In heterogeneous networks (HetNets), strong interference due to spectrum
reuse affects each user's signal-to-interference ratio (SIR), and hence is one
limiting factor of network performance. In this paper, we propose a
user-centric interference nulling (IN) scheme in a downlink large-scale HetNet
to improve coverage/outage probability by improving each user's SIR. This IN
scheme utilizes at most maximum IN degree of freedom (DoF) at each macro-BS to
avoid interference to uniformly selected macro (pico) users with
signal-to-individual-interference ratio (SIIR) below a macro (pico) IN
threshold, where the maximum IN DoF and the two IN thresholds are three design
parameters. Using tools from stochastic geometry, we first obtain a tractable
expression of the coverage (equivalently outage) probability. Then, we analyze
the asymptotic coverage/outage probability in the low and high SIR threshold
regimes. The analytical results indicate that the maximum IN DoF can affect the
order gain of the outage probability in the low SIR threshold regime, but
cannot affect the order gain of the coverage probability in the high SIR
threshold regime. Moreover, we characterize the optimal maximum IN DoF which
optimizes the asymptotic coverage/outage probability. The optimization results
reveal that the IN scheme can linearly improve the outage probability in the
low SIR threshold regime, but cannot improve the coverage probability in the
high SIR threshold regime. Finally, numerical results show that the proposed
scheme can achieve good gains in coverage/outage probability over a maximum
ratio beamforming scheme and a user-centric almost blank subframes (ABS)
scheme.Comment: Transactions on Wireless Communications (under revision). arXiv admin
note: text overlap with arXiv:1504.0528