34,856 research outputs found
Outage Probability and Outage-Based Robust Beamforming for MIMO Interference Channels with Imperfect Channel State Information
In this paper, the outage probability and outage-based beam design for
multiple-input multiple-output (MIMO) interference channels are considered.
First, closed-form expressions for the outage probability in MIMO interference
channels are derived under the assumption of Gaussian-distributed channel state
information (CSI) error, and the asymptotic behavior of the outage probability
as a function of several system parameters is examined by using the Chernoff
bound. It is shown that the outage probability decreases exponentially with
respect to the quality of CSI measured by the inverse of the mean square error
of CSI. Second, based on the derived outage probability expressions, an
iterative beam design algorithm for maximizing the sum outage rate is proposed.
Numerical results show that the proposed beam design algorithm yields better
sum outage rate performance than conventional algorithms such as interference
alignment developed under the assumption of perfect CSI.Comment: 41 pages, 14 figures. accepted to IEEE Transactions on Wireless
Communication
User-Centric Interference Nulling in Downlink Multi-Antenna Heterogeneous Networks
In heterogeneous networks (HetNets), strong interference due to spectrum
reuse affects each user's signal-to-interference ratio (SIR), and hence is one
limiting factor of network performance. In this paper, we propose a
user-centric interference nulling (IN) scheme in a downlink large-scale HetNet
to improve coverage/outage probability by improving each user's SIR. This IN
scheme utilizes at most maximum IN degree of freedom (DoF) at each macro-BS to
avoid interference to uniformly selected macro (pico) users with
signal-to-individual-interference ratio (SIIR) below a macro (pico) IN
threshold, where the maximum IN DoF and the two IN thresholds are three design
parameters. Using tools from stochastic geometry, we first obtain a tractable
expression of the coverage (equivalently outage) probability. Then, we analyze
the asymptotic coverage/outage probability in the low and high SIR threshold
regimes. The analytical results indicate that the maximum IN DoF can affect the
order gain of the outage probability in the low SIR threshold regime, but
cannot affect the order gain of the coverage probability in the high SIR
threshold regime. Moreover, we characterize the optimal maximum IN DoF which
optimizes the asymptotic coverage/outage probability. The optimization results
reveal that the IN scheme can linearly improve the outage probability in the
low SIR threshold regime, but cannot improve the coverage probability in the
high SIR threshold regime. Finally, numerical results show that the proposed
scheme can achieve good gains in coverage/outage probability over a maximum
ratio beamforming scheme and a user-centric almost blank subframes (ABS)
scheme.Comment: Transactions on Wireless Communications (under revision). arXiv admin
note: text overlap with arXiv:1504.0528
Precoding for coded communication on block fading channels and cooperative communications
We study precoding for the outage probability minimization of block fading (BF) channels and BF relay channels. Recently, an upper bound on the outage probability with precoding was established for BF channels, but only for high instantaneous SNR. This upper bound is much easier to minimize than the actual outage probability, so that optimal precoding matrices can be determined without much computational effort. Here, we provide a proof for the upper bound on the outage probability at low instantaneous SNR. Next, the structure of the precoding matrix is simplified so that it can be easily constructed for an arbitrary number of blocks in the BF channel. Finally, we apply this technique to cooperative communications
Beamforming in Two-Way Fixed Gain Amplify-and-Forward Relay Systems with CCI
We analyze the outage performance of a two-way fixed gain amplify-and-forward
(AF) relay system with beamforming, arbitrary antenna correlation, and
co-channel interference (CCI). Assuming CCI at the relay, we derive the exact
individual user outage probability in closed-form. Additionally, while
neglecting CCI, we also investigate the system outage probability of the
considered network, which is declared if any of the two users is in
transmission outage. Our results indicate that in this system, the position of
the relay plays an important role in determining the user as well as the system
outage probability via such parameters as signal-to-noise imbalance, antenna
configuration, spatial correlation, and CCI power. To render further insights
into the effect of antenna correlation and CCI on the diversity and array
gains, an asymptotic expression which tightly converges to exact results is
also derived.Comment: Accepted for presentation on IEEE International Conference on
Communications (ICC 2012), Ottawa, Canada, June 201
Security versus Reliability Analysis of Opportunistic Relaying
Physical-layer security is emerging as a promising paradigm of securing
wireless communications against eavesdropping between legitimate users, when
the main link spanning from source to destination has better propagation
conditions than the wiretap link from source to eavesdropper. In this paper, we
identify and analyze the tradeoffs between the security and reliability of
wireless communications in the presence of eavesdropping attacks. Typically,
the reliability of the main link can be improved by increasing the source's
transmit power (or decreasing its date rate) to reduce the outage probability,
which unfortunately increases the risk that an eavesdropper succeeds in
intercepting the source message through the wiretap link, since the outage
probability of the wiretap link also decreases when a higher transmit power (or
lower date rate) is used. We characterize the security-reliability tradeoffs
(SRT) of conventional direct transmission from source to destination in the
presence of an eavesdropper, where the security and reliability are quantified
in terms of the intercept probability by an eavesdropper and the outage
probability experienced at the destination, respectively. In order to improve
the SRT, we then propose opportunistic relay selection (ORS) and quantify the
attainable SRT improvement upon increasing the number of relays. It is shown
that given the maximum tolerable intercept probability, the outage probability
of our ORS scheme approaches zero for , where is the number
of relays. Conversely, given the maximum tolerable outage probability, the
intercept probability of our ORS scheme tends to zero for .Comment: 9 pages. IEEE Transactions on Vehicular Technology, 201
- …