. (6.16)

From (6.3) and (6.16), it can be seen that the transmitting power per symbol in the FD

and HD2 is the same.

Information Transmission

In the HD1 system, the first time slot (1−α)T
2 is used for the information transmission from

the source to the relay. The received signal at the relay node is given by

ŷr[i] =

√
P̂s

dm
1

hSRx̂s[i]+ n̂r[i], (6.17)

where x̂s[i] is the information signal transmitted by the source and n̂r[i] is the AWGN.

In the AF protocol, the relay amplifies the received signal and forwards the signal to the

destination. The second time slot (1−α)T
2 is used for the information transmission from

the relay to the destination. The transmitted signal x̂r[i] at the relay is

x̂r[i] =
√

Prŷr[i− τ]√
|hSR|2P̂s

dm
1

+N0

. (6.18)

The received signal at the destination can be expressed as

ŷd[i] =
hRD√

dm
2

x̂r[i]+ n̂d[i], (6.19)
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where n̂d[i] is the AWGN. Substituting (6.17) and (6.18) into (6.19), ŷd[i] is given by

ŷd[i] =
√

Pr
√

P̂shSRhRDxs[i− τ]√
dm

1
√

dm
2

(√
|hSR|2P̂s

dm
1

+N0

)
︸ ︷︷ ︸

signal part

+

√
PrhRDn̂r[i− τ]√

dm
2

(√
|hSR|2P̂s

dm
1

+N0

) + n̂d[i].

︸ ︷︷ ︸
noise part

(6.20)

The SNR at the destination in the HD1 system is

γ̂ =

PrP̂s|hSR|2|hRD|2

dm
1 dm

2

(
|hSR|2P̂s

dm
1

+N0

)
Pr|hRD|2N0

dm
2

( |hSR|2P̂s
dm
1

+N0

) +N0

. (6.21)

Similarly, the SNR at the destination in the HD2 system is

γ
′ =

PrP′
s |hSR|2|hRD|2

dm
1 dm

2

( |hSR|2P′s
dm
1

+N0

)
Pr|hRD|2N0

dm
2

( |hSR|2P′s
dm
1

+N0

) +N0

. (6.22)

In the following, the outage probability and throughput at the destination node of the FD

system, the HD1 system, and the HD2 system are determined based on the received SNR,

namely γ , γ̂ , and γ ′ respectively.

6.3 Throughput Analyses

6.3.1 FD EH Relaying

It is assumed that all channel coefficients hSR, hRS, hRR and hRD are independently and

identically distributed (i.i.d.) random variables (RVs). Further we assume that |hSR|2 and

|hRS|2 are i.i.d. exponential RVs with the mean λs while |hRD|2 is an i.i.d. exponential RV

with the mean λd .

The system outage probability pout is defined as the probability that the received power

value falls below the threshold. In the FD system, the outage probability is given by

pout ≜ p{γ < γth}, (6.23)

where γth = 2Rc −1 is the required threshold SNR and Rc is the fixed transmission rate at
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the source. Invoking the received SNR at the destination in (6.12), we have

pout = p


PrPs|hSR|2|hRD|2

dm
1 dm

2

(
N0
2ρ

+
Ps|hSR|2

dm
1

)
N0Pr|hRD|2

2dm
2 ρ

(
N0
2ρ

+
Ps|hSR|2

dm
1

) +N0

< γth

 . (6.24)

The result (6.25) can be obtained after some simple algebraic manipulations. Denote a =

2ηαρP2
r , b = 2γthρηαPrdm

2 N0, c = γthN0Pr(dm
1 )

2(1−α), and d = γthN2
0 (d

m
1 )

2dm
2 (1−α).

The outage probability pout can be rewritten as

pout = p
( a|hSR|2|hRS|2|hRD|2

b|hSR|2|hRS|2 + c|hRD|2 +d
< 1
)

= p
(
(a|hRD|2 −b)|hSR|2|hRS|2 < c|hRD|2 +d

)
=

p
(

X < cY+d
aY−b

)
, Y > b/a

1, Y ≤ b/a,
(6.26)

where X ≜ |hSR|2|hRS|2, Y ≜ |hRD|2. Following (6.26), pout is given by

pout =
∫ b/a

0
fY (z)dz+

∫
∞

b/a
fY (z)p

(
X <

cz+d
az−b

)
dz, (6.27)

where

fY (z) =
1

λd
e−z/λd , (6.28)

and

p
(

X <
cz+d
az−b

)
= FX

(
cz+d
az−b

)
= 1−2

√
cz+d

λ 2
s (az−b)

K1

(
2

√
cz+d

λ 2
s (az−b)

)
, (6.29)

pout =

p

(
2ηαρPr2|hSR|2|hRS|2|hRD|2

2ηαρPrdm
2 N0|hSR|2|hRS|2 +N0Pr(dm

1 )
2(1−α)|hRD|2 +N2

0 (d
m
1 )

2dm
2 (1−α)

< γth

)
.

(6.25)



CHAPTER 6. Throughput Analysis of Full-Duplex Transmission Networks with Wireless
Energy Harvesting Enabled Sources 97

where z is the integration variable, fY (z) in (6.28) is the probability density function (PDF)

of the exponential random variable Y and λd is the mean value of Y , FX
( cz+d

az−b

)
in (6.29)

is the cumulative distribution function (CDF) of the exponential RV X and λs is the mean

value of the exponential RVs |hSR|2 and |hRS|2[23], and K1(.) is the first-order modified

Bessel function of the second kind [68]. Substituting fY (z) and FX(z) into (6.27), we have

pout =
∫ b/a

0

1
λd

e−z/λd dz+
∫

∞

b/a

1
λd

e−z/λd
(

1−uK1
(
u
))

dz

= 1−
∫

∞

b/a
uK1
(
u
) 1

λd
e
− z

λd dz, (6.30)

where u ≜ 2
√

cz+d
(az−b)λ 2

s
.

The system throughput can be computed as

R(α) = (1− pout)Rc(1−α)

= Rc(1−α)
∫

∞

b/a
uK1
(
u
) 1

λd
e
− z

λd dz, (6.31)

The throughput R(α) is a function of system parameters and its optimization in terms of

ρ and α will be illustrated below.

From (6.8) and (6.25), it is clear that the polarization dissimilarity factor ρ of S and

I affects the output noise power of the PDC scheme and the system outage probability.

When S and I are orthogonal, the corresponding ρ is 1, which minimizes the residual

noise power output of the PDC scheme as well as the system outage probability. Thus,

the throughput in (6.31) is maximized when ρ is 1.

It can also be seen from (6.25) and (6.31) that the time split factor, α , of the TSR

protocol affects the system throughput. The optimal α can be obtained by solving the

following optimization problem

α
∗ = argmax

α
R(α)

subject to 0 < α < 1. (6.32)

R(α) is a concave function of α . The optimal value α∗ is obtained by solving the equation
dR(α)

dα
= 0. Due to the involvement of Bessel function in the expression of R(α), finding
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the closed-form solution of α∗ is difficult. Thus, the value α∗ is numerically calculated

using the built-in function “solve” of Matlab.

6.3.2 HD EH Relaying

In the HD1 system, using the definition of the outage probability in (6.23) and invoking

(6.21), the outage probability is

p̂out ≜ p{γ̂ < γth}

= p


PrP̂s|hSR|2|hRD|2

dm
1 dm

2

( |hSR|2P̂s
dm
1

+N0

)
Pr|hRD|2N0

dm
2

( |hSR|2P̂s
dm
1

+N0

) +N0

< γth

 . (6.33)

Equation (6.34) is derived by substituting P̂s in (6.15) into (6.33). Set â = 2ηαPr2,

b̂ = 2γthηαPrdm
2 N0, ĉ = γthN0Pr(dm

1 )
2(1−α), and d̂ = γthN2

0 (d
m
1 )

2dm
2 (1−α). The outage

probability is given by

p̂out =

p
(

X < ĉY+d̂
âY−b̂

)
, Y > b̂/â

1, Y ≤ b̂/â.
(6.35)

where X ≜ |hSR|2|hRS|2, Y ≜ |hRD|2. After substituting the PDF and CDF of the exponen-

tial RVs into (6.35), we have

p̂out =
∫ b̂/â

0
fY (z)dz+

∫
∞

b̂/â
fY (z)FX

( ĉz+ d̂
âz− b̂

)
dz

= 1−
∫

∞

b̂/â
ûK1
(
û
) 1

λd
e
− z

λd dz, (6.36)

p̂out =

p
(

2ηαPr2|hSR|2|hRS|2|hRD|2

2ηαPrdm
2 N0|hSR|2|hRS|2 +N0Pr(dm

1 )
2(1−α)|hRD|2 +N2

0 (d
m
1 )

2dm
2 (1−α)

< γth

)
.

(6.34)
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where û ≜ 2
√

ĉz+d̂
(âz−b̂)λ 2

s
. Thus, the system throughput is

R̂(α) =
1−α

2
Rc(1− p̂out)

=
Rc(1−α)

2

∫
∞

b̂/â
ûK1
(
û
) 1

λd
e
− z

λd dz, (6.37)

The optimal α can be obtained by solving the following optimization problem

α̂
∗ = argmax

α
R̂(α)

subject to 0 < α < 1. (6.38)

The value α̂∗ depends on many parameters, such as efficiency η , distances d1 and d2,

powers Pr and P̂s, noise variance N0, threshold γth and transmission rate Rc. The compu-

tational complexity of R̂(α) makes the closed-form expression of the optimal α difficult.

Thus, the value α̂∗ is numerically calculated using the built-in function “solve” of Matlab.

Similarly, by the definition of the outage probability in (6.23) and invoking (6.22), the

outage probability in the HD2 system is

p′out ≜ p{γ
′ < γth}

= p


PrP′

s |hSR|2|hRD|2

dm
1 dm

2 (
|hSR|2P′s

dm
1

+N0)

Pr|hRD|2N0

dm
2 (

|hSR|2P′s
dm
1

+N0)
+N0

< γth

 . (6.39)

Equation (6.40) is derived by substituting P′
s in (6.16) into (6.39). Set a′ = ηαPr2,

b′ = γthηαPrdm
2 N0, c′ = γthN0Pr(dm

1 )
2(1−α), and d′ = γthN2

0 (d
m
1 )

2dm
2 (1−α). Hence,

p′out =

p
(

ηαPr2|hSR|2|hRS|2|hRD|2

ηαPrdm
2 N0|hSR|2|hRS|2 +N0Pr(dm

1 )
2(1−α)|hRD|2 +N2

0 (d
m
1 )

2dm
2 (1−α)

< γth

)
.

(6.40)
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the outage probability is given by

p′out =
∫ b′/a′

0
fY (z)dz+

∫
∞

b′/a′
fY (z)FX

(c′z+d′

a′z−b′

)
dz

= 1−
∫

∞

b′/a′
u′K1

(
u′
) 1

λd
e
− z

λd dz, (6.41)

where u′ ≜ 2
√

c′z+d′

(a′z−b′)λ 2
s

. Thus, the system throughput is

R′(α) =
1−α

2−α
Rc(1− p′out)

=
Rc(1−α)

2−α

∫
∞

b′/a′
u′K1

(
u′
) 1

λd
e
− z

λd dz, (6.42)

The optimal α can be obtained by solving the following optimization problem

α
′∗ = argmax

α
R′(α)

subject to 0 < α < 1. (6.43)

The value α ′∗ is numerically calculated using the built-in function “solve” of Matlab.

6.4 Numerical Results

We assume the path loss exponent m = 3, dSR = 20 m, dRD = 200 m, the EH efficiency

η = 0.8, and the carrier frequency is 2.4 GHz. The noise power N0 is assumed to be either

−90 dBm or −80 dBm for system bandwidth B = 160 MHz [111], and the transmission

power of the relay is assumed to be Pr = 1 Watt [14]. The transmission rate of the source is

8 bits/sec/Hz. The throughputs derived in this chapter are in bits/sec/Hz. The considered

range of the time split factor α and polarization dissimilarity factor ρ are 0 < α < 1 and

0 < ρ ≤ 1, respectively. To calculate the throughput in bits per seconds, R(α), R̂(α), and

R′(α) need to be multiplied with the system bandwidth B.

Fig. 6.5 illustrates the FD analytical result based on (6.31) with respect to ρ ranging

from 10−5 to 1 since ρ ∈ (0,1] as shown in Section II. The figure illustrates that the

polarization dissimilarity factor ρ and the time split factor α affect the throughput per-

formances. In this simulation, the relay transmission power is Pr = 1 Watt and AWGN
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Figure 6.5: Throughput vs. the dissimilarity ρ of polarization states with different time
splits α in the FD EH system. Pr = 1 Watt and N0 =−80 dBm.
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Figure 6.6: Analytical and simulation results for N0 =−80 and −90 dBm in the FD EH
system. α = 0.3 and Pr = 1 Watt.
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Table 6.1: Data collected from the simulation result where R is the FD throughput.
α = 0.3 and Pr = 1 Watt.

ρ S I R

0.1672

 0.7174+0.0000i

−0.6850−0.1268i

  0.8279+0.0000i

−0.4613+0.3189i

 3.96(-90 dBm)
1.05(-80 dBm)

0.3734

 0.9703+0.0000i

−0.0197−0.2410i

  0.8907+0.0000i

−0.2990+0.3425i

 4.60(-90 dBm)
2.00(-80 dBm)

0.5888

 0.9287+0.0000i

−0.0750−0.3632i

 0.4166+0.0000i

0.6291−0.6563i

 4.87(-90 dBm)
2.60(-80 dBm)

0.7813

0.3050+0.0000i

0.5023−0.8091i

 0.9832+0.0000i

0.0406−0.1778i

 5.00(-90 dBm)
2.93(-80 dBm)

0.9368

0.8436+0.0000i

0.5252+0.1115i

  0.6649+0.0000i

−0.7316+0.1503i

 5.06(-90 dBm)
3.18(-80 dBm)

is N0 = −80 dBm. As shown in the figure, for all α values, the throughput increases

with the increase of ρ and the throughput is maximized when ρ approaches to 1, i.e.,

the polarization states of the transmitters at the source and the relay are orthogonal. The

throughput is sensitive to the dissimilarity, especially for the α close to its optimal value,

as the throughput decreases significantly if ρ decreases. This means that the polarization

states of the transmitters of the source and the relay are required to be orthogonal with

each other to achieve the maximum system throughput for any particular value of α . Be-

sides, it is also shown that the throughput is reduced in both the lower and higher range

of the α values. For the increment of α in the figure being 0.1, the maximum throughput

occurs at α = 0.3 for ρ = 1.

Fig. 6.6 illustrates the influence of dissimilarity on the throughput R by plotting both

analytical results (cf. (6.4) and (6.31)) and simulation results. The FD analytical results

are denoted by the letter A and the FD simulation results are denoted by the letter S.

In this simulation, the time split factor is 0.3 and transmission power of the relay is 1

Watt. The five specific polarization states randomly chosen for this simulation and the

corresponding values of ρ and R are presented in Table 6.1. Fig. 6.6 shows that the

maximum throughput is about 3.2 bits/sec/Hz when N0 = −80 dBm while that is about

5.1 bits/sec/Hz when N0 =−90 dBm. Fig. 6.6 also indicates that the throughput is more
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Figure 6.7: Outage probability vs. time split factor α for the HD EH and FD EH sys-
tems. N0 =−90 dBm and Pr = 1 Watt.

sensitive to ρ in more noisy environments. The throughput increases 1.10 bits/sec/Hz

when N0 = −90 dBm while it increases 2.13 bits/sec/Hz when N0 = −80 dBm for the

researched ρ range. Besides, it can be seen that the analytical and simulation results

match for both scenarios, which verifies the accuracy of the expression in (6.31).

Fig. 6.7 plots the analytical results of the outage probabilities of the HD EH relaying

systems, i.e., HD1 and HD2, and the FD EH relaying system with respect to 0 < α <

1. The noise and transmitting power of the relay are set to be −90 dBm and 1 Watt,

respectively. The HD1 and HD2 systems are considered as two benchmarks. In the FD

case, the effects of different polarization dissimilarity factors on the outage probability are

researched. It is clear that for all cases the outage probabilities decline with the increase

of α , i.e., with the increase of the EH time. In comparison, the FD system has the same

EH duration as the HD1 system. The source of the FD EH system uses the same total

energy as the HD1 EH system to transmit the double amount of information. Thus, the

transmitting power per symbol P̂s in the HD1 case is twice as much as the Ps in the FD

case. At the cost of antenna polarization and the digital cancellation scheme, the FD

EH system can achieve the same outage probability as the HD1 EH system when ρ = 1
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Figure 6.8: Throughput vs. time split factor α for different values of log(ρ) in the FD
EH system. Pr = 1 Watt and N0 =−80 dBm.

as shown in Fig. 6.7. Unlike the HD1 system, the EH duration in the HD2 system is

reduced compared to the HD1 and FD systems to keep the transmitting power per symbol

P′
s in the HD2 system is the same as Ps in the FD system. The results show that the outage

probability of “A. FD ρ = 1” is lower than that of “A. HD2”. It is because the PDC scheme

can suppress the noise power at the relay by the factor 2ρ as shown in (6.8). Moreover,

“A. FD ρ = 0.5” matches “A. HD2” as the outage probabilities of the FD system and the

HD2 system are the same when the polarization dissimilarity factor ρ = 0.5 as illustrated

in (6.25) and (6.40). In addition, consistent with Figs. 6.5 and 6.6, the decrease of the

dissimilarity increases the outage probability as the performance for the case ρ = 0.1 is

inferior to that for ρ = 1.

Fig. 6.8 plots the change of throughput performance along with the time split factor α

in the FD EH system when Pr = 1 Watt and N0 = −80 dBm. The results are obtained

from the analytical expression of throughput in (6.31). The curves with different colors

represent different values of ρ , where the lighter colors stand for the larger values of ρ .

Fig. 6.8 clearly shows that R(α) in (6.31) is a concave function and the optimal α exists

and is unique for each specific ρ value. It is observed that the optimal α value increases
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Figure 6.9: Throughput vs. time split factor α for different noise variance N0. ρ = 1
and Pr = 1 Watt.

along with the decrease of the maximum throughput and the decrease of ρ . For example,

the throughput is maximized at 3.2 bits/sec/Hz with the corresponding α = 0.3 and ρ = 1.

Whereas, the throughput is maximized at 1.6 bits/sec/Hz when α = 0.5 and ρ = 0.2.

Fig. 6.9 plots the analytical and simulation results of the system throughput with respect

to α in the FD EH relaying system, HD1 EH system, and HD2 EH system with different

noise variances. We can see that the noise variance has a significant influence on the maxi-

mum system throughput. For example, in the FD system, the peak value of the throughput

is 5.6 bits/sec/Hz with N0 =−90 dBm while that is 3.2 bits/sec/Hz with N0 =−80 dBm.

Similarly to Fig. 6.8, the optimal α increases along with the decrease of the maximum

throughput even though the reduction of the maximum throughput in Fig. 6.9 is caused by

the increase of the noise variance, rather than by the decrease of ρ . Also, in all cases, the

maximum throughput of the FD system is almost twice of the HD counterpart. The HD1

system and HD2 system have almost the same maximum throughput but different optimal

α values. In Fig. 6.9, the optimal α numerically evaluated with N0 =−90 dBm in the FD

system by (6.32) is 0.16, in the HD1 system by (6.38) is also 0.16, and in the HD2 system

by (6.43) is 0.26. The simulation results match the analytical results, which verifies the
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Figure 6.10: A contour plot of the FD throughput performance R. Pr = 1 Watt and
N0 =−80 dBm.

correctness of the theoretical analyses. This means that the optimal time split values for

the FD EH relaying system and the HD EH relaying systems can be obtained accurately

by solving numerically the optimization problem in (6.32), (6.38) and (6.43).

Fig. 6.10 plots the contours of the analytical throughput in the FD EH system with the

x-coordinates representing the dissimilarity and the y-coordinates representing the time

split factor. The line with a lighter color, i.e., yellow color, represents a greater throughput.

From this figure, the pairs of values α and ρ to achieve a specific throughput value can be

found. For example, when α = 0.3 and ρ = 0.8 or α = 0.2 and ρ = 1, the throughput is

3 bits/sec/Hz. Recall that these analytical values (α = 0.2, ρ = 1, R = 3 bits/sec/Hz) are

consistent with those values numerically evaluated in Fig. 6.9.

Fig. 6.11 illustrates the analytical and simulation results of throughput with respect to

Pr/N0 in dB for the HD EH and FD EH systems. It is worth noting that Pr/N0 is the

transmit SNR at the source, thus its value is in a high dB range. We assume the time

split is 0.2 and the polarization dissimilarity factor is 1. The throughputs of HD and FD

systems have a small difference when Pr/N0 is less than 100 dB. Then, for both systems,

throughput increases significantly within the range 100 dB < Pr/N0 < 130 dB and tends
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Figure 6.11: Throughput vs. Pr/N0 in dB for the HD EH and FD EH systems. α = 0.2.

to maintain the same value after 130 dB. For different polarization dissimilarity factors of

the FD system, the throughput of ρ = 1 is higher than that of ρ = 0.2 within certain Pr/N0

ranges and they gradually approach to the same maximum value. As for the HD1 and HD2

systems, the throughput of HD2 is saturated at 3.5 bits/sec/Hz while HD1 is saturated at

3.2 bits/sec/Hz, which illustrates that the former is 1.1 times than the latter. It is clear that,

the FD system is saturated at 6.3 bits/sec/Hz. Thus, when the transmission power Pr at

the relay is sufficiently large than the noise variance, the throughput in the FD system is

nearly double that of the HD systems. This observation also implies that the PDC scheme

in the FD system can cancel the SI signal effectively, resulting in the received SNR at the

destination being well above the threshold value γth. Besides, the simulation results of

HD and FD systems match the analytical results, which verifies the theoretical analyses

shown in (6.31) and (6.37), respectively.

From Figs. 6.7 and 6.11, it is clear that, with the cost of the polarized antennas and the

digital SIC module, the FD EH system can double the system throughput while achieving

the system outage probability as low as that in the HD EH counterpart.



CHAPTER 6. Throughput Analysis of Full-Duplex Transmission Networks with Wireless
Energy Harvesting Enabled Sources 108

6.5 Chapter Summary

This chapter considers a two-hop FD system with the WPT from the relay to the source.

We assume the direct link from the source to the destination is not available and the infor-

mation transmission between these two nodes relies on the assistance of the intermediate

relay. The EH-capable source is utilized to achieve the self-sustainability of the wire-

less network. The relay is used to facilitate a long-distance transmission even when the

transmitting power at the source node is low. An FD TSR protocol is used in the sys-

tem to facilitate the cooperation of EH and HD information transmission at the source as

well as enable the FD transmission at the relay. The PDC scheme, consisting of antenna

polarization and digital signal processing, is adopted at the relay to cancel the SI signal

generated by its own transmitter. The results show that the system throughput is a concave

function with respect to the time split factor and the optimal time split can be numerically

calculated. Moreover, the results reveal that the polarization dissimilarity factor has an

influence on the interference and output noise power of the PDC scheme. When polariza-

tion states are orthogonal, the output noise of the PDC scheme is suppressed significantly,

which leads to its best cancellation effect. Besides, at the cost of the polarized antennas

and the additional digital signal processing module, the FD EH system can achieve the

same outage probability as the HD1 EH system, while doubling the system throughput.

With the PDC scheme, the outage probability of the FD EH system can be superior to that

of the HD2 EH system. Besides, the throughput of the former nearly doubles that of the

latter.

The next chapter will consider the adaptation of the SER technique to a PDC-based FD

relaying system with an EH-enabled source node and an EH-enabled relay node.



Chapter 7

Wireless Information and Power
Transfer using Full-Duplex Self-Energy
Recycling Relays

7.1 Introduction

This chapter proposes a PDC-based FD network with an energy-harvesting-enabled source

and a self-energy recycling (SER)-enabled relay. The fixed power supply at the relay is

only used in the first phase to broadcast energy signals to the source. During this process,

the receive antenna of the relay also receives the energy signals, allowing the relay to

recycle its own energy. In the remaining phase, the recycled power is used at the relay to

forward signals from the source to the destination, using the PDC-based full-duplex tech-

nique. An in-depth analysis and comparison of the throughput of the proposed system

with that of the non-recycling counterpart are presented. The power saving and through-

put improvement capabilities of the SER enabled system is researched. In particular, the

consumed power in the proposed system can be reduced by up to 80% to achieve the same

throughput compared to the non-recycling system for a small-to-medium distance range

between the relay and the destination. Alternatively, the proposed FD-SER system can

boost the system throughput by 1.61 times the non-recycling counterpart with the same

power consumption.

109
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7.2 Motivation and Contributions

Inspired by the recent studies in the SER, we propose a full-duplex self-energy recycling

relaying system with EH capabilities at both the source node and the relay node. For

brevity, the proposed system is named as the FD-SER system here. The source and des-

tination are equipped with a single antenna, while the relay has two antennas to facilitate

FD transmission. The proposed two-phase time-splitting protocol lets the source and re-

lay harvest energy in the first phase from the energy signal, which is broadcast from the

relay powered by a fixed power supply. A portion of the energy of the transmitted signals

is recycled at the relay via the SI channel. In the second phase, the relay receives infor-

mation from the source, and simultaneously transmits information to the destination. The

transmission of the source and relay depends solely on the harvested energy. The SI signal

in this phase is canceled by a PDC scheme. The proposed system suits the wireless sensor

networks, such as the body sensor networks [115] and the military sensor networks. For

example, an energy-constrained sensor is placed within the human body or underground

so that replacing the battery to prolong its lifetime is inconvenient. Instead, this sensor

can harvest energy from the nearby relay. The relay node also can assist the source sensor

to forward information to the destination when direct communication is not possible. The

SER is enabled at the relay, which improves the system energy and power efficiencies as

proved later in this chapter. The proposed FD-SER system will be compared with the FD

non-energy-recycling (NER) EH relaying system with wireless power transfer from the

relay to the source discussed in Chapter 6 [41]. For brevity, the non-recycling system is

named as the FD-NER system, which is comprised of an EH source, a relay, and a des-

tination. In [41], the relay uses a fixed power supply in the whole transmission process

since the relay does not have the self-recycling capability. Thus, no loop-back SER chan-

nel nor SER power is considered in the FD-NER system in [41]. The differences of the

system model and analytical expressions between this paper and [41] will be elaborated

in Section 7.5. The impact of the EH duration, transmit SNR ratio, and S-R distances

and R-D distances on the system throughput in both systems are then examined in this

chapter.
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Figure 7.1: Schematic of the proposed FD-SER system.

The major contributions of this work are summarized as follows.

1. In this chapter, a PDC-based FD-SER system is proposed. We have proved that

the throughput of the proposed system is comparable with the throughput of the

FD-NER system in a small-to-medium R-D distance range while the total power

consumption is significantly reduced.

2. The relation between the normalized power consumption and the normalized through-

put has been investigated. It has been shown that the proposed recycling system

can save up to 80% of the total consumed power while achieving almost the same

throughput as the FD-NER one. Alternatively, with the same total power, the relay

in our proposed FD-SER system can use a higher power to broadcast energy to the

source (and to itself) in the first phase, compared to the FD-NER one, since the FD-

SER system only uses the harvested power to forward the signals from the source

to the destination in the remaining time. The throughput of the proposed system is

revealed to be boosted by 1.61 times that of the FD-NER system.

3. The trade-off between the proposed system and the FD-NER one, with the same

total power consumption, is examined. It is shown that the proposed system is very

promising as it outperforms the FD-NER one in most cases.

The content of this chapter has been published in [105].

The rest of this chapter is organized as follows. Section 7.3 provides an overview of

the system model and transmission protocol. Section 7.4 models the transmission of the
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Figure 7.2: Illustration for the proposed two-phase protocol.

energy signal and the information signal in one block time. The analytical expressions

for the proposed FD-SER system and the FD-NER system are derived in Section 7.5.

Section 7.6 presents the simulation results and Section 7.7 concludes the chapter.

7.3 System Model

In this chapter, we consider an amplify-and-forward FD information transmission system

with an EH source (S), a hybrid power-supplied-and-SER relay (R), and a destination (D)

as shown in Fig. 7.1. S and D are equipped with one dual-polarized antenna each while

R is equipped with two sets of dual-polarized antennas, i.e., one for transmission and the

other for reception. The direct link between S and D is assumed to be unavailable due to,

for example, heavy shadowing effects (i.e., obstructions). Denote hSR, hRS,hRR, and hRD as

the channel coefficients of the Rayleigh block fading channels between S and R; R and S;

the transmit (Tx) and receive (Rx) antennas at R; and R and D, respectively. We assume

their expectation values satisfy E{|hSR|2} = E{|hRS|2} = E{|hRR|2} = E{|hRD|2} = 1,

where E{.} denotes the expectation operation. Denote d1 and d2 as the distances between

S → R and between R → D. Denote d3 as the distance between the Tx and Rx antennas

of the relay. The two-phase protocol used in our system is illustrated in Fig. 7.2. The total

duration of one block is T . The first and second phases, namely the energy harvesting

phase and the information transmission phase, occupy the duration αT and (1−α)T ,

respectively, where 0 < α < 1.
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7.4 Signal Model

7.4.1 Energy Harvesting Phase

During the energy harvesting phase, the antenna at S works in the receiving mode. R

works in a HD mode and uses its fixed power supply Pr to broadcast the energy signal. S

and R are equipped with linear EH modules. Thus, not only S harvests the energy from

R, but also the EH circuitry at R recycles a portion of its own transmitted energy via a

loop channel hRR. The polarization of the Tx antenna at R matches the polarization of the

Rx antennas at S and R for an optimal reception. The harvested power at S and R will be

used for the information transmission in the next phase.

As mentioned in Chapter 6, the received energy signal at the source node S is

yei =

√
Pr

dβ

1

hRSxe +ns. (7.1)

However, in this chapter, Pr is the fixed power supply at R, which is only used in the first

phase as the energy source. d1 is the distance from the source to the relay, hRS is the

channel coefficient of the R → S channel, xe is the energy symbol with E{|xe|2}= 1, and

ns is the AWGN at S with variance of N0.

Using (7.1), the total received RF energy Es of the source node during the time αT is

Es =
η1Pr|hRS|2

dβ

1

αT, (7.2)

where 0<η1 < 1 is the energy conversion efficiency of the source node. Thus, the average

RF power for transmission during the next phase at the source is given by

Ps =
Es

(1−α)T
=

η1αPr|hRS|2

(1−α)dβ

1

. (7.3)

In addition, the received energy signal at the relay node R from its own transmitter is

yer =

√
Pr

dβ

3

hRRxe +nr, (7.4)
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where nr is the AWGN at R with power N0. The self-recycling power at the relay is

Per =
η2αPr|hRR|2

(1−α)dβ

3

, (7.5)

where 0 < η2 < 1 is the energy conversion efficiency of the relay node. Generally, the

system is appropriate for any values of η1,η2 ∈ (0,1). In practice, we assume η2 > η1

since the receiver at R is closer to its own transmitter than the receiver at S, thus having a

larger input power into the EH circuit [109], [110]. The harvested power Ps and Per will

be used in the second phase for information transmission as there is no fixed power supply

at S and R in the information transmission phase.

7.4.2 Information Transmission Phase

In this phase, the antenna at S works in the transmitting mode. The source uses the

harvested power Ps to transmit the information signal to the relay. The relay works in the

FD mode to receive information and forward information at the same time on the same

frequency. The power used by the relay to forward information is the recycled power Per.

The power supply Pr is switched off in this phase for saving energy. The polarization of

the antenna at S and the antennas at R is different from the first phase. Specifically, the

polarization of the Rx antenna at R matches that of the Tx antenna at S but differs from

that of the Tx antenna at R. The aim is that R receives the maximum power of the desired

information signal from S while receiving the minimum amount of the SI power from its

own transmitter. Referring to Chapter 2, the polarization state of the desired information

signal as S and the polarization state of the SI signal as I. S and I are given as below

S =
[

cos(εs) sin(εs)exp( jδs)
]T
,

I =
[

cos(εi) sin(εi)exp( jδi)
]T
. (7.6)

where εi,εs ∈ [0,π/2] are polarized angles of the dual-polarized antennas, δi,δs ∈ [0,2π]

are phase differences between the vertical and horizontal polarized components of the

dual-polarized antennas. S and I are unit vectors, i.e., SHS = IHI = 1 and S ̸= I. The
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received signal at R is

yr[i] =

√
Ps

dβ

1

hSRSxs[i]+

√
Per

dβ

3

hRRIxr[i]+Nr[i], (7.7)

where xr[i] is the loop-back self-interference signal, i.e., a delayed version of ŷr which

will be mentioned later in (7.8), and E{|xr[i]|2} = 1. hRR is the SI channel of the relay.

The AWGN at R is Nr[i] =

nH [i]

nV [i]

, where nH represents the horizontal polarized com-

ponent and nV represents the vertical polarized component. nH and nV obey the Gaussian

distribution with a zero mean and a variance of N0
2 .

The desired received signal in yr[i] is interfered by the SI signal xr[i]. The signal xr[i]

can be canceled by the PDC scheme utilizing the polarization states S and I and the

oblique projection QSI as discussed in Section 3.3 in Chapter 3. Thus, the post-processed

signal at the output of the PDC scheme ŷr[i] is expressed as

ŷr[i] = SHQSI

(√
Ps

dβ

1

hSRSxs[i]+

√
Per

dβ

3

hRRIxr[i]+Nr[i]

)

=

√
Ps

dβ

1

hSRxs[i]+ n̂r[i], (7.8)

where n̂r[i] = SHQSI Nr[i]. The polarization dissimilarity factor ρ of S and I is discussed

in Section 6.2.2 in Chapter 6, which can be defined as ρ = SHP⊥
I S. The power of n̂r is

E
[
∥SHQSI Nr∥2

]
= N0

2ρ
. Eq. (7.8) shows that the PDC scheme can eliminate the effect of

the SI channel. However, the oblique projection also causes the residual noise at the relay

SHQSI Nr with the variance N0
2ρ

. This output noise power is considered as the side-effect

of the PDC scheme.

The received signal at the destination is

yd[i] =

√
ξ 2

dβ

2

hRDŷr[i]+nd[i]

=
ξ hRDhSR

√
Ps√

dβ

1 dβ

2

xs[i]+
ξ hRD√

dβ

2

n̂r[i]+nd[i], (7.9)
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where ξ 2 = Per
|hSR|2Ps

dβ

1

+
N0
2ρ

denotes the amplifying factor at the relay in the AF protocol, and

Ps and Per follow Eqs. (7.3) and (7.5), respectively. It is reasonable to assume that the

Rayleigh fading channels|hSR|2 and |hRS|2 are independent and identically distributed

(i.i.d.) exponential random variables (RVs) with mean λs, |hRD|2 is an i.i.d. exponen-

tial RV with mean λd , and |hRR|2 is an i.i.d. exponential RV with mean λr.

7.5 Throughput Analysis

In this section, the throughput of the proposed FD-SER system is analyzed. From (7.9),

the end-to-end SNR from the source to destination is

γSD =

Psξ
2|hSR|2|hRD|2

dβ

1 dβ

2

ξ 2|hRD|2N0

2ρdβ

2

+N0

=

PsPer|hSR|2|hRD|2

dβ

1 dβ

2

(
|hSR|2Ps

dβ

1

+
N0
2ρ

)
Per|hRD|2N0

2ρdβ

2

(
|hSR|2Ps

dβ

1

+
N0
2ρ

) +N0

. (7.10)

Define X1 = |hSR|2, X2 = |hRS|2, Y = |hRD|2, and Z = |hRR|2. From (7.3), (7.5), and (7.10),

the SNR γSD at the destination is given by

γSD =
aX1X2Y Z

b+ cY Z +dX1X2
, (7.11)

where

a = 2P2
r α

2
η1η2ρ,

b = d2β

1 dβ

2 dβ

3 N2
0 (1−α)2,

c = Prαη2d2β

1 N0(1−α),

d = 2αη1ρPrd
β

2 dβ

3 N0(1−α). (7.12)

The outage probability Pout is defined as the probability when the system SNR γSD is

below the threshold SNR γth, where γth = 2Rc −1, and Rc is the source transmission rate
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in bits/sec/Hz.

Pout = Pr{γSD < γth}

= Pr
{

aX1X2Y Z
b+ cY Z +dX1X2

< γth

}
= Pr{aX1X2Y Z < γth (b+ cY Z +dX1X2)}

= Pr{Y Z(aX1X2 − γthc)< γthb+ γthdX1X2} . (7.13)

The probability density function (PDF) of X1X2 is given by [16], [116]

fX1X2(z) =
2

λ 2
s

K0

(
2
√

z
λ 2

s

)
, (7.14)

where Kn(x) is the n-th order modified Bessel function of the second kind. The cumulative

distribution function (CDF) of Y Z is [16], [27]

FY Z(z) = 1−2
√

z
λdλr

K1

(
2
√

z
λdλr

)
. (7.15)

From (7.13), the outage probability is

Pout =

Pr
{

Y Z < γthb+γthdX1X2
aX1X2−cγth

}
, X1X2 >

cγth
a

1, X1X2 ⩽
cγth

a

=
∫ cγth

a

0
fX1X2(x)dx

+
∫

∞

cγth
a

FY Z

(
γthb+ γthdX1X2

aX1X2 − cγth

)
fX1X2(x)dx.

(7.16)

Substituting (7.14) and (7.15) into (7.16), we have

Pout = 1− 2
λ 2

s

∫
∞

cγth
a

K0

(
2
√

x
λ 2

s

)
uK1 (u)dx, (7.17)

where u = 2
√

γthb+xγthd
λdλr(ax−cγth)

.

Because the information is transmitted in the duration (1−α)T (seconds), the system
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Figure 7.3: Two-phase protocol of the NER system.

throughput can be computed as

Rc(α) = (1−Pout)Rc(1−α)

= Rc(1−α)
2

λ 2
s

∫
∞

cγth
a

K0

(
2
√

x
λ 2

s

)
uK1 (u)dx. (7.18)

Recall that Rc is the source transmission rate. The final expression of the throughput

in (7.18) depends on the outage probability, which in turn depends on the self-recycling

power at the relay, Per, as shown in (7.10) and (7.13).

7.6 NER System

For comparison, the FD relaying system with an EH-enabled source and an ordinary relay

without the energy-recycling capability in [41] is analyzed below. The system protocol

is illustrated in Fig. 7.3 where there is no energy recycling at the relay. As a result,

different from the proposed SER system which can switch from the fixed power to the

self-recycled power and vice versa at the beginning of each phase, in the NER system,

the relay must use the fixed power supply Pr during the whole block time T . In the EH

phase, the RF signal is sent from the relay to the EH receiver at the source node. In the

information transmission phase, the harvested energy at the source is used for transmitting

information to the relay and, at the same time, the fixed power supply at the relay is used

for transmitting information to the destination.

Recall the equation (7.1), it is also the received energy signal at S in the NER system.

The harvested power at S is Ps as illustrated in (7.3). The received signal at the destination
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of the NER system is similar to (7.9), except that the amplifying factor at R is

ξ
2
n =

Pr
|hSR|2Ps

dβ

1

+ N0
2ρ

. (7.19)

Thus, the end-to-end SNR and the outage probability as illustrated in [41] are

γn =

PrPs|hSR|2|hRD|2

dm
1 dm

2

(
N0
2ρ

+
Ps|hSR|2

dm
1

)
N0Pr|hRD|2

2dm
2 ρ

(
N0
2ρ

+
Ps|hSR|2

dm
1

) +N0

, (7.20)

where Ps follows (7.3). The outage probability, Pn, in the NER system is

Pn = Pr
{

a′γthX2Y
b′X2 + c′Y +d′ < γth

}
, (7.21)

where

a′ = 2η1αρP2
r ,

b′ = 2γthρη1αPrd
β

2 N0,

c′ = γthN0Pr(d
β

1 )
2(1−α),

d′ = γthN2
0 (d

β

1 )
2dβ

2 (1−α). (7.22)

and X ≜ |hSR|2|hRS|2, Y ≜ |hRD|2.

The system throughput is computed as [41, Eq. (35)]

Rn(α) = Rc(1−α)
∫

∞

b′/a′
u′K1

(
u′
) 1

λd
e
− z

λd dz, (7.23)

where

u′ = 2

√
c′z+d′

λ 2
s (a′z−b′)

. (7.24)

The outage probability of the SER system proposed in this paper depends on four random

variables, |hSR|2, |hRS|2, |hRD|2, and |hRR|2 where hRR is the channel gain of the loop-

back channel at the relay, while that of the NER system in [41] depends on three random

variables, |hSR|2, |hRS|2, and |hRD|2. As a result, the derivation of the outage probability
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and the throughput in the two systems are considerably different. This can be seen clearly

from (7.13), where four variables X1, X2, Y , and Z are involved (unlike (7.21) in the

NER system where three variables |hSR|2, |hRS|2, and |hRD|2 are involved). Besides, in

(7.18), the integration is taken over the product of the two modified-Bessel functions of

the second kind (rather than the integration of the single modified-Bessel function of the

second kind in (7.23) in the NER system).

7.7 Numerical Results

We assume the path loss exponent is β = 3. Since the efficiency is proportional to the

average signal power at the input of the rectifier [110], we assume that the EH efficiency at

S is η1 = 0.4 and at R is η2 = 0.8 (except Fig. 7.13 where we consider the whole possible

range of η2). The noise power N0 is assumed to be −90 dBm, and the transmission rate

of the source is 8 bits/sec/Hz. The polarization dissimilarity factor is ρ = 1, i.e., the

polarization states of the desired signal and the SI signal are orthogonal, except Fig. 7.12

where we consider the whole possible range of ρ . The carrier frequency of 300 MHz is

considered and the distance between the Rx antenna of the relay and its Tx antenna is

d3 = 1 m to make sure the two antennas experience independent fading. In this paper,

we aim to quantify the power saving and the throughput improvement when adopting

SER. The protocols of the SER and NER systems are illustrated in Figs. 7.2 and 7.3,

respectively. For a fair comparison, the EH fraction, α , of the SER and NER systems is

set to be the same in each comparison to keep the harvested energy at the source to be the

same.

Fig. 7.4 illustrates the throughput comparison between the proposed FD-SER system

Rc(α) (cf. Eq. (7.18)) and the FD-NER system Rn(α) (cf. Eq. (7.23)). The notations

A.SER and S.SER stand for the analytical results and the simulation results of the SER

system, respectively. A.NER represents the analytical results of the non-energy-recycling

system in [23]. The results show that the throughput of the proposed FD-SER system

almost reaches that of the FD-NER system within the whole range 0 < α < 1 when the

R-D distance is d2 = 50 m. Recall that the relay only uses the power αPr in the whole
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Figure 7.4: Throughput v.s. α when Pr = 0.1 Watts and d1 = 20 m.

block T in the proposed system, while it uses the power Pr in the FD-NER system. Thus,

we define the normalized power consumption as the ratio of the consumed power at the

relay of the FD-SER system to that of the FD-NER system, i.e., Pc
Pn

= αPr
Pr

= α . Note

that 0 < α < 1. This means that the FD-SER system can save the power consumption

by (1−α)Pn Watts while having almost the same throughput as the FD-NER one for the

small-to-medium R-D distance range (some tens of meters). With the increase of d2, the

throughput of the FD-SER system is getting worse than that of the FD-NER system as

expected, because the self-recycled energy at the relay is limited.

Fig. 7.5 compares the throughputs of the two systems versus the transmit SNR for dif-

ferent R-D distances, d2. The transmit SNR at the relay is defined as Pr
N0

. The throughputs

of the two systems are almost the same for the whole considered transmit SNR range, if

the R-D distance is in a small-to-medium range. For a long-distance range, the through-

put of the FD-SER system is slightly worse than that of the FD-NER system unless the

transmit SNR is large enough.

Fig. 7.6 plots the effect of α on the harvested energy at the source node and the self-

recycled energy at the relay node in our proposed SER system when Pr = 1 Watt and

T = 4.256 ms [117]. The S-R distance is d1 = 20 m and the distance between the antennas
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Figure 7.5: Throughput v.s. transmit SNR when α = 0.2 and d1 = 20 m.
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Figure 7.6: Harvested energy v.s. α when Pr = 1 Watt and T = 4.256 ms.
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at the relay is d3 = 1 m. The results show that the recycled energy at R is around sixteen

thousand times the harvested energy at S due to the influence of path loss and energy

conversion efficiencies. The results also reveal that adopting the SER technique at the

relay can reuse a significant amount of energy.

Fig. 7.7 plots the normalized throughput of the FD-SER system Rc
Rn

for different values

of the normalized power consumption Pc
Pn

(a.k.a. α) for Pr = 1 Watt. The result shows

that, when Pc = 0.2Pn, the throughput is Rc = 0.97Rn for d2 = 50 m and Rc = 0.66Rn

for d2 = 200 m. This means that the FD-SER system can save 80% of energy to achieve

97% of the throughput achieved in the FD-NER counterpart for d2 = 50 m, and 66% of

the throughput for d2 = 200 m. The worst point is Pc = 0.06Pn for both d2 = 50 m and

d2 = 200 m. At this point, 94% energy is saved to have 90% of the throughput achieved

in the FD-NER system for d2 = 50 m, and 25% of the throughput for d2 = 200 m. These

observations indicate that our FD-SER system can save a large amount of energy, while

still being able to achieve a relatively high throughput in a small-to-medium R-D distance

range.

Fig. 7.8 illustrates the optimal EH fraction, α , for different relay transmit powers when
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Figure 7.9: Throughput v.s. the R-D distance d2 when α = 0.4 and d1 = 20 m.
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d1 = 20 m and d2 = 50 m in both the SER and NER systems. Fig. 7.8 shows that the

optimal α decreases with the increase of Pr and the optimal α is almost the same in these

two systems for the considered distances of S-R and R-D.

Fig. 7.9 illustrates the throughput performance in both the SER and NER systems when

α = 0.4 and d1 = 20 m. In this figure, Pr is selected as 0.25 Watts and 0.1 Watts for the

SER and NER systems, respectively, to guarantee the same total consumed power in the

two system for a fair comparison. Recall Figs. 7.4 and 7.8, it is clear that α = 0.4 will

optimize the throughput of the NER system for a wide range of d2 from 50 m to 200 m

when Pr = 0.1 Watts. However, α = 0.4 is not the optimal value of the SER system when

Pr = 0.25 Watts. This means Fig. 7.9 compares the throughput of the SER system with

the optimal throughput of the NER one, given that the total power consumption of the two

systems is the same. Thus, this figure shows the minimum throughput improvement that

could be achieved by the proposed SER system, compared to the NER counterpart, for

the considered set of parameters.

Fig. 7.10 examines the impact of the R-D distance, d2, and the transmit power at the

relay, Pr, on the throughput of the FD-SER and FD-NER systems. Our analyses are

derived for generic α values. As we need to make sure that α is the same in both the SER

and NER systems for a fair comparison, the parameter α = 0.2 is chosen in both system as

an example for illustration. Besides, the EH fraction α is set to be 0.2 as it is the optimal

value for Pr = 1 Watt as shown in Fig. 7.8. Thus, the following figures (Figs. 7.10-7.13)

show the upper bound of the throughput improvement that could by achieved by the SER

system, compared to the NER counterpart. Fig. 7.10a compares the throughput of the

SER and NER systems when the same transmit power is used at the relay and α = 0.2 in

both systems. From Fig. 7.10a, the throughputs of these two systems are almost the same

when d2 is less than 90 m for Pr = 1 Watt and when d2 is less than 50 m for Pr = 0.1 Watts.

These observations prove that the consumed power in the proposed system can be reduced

by up to 80%to achieve the same throughput compared to the non-recycling system for a

small-to-medium range of d2. Fig. 7.10b shows that the throughput of the FD-SER system

is 5.08 bits/sec/Hz when d2 = 20 m and 4.75 bits/sec/Hz when d2 = 200 m. Meanwhile,
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Figure 7.10: Throughput v.s. the R-D distance d2 when α = 0.2 and d1 = 20 m.
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Figure 7.11: Throughput v.s. d1 when α = 0.2 and d1 = 200−d2 m.

the throughput of the FD-NER system reduces slowly from 3.15 bits/sec/Hz at d2 = 20

m to 3.12 bits/sec/Hz at d2 = 200 m. Note that the power consumed at the relay of the

proposed FD-SER system is 0.2 Watts when α = 0.2 and Pr = 1 Watt, which is exactly

the same as the power consumed at the relay of the FD-NER system with Pr = 0.2 Watts.

This result shows that, with the same consumed power, the throughput in our FD-SER

system can be up to 1.61 times higher than that in the FD-NER system. This is because

the FD-SER system saves the energy consumed in the second phase by adopting the SER

technique. The relay in the FD-SER system uses a higher power, compared to the FD-

NER one, to transmit energy signal to the source and itself in the first phase. Thus, the

FD-SER system achieves a higher throughput in a small-to-medium R-D range.

Fig. 7.11 plots the throughput performance of the proposed FD-SER system versus

the S-R distance d1 when α = 0.2, with the non-cycling system serving as a benchmark.

As mentioned above, when α = 0.2 and Pr = 1 Watt, the total consumed power of the

FD-SER system is exactly the same as that of the FD-NER system with Pr = 0.2 Watts.

The relay-transmitting power in the second phase of the FD-SER system depends on

the harvested energy while the FD-NER system relay has the fix power supply. The

total source-to-destination (S-D) distance is set to be 200 m and the S-R distance is d1 =
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200−d2 m. Fig. 7.11 aims to explore the effect of relay location on the system throughput

in comparison with the NER counterpart. As a result, the same total S-D distance of 200

m is considered in both systems. The results show that the throughput in both systems

decreases as d1 increases due to a larger path loss in the S-D link. Consequently, the

received signal strength at the relay is poorer and the throughput decreases. However, the

proposed system still outperforms the FD-NER system, unless d1 is under 10 m, where

the former is slightly inferior than the latter. This is because, when d1 is too small, the

relay is too far from the destination. Due to the limited recycled energy at the relay, the

system throughput will be reduced. Fig. 7.11 thus shows the trade-off between the two

systems. For this simulation scenario, if the relay has to be put more than 10 m away from

the source due to, for example, the unavailability of the physical place for the installation

of the relay (like in mining tunnels), the proposed FD-SER system is a better choice than

the counterpart. This demonstrates the usefulness of our proposed system in a realistic

scenario. Clearly, the optimal relay location in the proposed system is approaching the

source node, rather than the middle point between the source and the destination which is

a well-known observation for a conventional half-duplex, non-energy harvesting system

reported in the literature.

Fig. 7.12 plots the throughput of the FD-SER and FD-NER systems versus the polariza-

tion dissimilarity factor, ρ , when α = 0.2. The comparison of the two systems is based on

the same total energy consumption, so Pr = 1 in the SER system and Pr = 0.2 in the SER

system. The analytical results show that the throughput increases with the increase of ρ .

Since 0 < ρ ⩽ 1, the maximum throughput is obtained when ρ = 1, i.e., the polarization

states of the desired signal and the SI signal are orthogonal. Fig. 7.12 indicates clearly

that our proposed system still outperforms the FD-NER one even when the polarization

states of the antennas are not orthogonal.

Fig. 7.13 illustrates the impact of the energy efficiency at S, η1, on the system through-

put. We set α = 0.2, d1 = 20 m, d2 = 200 m, and Pr = 1 Watt in the FD-SER system and

Pr = 0.2 Watts in the FD-NER system. Note that usually η2 > η1 as the distance between

the transmit-end and the receive-end of the energy signal at R is closer than that at S.
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Figure 7.12: Throughput v.s. polarization dissimilarity factor, ρ , when α = 0.2.
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Fig. 7.13 reveals that throughput is proportional to η1 in both systems. The increase of

the efficiency at R, η2, in the FD-SER system will improve further the system throughput.

In addition, if η1 increases by 0.4, the throughput increases by about 0.4 bits/sec/Hz to 4.8

bits/sec/Hz. This figure also shows the variation of η2 in terms of η2 = 0.4 and η2 = 0.8.

If η2 increases by 0.4, the throughput increases by about 0.2 bits/sec/Hz. Thus, it is clear

that the throughput depends more on η1 rather than η2.

7.8 Conclusion

In this chapter, we have proposed a PDC-based FD relaying network with an EH-enabled

source and a SER-enabled relay. The relay only uses its fixed power supply in the first

phase to broadcast energy signals to the sources. During this process, it also recycles part

of its own transmitted energy. In the remaining phase, the relay uses the recycled power

to forward signals from the source to the destination in a PDC-based FD communication

mode. Analytical expressions have been derived for the outage probability and through-

put of the system, confirmed by our simulations. This chapter reveals that, compared

to the FD-NER system, our proposed system can save significantly the total consumed

power while achieving almost the same system throughput for a small-to-medium R-D

distance range. Alternatively, with the same power consumption, our system outperforms

the counterpart in most cases. Therefore, it is a promising solution to save power or boost

the system throughput in FD EH relaying systems. Our future works include extending

the two-antenna relay to a multi-antenna structure, considering other SIC techniques, such

as the analog least mean square loop [118], and examining the correlated fading channels

between antennas [119].



Chapter 8

Conclusions and Future Works

8.1 Conclusions

This thesis has investigated the outage probability, throughout, and BER of different two-

hop FD WPT systems. The scope of the research includes SIC schemes, WPT from

the source to the relay and from the relay to the source, SER technique, single-carrier

Rayleigh flat fading channels, and OFDM multipath frequency selective fading channels.

With respect to the research objectives presented in Chapter 1, this thesis is summarized

as follows.

1. The adaptations of the PDC scheme to the FD-EH relaying systems for both the

single-carrier Rayleigh flat fading channels and the OFDM frequency selective fad-

ing channels are investigated. It has been found that the PDC scheme does not

require the instantaneous CSI of the SI channels. The simulation results in the

single-carrier system with WET from the source to the relay show that the FD EH

relaying system almost doubles the system throughput, compared to the HD EH

relaying system, at the cost of about 5 dB inferior error performance. The through-

put and BER in the OFDM system with WET from the source to the relay are

researched. The results show that for a given time splitting factor, the number of

sub-bands should be chosen small enough, provided that each sub-band still expe-

riences a flat fading channel, to achieve both high system throughput and a good

BER performance. The FD system substantially improves the system throughput,

while maintaining the same BER by a modest increase in SNR compared to the HD
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system. In both the single-carrier system and the OFDM system, to achieve a high

throughput along with a good error performance, a combined selection of a high

transmit SNR and a suitable EH time is required.

2. A PDC-enabled OFDM FD relaying system with WET from the source to the relay

is investigated. The mathematical expressions of the throughput for an OFDM sub-

band are derived in two different approaches over the Rayleigh frequency-selective

fading channels. The first method considers the distributions of the two exponential

random variables independently. The second method considers product distribution

of the S-R channel and R-D channel, which is more accurate. Comparing FD with

HD relaying systems shows that the throughput of the former is nearly doubled than

the latter at high transmit SNRs. For simplification, the asymptotic lines of outage

probability and throughput are researched and validated at high SNRs.

3. A PDC-enabled FD relaying system in single-carrier Rayleigh flat fading channels

and with WET from the relay to the source is proposed. The EH-capable source

is utilized to achieve the self-sustainability of the wireless network. The relay is

used to facilitate a long-distance transmission even when the transmitting power at

the source node is low. The system throughput is a concave function for the time

split factor and the optimal time split can be numerically calculated. Moreover, the

polarization dissimilarity factor influences the interference and output noise power

of the PDC scheme. When polarization states are orthogonal, the output noise of the

PDC scheme is suppressed significantly, which leads to its best cancellation effect.

We provide the analysis of outage probability and throughput of an FD relaying

system and two HD relaying systems. The HD1 system has the same EH duration as

the FD system while the HD2 system has the same transmitting power at the source

as the FD one. At the cost of the polarized antennas and the additional digital signal

processing module, the FD system can achieve the same outage probability as the

HD1 system, while doubling the system throughput. With the PDC scheme, the

outage probability of the FD system can be superior to that of the HD2 system and

the throughput of the former is nearly double that of the latter.
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4. We have proposed a PDC-based FD relaying network with an EH-enabled source

and an SER-enabled relay in the single-carrier Rayleigh flat fading channels. The

relay only uses its fixed power supply in the first phase to broadcast energy sig-

nals to the sources. During this process, it also recycles part of its own transmitted

energy. In the remaining phase, the relay uses recycled power to forward signals

from the source to the destination, using the PDC-based FD technique. Analyti-

cal expressions have been derived for the outage probability and throughput of the

system, confirmed by our simulations. The paper reveals that, compared to the FD-

NER system, our proposed system can save 80% of the total consumed power while

achieving almost the same system throughput for a small-to-medium R-D distance

range. Alternatively, with the same power consumption, our system outperforms

the counterpart in most cases. Therefore, it is a promising solution to save power or

boost the system throughput in FD EH relaying systems.

8.2 Future Works

The possible research directions in the future include.

• The consideration of a high-speed multi-antenna (i.e., MIMO-OFDM) EH relay-

ing system which transmits quasi-orthogonal or differential space-time-frequency

codes in an FD mode [120]–[122]. A comprehensive analysis of the multi-antenna

FD EH relaying system in a correlated fading channel can be provided.

• The extension of our proposed system to the case of multiple users [123], multiple

sources, or multiple relays [124], [125]. It might also consider non-linear RF EH

models and examine other promising SIC techniques, such as the analog least mean

square loops, to cancel the SI at the relay.

• The consideration of other channel fading models, such as the Nakagami fading,

Log-normal shadow fading, and Rician fading. Besides, providing analytical eval-

uations of spectral efficiency and energy efficiency.
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[81] L. Anttila, D. Korpi, V. Syrjälä, and M. Valkama, “Cancellation of power am-
plifier induced nonlinear self-interference in full-duplex transceivers,” in Proc.

ASILOMAR, Pacific Grove, CA, USA, Nov. 2013, pp. 1193–1198.



BIBLIOGRAPHY 141

[82] M. S. Sim, M. Chung, D. K. Kim, and C.-B. Chae, “Low-complexity nonlinear
self-interference cancellation for full-duplex radios,” in Proc. GC Wkshps, Wash-
ington, DC, USA, Dec. 2016, pp. 1–6.

[83] D. Korpi et al., “Digital self-interference cancellation under nonideal RF compo-
nents: Advanced algorithms and measured performance,” in Proc. IEEE SPAWC,
Stockholm, Sweden, Jun. 2015, pp. 286–290.

[84] E. Ahmed, A. M. Eltawil, and A. Sabharwal, “Self-interference cancellation with
phase noise induced ICI suppression for full-duplex systems,” in Proc. GLOBE-

COM, Atlanta, GA, USA, Dec. 2013, pp. 3384–3388.

[85] Y. Liu, C. Guo, Z. Zeng, and D. Li, “The polarization-enabled digital self-interference
cancellation scheme for the full duplex communication,” in Proc. WPMC, Sydney,
NSW, Australia, Sep. 2014, pp. 414–418.

[86] N. Phungamngern, P. Uthansakul, and M. Uthansakul, “Digital and RF interfer-
ence cancellation for single-channel full-duplex transceiver using a single an-
tenna,” in Proc. ECTI-CON, Krabi, Thailand, May 2013, pp. 1–5.

[87] M. E. Knox, “Single antenna full duplex communications using a common car-
rier,” in Proc. WAMICON, Cocoa Beach, FL, USA, Apr. 2012, pp. 1–6.

[88] D. Bharadia, E. McMilin, and S. Katti, “Full duplex radios,” SIGCOMM Comput.

Commun. Rev., vol. 43, no. 4, pp. 375–386, Aug. 2013.

[89] K. Kwon, D. Hwang, H.-K. Song, and S. S. Nam, “Full-duplex with self-energy
recycling in the RF powered multi-antenna relay channels,” IEEE Signal Process.

Lett., vol. 26, no. 10, pp. 1516–1520, Oct. 2019.

[90] Y. Zeng and R. Zhang, “Full-duplex wireless-powered relay with self-energy re-
cycling,” IEEE Wireless Commun. Lett., vol. 4, no. 2, pp. 201–204, Apr. 2015.

[91] Ö. T. Demir and T. E. Tuncer, “Optimum QoS-aware beamformer design for full-
duplex relay with self-energy recycling,” IEEE Wireless Commun. Lett., vol. 7,
no. 1, pp. 122–125, Feb. 2018.

[92] S. Xu, X. Song, Z. Xie, J. Cao, and J. Wang, “Secrecy transmission for self-
energy recycling untrusted relay networks with imperfect channel state informa-
tion,” IEEE Access, vol. 7, pp. 169 724–169 733, Dec. 2019.

[93] D. Hwang, K. C. Hwang, D. I. Kim, and T.-J. Lee, “Self-energy recycling for RF
powered multi-antenna relay channels,” IEEE Trans. Wireless Commun., vol. 16,
no. 2, pp. 812–824, Feb. 2017.

[94] J. Qiao, H. Zhang, F. Zhao, and D. Yuan, “Secure transmission and self-energy
recycling with partial eavesdropper CSI,” IEEE J. Sel. Areas Commun., vol. 36,
no. 7, pp. 1531–1543, Jul. 2018.



BIBLIOGRAPHY 142

[95] Z. Wang, X. Yue, and Z. Peng, “Full-duplex user relaying for NOMA system with
self-energy recycling,” IEEE Access, vol. 6, pp. 67 057–67 069, Dec. 2018.

[96] L. Zhang, Y. Cai, M. Zhao, B. Champagne, and L. Hanzo, “Nonlinear MIMO
transceivers improve wireless-powered and self-interference-aided relaying,” IEEE

Trans. Wireless Commun., vol. 16, no. 10, pp. 6953–6966, Oct. 2017.

[97] S. Yang, Y. Ren, G. Lu, and J. Wang, “Optimal resource allocation for full-duplex
wireless-powered relaying with self-energy recycling,” in Proc. WCSP, Xi’an,
China, Oct. 2019, pp. 1–6.
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