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Precoding for Coded Communication on Block
Fading Channels and Cooperative Communications

Dieter Duyck, Joseph J. Boutros, and Marc Moeneclaey

Abstract—We study precoding for the outage probability
minimization of block fading (BF) channels and BF relay chan-
nels. Recently, an upper bound on the outage probability with
precoding was established for BF channels, but only for high
instantaneous SNR. This upper bound is much easier to minimize
than the actual outage probability, so that optimal precoding
matrices can be determined without much computational effort.
Here, we provide a proof for the upper bound on the outage
probability at low instantaneous SNR. Next, the structure of the
precoding matrix is simplified so that it can be easily constructed
for an arbitrary number of blocks in the BF channel. Finally,
we apply this technique to cooperative communications.

I. I NTRODUCTION

A block fading (BF) channel [2] withB blocks is a
useful model for all channels that consist of parallel sub-
channels (e.g. via time-interleaving, frequency hopping,H-
ARQ, OFDMA or cooperative communications). The outage
probability limit [2], [13] is a fundamental and achievable
lower bound on the average word error rate (WER) of coded
systems without channel state information at the transmitter
(no CSIT). By choosing a well designed precoding matrixP ,
the outage probability can be minimized. This minimization
requires a multivariate1 brute force optimization, involving a
Monte Carlo simulation2 for each evaluation of the outage
probability, which is intractable. The minimum product dis-
tance approach, proposed in [1], [3] and extended by e.g. [12]
for MIMO, is not suitable for coded schemes because it opti-
mizes the bit error rate of uncoded constellations transmitted
on ergodic fading channels. Fortunately, a useful upper bound
on the outage probability was established [6], [5], which can
be optimized with a small computational effort (a few seconds
with the current computer resources). The proof for this upper
bound was given in [6] for high instantaneous SNR only.

Here, we analyse this upper bound and show that the proof
for high instantaneous SNR is not sufficient. Next, a con-
struction method for the precoding matrixP is lacking when
B ≥ 3. We provide a proof for low SNR and we elaborate on
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1A unitary B × B precoding matrix hasB2 degrees of freedom.
2Monte Carlo simulations are required to take into account the distribution

of all fading gains.

the structure ofP so that it can be easily constructed for all
B. The results can be applied to cooperative communications,
which is shown in the last section. The work presented here is
partly covered in [7], but new material such as the necessity
of a new proof for low SNR and the application to cooperative
communications is added.

II. A NEW CHANNEL EQUATION FORBF CHANNELS

The transmitter output is a real or complex vectorx =
[x(1), . . .x(B)] where x(b) = [x(b)1, . . . , x(b)N

B
] is the b-

th part of the transmitted vector. The received vector and the
noise vector are similarly represented. The channel is memory-
less with additive white Gaussian noise and multiplicativereal
fading (Rayleigh distributed). The fading coefficients areonly
known at the decoder side (no CSIT) where the received signal
vector isy(b) = αbx(b) + w(b), b = 1, . . . , B, where the
fading coefficientαb is independent and identically distributed
(i.i.d.) from block to block. The noise vectorw(b) consists of
N/B independent noise samples which are complex Gaussian
distributed,w(b)n ∼ CN (0, 1

γ
), whereγ is the average SNR.

The transmitter output is obtained after component in-
terleaving combined with linear precoding [3], [8]. In our
case, each string ofm bits is mapped to one ofM = 2m

points belonging to a B-dimensional real or complex space;
the corresponding B-dimensional M-point constellationΩz is
denotedM -RB or M -CB, respectively. Denoting aszn =
[z(1)n, . . . , z(B)n]

T the B-dimensional vector that results
from mapping the n-th string ofm coded bits, the linear
precoding involves the computation

xn = Pzn, n = 1, . . . ,
N

B
, (1)

where the symbols{x(b)n, b = 1, . . . , B} are the components
of the multidimensional symbolxn (we similarly consider
yn and wn), which belongs to theB-dimensionalM -point
constellationΩx.

A precoding matrixP that is unitary is an obvious choice
because it does not decrease the capacity of a Gaussian
channel. In this paper, we restrict our study to real precoding
matrices, henceP is orthogonal. WhenB = 2, P is a rotation
matrix where the rotation angleθ is the degree of freedom.
However, rotation matrices are difficult to construct for higher
dimensions. In Sec. III, it is shown that forB > 2 it is
sufficient to consider orthogonalcirculant precoding matrices.
We denote its first row as(p0, . . . , pB−1). The second row is a
cyclic shift to the right of the first row, and so on. Because the
columns of theB ×B Fourier matrixF are the eigenvectors
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Fig. 1. Displaying the rotation at the transmitter forB = 2. The empty
(filled) circles representΩz (Ωx). The components oftn can be obtained by
scaling the componentsxn by their respective fading gain. The crosses on
the coordinate axes are the transmitted vector components.

of any circulant matrix, we can constructP as follows:

P = FΛFH , (2)

where(F )m,n = 1√
B
exp

(−2jπmn
B

)

, m,n ∈ {0, . . . , B − 1},
andΛ is a diagonal matrix containing the eigenvalues ofP .
The condition forP being orthogonal isΛHΛ = IB, or the
B eigenvalues ofP must have a squared magnitude of 1. It
is easy to find that

λn =

B−1
∑

l=0

pl exp

(

−j2πnl

B

)

. (3)

Now, it follows that

pl =
1

B

B−1
∑

m=0

λm exp

(

j2πml

B

)

. (4)

As the eigenvalues must have a magnitude of 1, we have
λn = exp(jθn). In order to obtain a real-valuedP , we take
λ0 ∈ {±1} andλB−n = (λn)

∗ (i.e., θB−n = −θn) for n =
1, . . . , B − 1. For B > 2, P is determined byb(B − 1)/2)c
continuous parameters that can be optimized.

Fig. 1 illustrates the effect of precoding forB = 2 when a
4-R2 constellation is used asΩz . In that case,Ωx is a rotated
version of Ωz = 4-R2. When received at the destination,
the components ofxn are affected by their corresponding
fading gain and noise. Consider the vectortn = α · xn =
[α1x(1)n, ..., αBx(B)n], which belongs to the constellation
Ωt, which we denote as thefadedconstellation. Note that this
constellation is different for each codeword, because the fading
point α changes.

This system is better modelled by the channel equation

yn = tn +wn, n = 1, . . . ,
N

B
. (5)

Depending on the set of fading pointsα that is considered, the
constellationΩt at the input of this Gaussian vector channel
varies. This new channel equation gives more insight and is
important in the new proofs proposed here.
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Fig. 2. The outage boundary limits the regionVo (coloured red) in the fading
space which corresponds to an information theoretic outageevent. The points
{αb,o, b = 1, . . . , B} and αe are shown forB = 2, Ωz = 4-R2 and
θ = 10 ◦. The information rate isR = 0.9 bpcu. The average SNR is fixed
to γ = 8dB.

III. M ETHOD TO UPPERBOUND OUTAGE PROBABILITY

For the remainder of the paper, we drop the indexn in
the vectorszn, xn, tn, yn and wn, as the time index is
not important when considering mutual information. We write
random variables using upper case letters corresponding to
the lower case letters used for their realizations. The mutual
informationI (α, γ, P ) at a certain fading pointα between the
transmittedB-dimensional symbolx and the corresponding
received vectory is given by [8],

I (α, γ, P,Ωz) =
1

B
I(X;Y|α, γ) =

1

B
I(T;Y|α, γ), (6)

where the last term corresponds with Eq. (5), and where the
scaling factor1

B
is added because theB blocks in the channel

timeshare a time-interval.
The outage probability is the probability that the instanta-

neous mutual information is less than the transmitted rate.In
other words, the outage probability corresponds to the set of
fading gains where the channel is sufficiently bad (the channel
is in outage):

Pout(γ,Ωz, P,R) =

∫

α∈Vo

p(α)dα, (7)

whereVo is the region of fading gains in the fading space
[4] such thatI (α, γ, P,Ωz) < R. The regionVo is lim-
ited by an outage boundaryBo(γ, P,Ωz , R), defined by
I (α, γ, P,Ωz) = R (Fig. 2).

Definition 1: We defineαb,o by the magnitude of the inter-
section between the outage boundary and the axisαb. More
precisely,I

(

α|αi=0,i6=b,αb=αb,o
, γ, P,Ωz

)

= R.
Definition 2: We defineαe as the value of the components

of the intersection between the outage boundary and the line
α1 = . . . = αB (also known as theergodic line). More
precisely,I

(

α|αi=αe,i∈[1,...,B], γ, P,Ωz

)

= R.
In the remainder of the paper, we denote the points
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α|αi=0,i6=b,αb=αb,o
by αb,o andα|αi=αe,i∈[1,...,B] by αe. The

defined points are illustrated in Fig. 2 forB = 2.
In the following proposition, we determine a sufficient

condition for the pointsαb,o to have the same magnitude.

Proposition 1: On a BF channel withB = 2, with a dis-
crete input alphabet and with linear precoding, the magnitudes
{αb,o, b = 1, 2} are equal if the constellation is invariant under
a rotation of90 ◦ and the precoding matrix is orthogonal.
On a BF channel withB > 2, with a discrete input alpha-
bet and with linear precoding, the magnitudes{αb,o, b =
1, . . . , B} are equal if the constellation is invariant under a
cyclic shift of the components of the points of the constellation
and the precoding matrix is an orthogonal circulant matrix.

Proof: The points{αb,o, b = 1, . . . , B} correspond to the
case that all fading gains are zero, except one, whose value is
the scaling factor of the projection of the multidimensional
constellation on the b-th coordinate axisx(b), so that the
mutual information between theX and Y is equal to the
spectral efficiencyBR. In other words, if the projection of
the multidimensional constellation on each coordinate axis
yields the same set of points, then the magnitudes of the points
{αb,o, b = 1, . . . , B} are equal.

First, we restrict our attention to the case thatB = 2.
Consider the constellation pointz(i) = (u(i)(1), u(i)(2)) ∈
Ωz. The projection of the multidimensional constellation on
each coordinate axis yields the same set of points if for
each pointz(i), the points z(j) = (u(j)(1), u(j)(2)) and
z(q) = (u(q)(1), u(q)(2)) exist, i, j, q ∈ [1, . . . , 2m]; j, q 6= i,
so that

{

cos(θ)u(i)(1)− sin(θ)u(i)(2) = sin(θ)u(j)(1) + cos(θ)u(j)(2)

sin(θ)u(i)(1) + cos(θ)u(i)(2) = cos(θ)u(q)(1)− sin(θ)u(q)(2).

In other words,x(i)(1) = x(j)(2) and x(i)(2) = x(q)(1),
where x(i),x(j) and x(q) are the corresponding points of
z(i), z(j) and z(q) in Ωx. It can be easily verified that this
is always fulfilled if

{

(u(i)(1), u(i)(2)) = (u(j)(2),−u(j)(1))
(u(i)(1), u(i)(2)) = (−u(q)(2), u(q)(1)),

or in other words, the constellation is invariant under a rotation
of π/2, which proves what was claimed.

Now consider the case thatB > 2. Consider theB-
dimensional constellationΩz that containsM points. When
z belongs toΩz , then alsoz(1), . . . , z(B−1) belong toΩz,
wherez(b) is obtained fromz by a b-fold upward cyclic shift
of the components ofz: z(b) = Cbz, whereC is obtained as a
cyclic shift to the right of the columns of theB ×B identity
matrix. Note that the number of constellation points does not
need to be a multiple ofB: a subset of the constellation may
consist of an arbitrary number of constellation points of the
type [z, z, . . . , z]T which remain invariant under a cyclic shift.

Consider an orthogonal circulantB × B precoding matrix
P . Therefore,P = CPCT (a circulant matrix remains the
same when applying a left cyclic shift to the columns and an
upward cyclic shift to the rows). The transformation ofz(b) is

Pz(b) = PCbz = (CPCT )Cbz = . . . = CbPz = x(b), (8)

where we exploit thatC is an orthogonal matrix.
Consider the matrix

(

x,x(1), . . . ,x(B−1)
)

. As the(i+1)-th
row is obtained as a cyclic shift to the left of thei-th row, the
set of components in a row is the same for each row. A con-
stellation point inΩz of the type(z, z, ..., z)T is transformed
into a constellation point inΩx of the type(x, x, ..., x)T . We
conclude that the projection of the constellationΩx on any of
the coordinate axes yields the same set of points.
In the remainder of this paper, it is assumed that the con-
stellation used at the transmitter fulfils Prop. 1. The mag-
nitudes {αb,o, b = 1, . . . , B} are then simply denoted by
αo, and the pointsαb,o by αo. This also means that the
projection ofΩx on either coordinate axes yields the same
set of points, which we denote bySp, where p stands for
projection. Multidimensional constellations fulfilling Prop. 1
have an interesting property:I (X(b);Y (b)|αb = α, γ) does
not depend onb. As a consequence, we represent this mutual
information byISp

(

α2γ, P,Ωz

)

.
From Eq. (7), it is clear that the outage probability can be

upper bounded byPup corresponding to a boundaryBup, outer
boundingBo(γ, P,Ωz , R):

Pup =

∫

α∈Vup

p(α)dα, (9)

whereVup is the region limited byBup. In [6], a boundary
with a simple shape outer boundingBo(γ, P,Ωz , R) was
determined, which is then much easier to optimize. A surface
in the fading space,U(α) = 0, outer boundsBo(γ, P,Ωz, R)
if and only if

I (α, γ, P,Ωz) ≥ R, for all α satisfyingU(α) = 0. (10)

Here, the new channel equation, Eq. (5), is used. By showing
that for all α satisfyingU(α) = 0, the constellationΩt is
distorted in such a way thatI(T;Y|α, γ) ≥ BR, it is proved
thatU(α) = 0 outer boundsBo(γ, P,Ωz, R).

For example, for generalB and for high instantaneous SNR,
it is proved in [6] that aB-hypersphere touching the outage
boundary on the axes of the fading space, hence with radius
αo, outer boundsBo(γ, P,Ωz , R). A B-hypersphereU(α) =
0 is a generalization of a sphere toB dimensions,

U(α) =

B
∑

b=1

α2
b − α2

o. (11)

The proof was based on the approximation of the mutual
informationI(T;Y|α, γ) at high SNR [11], [14]

I(T;Y|α, γ) ≈ m− 2
Kπ

2md2min(α)
Q(dmin(α)

√

γ/2), (12)

wheredmin(α) is the minimal distance of the constellation
Ωt and K is the number of pairs of points at minimum
distance in the constellationΩt. The SNR considered in [11],
[14] is E[|t2|]

E[|w2|] = γ|α|2. Because only the fading gains on
the hypersphere (11) are considered, we have|α|2 = α2

o.
From the definition ofαo (Def. 1), γα2

o is constant, so that
I(T;Y|α = αo, γ) = ISp

(

α2
oγ, P,Ωz

)

= BR. For example,

in Fig. 3, we show the mutual information
ISp(α2γ,P,Ωz)

B

corresponding withΩz = 8-R2. It is clear thatγα2
o is between
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Fig. 3. The mutual informationI (α = αo, γ, P ) =
ISp (α

2

oγ,P)
B

corre-
sponding withΩz = 8-R2 is shown for each instantaneous SNRγα2

o. The
rateR = 0.9 is achieved forα2

oγ ∈ [8, 14] dB, depending on the rotation
angleθ.

8 dB and14 dB, depending on the rotation angleθ. Two SNR
regimes are visible in the mutual information, one for high
SNR and one for low SNR, in which the optimal rotation
angles are different. The appropriate regime depends on the
considered rateR. So limiting the analysis ofI(T;Y|α, γ)
to the high SNR regime, as in Eq. (12), is not sufficient in
general. Therefore, we provide an additional proof for low
SNR in the next section.

IV. A N UPPERBOUND ON THE OUTAGE PROBABILITY

Here, we show that also for low instantaneous SNR (γ|α|2),
the outage boundary is outer bounded by the hypersurface of
a B-hypersphere touching it atαo. Note thatγ|α|2 → 0 if
and only if γα2

b → 0, ∀b = 1, . . . , B.
Proposition 2: On a BF channel at low instantaneous SNR,

with a discrete input alphabet and with linear precoding, the
outage boundaryBo(γ, P,Ωz , R) is outer bounded by the
hypersurface of theB-hypersphereα2

1 + α2
2 + . . .+ α2

B = α2
o

touching it at the axes of the fading space.
Proof: Consider the mutual informationI (α, γ, P ) of the

constellationΩt, given the fading gainsα (Eq. (6)) [8]:

I (α, γ, P,Ωz) =
m

B
−

2−m

B

∑

x∈Ωx

Ey|x [log2 (f(α,Ωx,y))] ,

where f(α,Ωx,y) =
∑

x′∈Ωx
eγ(d

2(y,α·x)−d2(y,α·x′)) and
d2(v,u) =

∑B

b=1 |v(b)− u(b)|2. The expectationEy|x can
be replaced by an expectation over the noise,Ew, w(b) ∼
N (0, 1/(2γ)). The argument of the exponential functions can
be simplified, so that

I (α, γ, P,Ωz) =
m

B
−

2−m

B

∑

x∈Ωx

Ew [log2 (f(α,Ωx,w))] ,

wheref(α,Ωx,w) =
∑

x′∈Ωx
e−γd2(α·x,α·x′)+

∑B
b=1

f2(b) and
f2(b) = 2γw(b)αb(x(b) − x′(b)). This expression can be
further simplified by approximating the exponential functions
and logarithms by their respective Taylor series for small
γα2

b , ∀b = 1, . . . , B. Next, the expectation of the expression

over the random vectorw can be replaced by an expectation
overγw, whereγw ∼ N (0, γ

2 I) (I is the identity matrix) for a
fixed γ. Therefore, we can drop all terms that are proportional
to Eγw(b)[γw(b)], ∀b, and replaceEγw(b)

[

(γw(b))2
]

in all
terms proportional toEγw(b)

[

(γw(b))2
]

by γ
2 . Now, after

some calculus,we obtain

I (α, γ, P,Ωz) =
γ
∑

b α
2
bV ar(Xb)

Blog(2)
+

B
∑

b=1

o(γα2
b),

whereV ar(X(b)) is the variance of theb-th component of the
points of constellationΩx. The validity of this approximation
for small instantaneous SNR has been verified numerically.
As the projection ofΩx on either coordinate axis yields
the same set of points, this variance is independent ofb.
Hence, for small instantaneous SNR, the mutual information
remains constant for the set of fading points where

∑B

b=1 α
2
b

is constant. By the definition ofαo, it is clear that for low
SNR, the outage boundary coincides with the hypersurface of
the B-hypersphere

∑B

b=1 α
2
b = α2

o.
It is now proved that in both SNR regimes, the outage

boundary is outer bounded by the consideredB-hypersphere.
This outer boundary corresponds with an upper bound on the
outage probability. Minimizing this upper bound is simply
achieved by minimizingα2

o. Summarizing, the optimal rotation
angles are different in both SNR regimes (Fig. fig: high SNR),
but are obtained with the same optimization procedure, which
is therefore valid for all spectral efficiencies.

V. A PPLICATION TO COOPERATIVE COMMUNICATIONS

We denote the outage probability optimized above by
Pout,ptp(γ), where ptp stands for point-to-point. The op-
timization of the upper bound is covered in [6] and not
repeated here. Summarizing, it consist of choosingP so that

α2
o =

I
−1

Sp
(BR,P,Ωz)

γ
is minimized. The mutual information

ISp
(.) only concerns one subchannel, so that its evaluation

does not require much computational effort.
We apply Prop. 2 to cooperative communications [15],

[9], [10]. Consider for example the relay channel, the most
elementary example of a cooperative network. In the case
of coded cooperation [9], the relay (R) decodes the message
received from the source (S), and then transmits additional
parity bits, related to the message, to the destination (D)3.
The transmission of a codeword is organized in two frames
which form together one block. In the first frame of a block,
S broadcasts the first part of the codeword to R and D. In the
second frame, R cooperates and sends additional parity bitsif
it is able to decode the transmission of S in the first frame.
Hence, two cases are distinguished, depending on whether R
is able to decode the message from S. We denote the case that
R can decode the message from S byc1 and the other case by
c2. The S-R channel, S-D channel, and the R-D channel are
modelled as memoryless with additive white Gaussian noise
and multiplicative real-valued fading (αSR, αSD and αRD

respectively) which is Rayleigh distributed. The average SNRs

3We do not claim the optimality of coded cooperation on relay channels,
which only illustrates the applicability of our work to cooperative channels.
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are denoted byγSR, γSD andγRD, respectively. We consider
the simple case whereγSD = γRD = γul, whereul stands for
uplink, and the length of both frames are equal. The fading
gains are constant during at least 2 frames. Hence, the outage
probabilityPout,rel is

Pout,rel(γul, γSR) = P (c1)P (out|c1) + P (c2)P (out|c2)
(13)

In c1, the most favourable case, D receives both parts of the
codeword with constant but independent fading gains, as in a
point-to-point BF channel withB = 2, so thatP (out|c1) =
Pout,ptp|α1=αSD ,α2=αRD

(γul). Hence, the precoding matrix
minimizing Pout,ptp(γ) also minimizesP (out|c1)(γul). Fur-
thermore,P (c1) = 1−P (c2) andP (c2) is the probability that
R cannot decode the first part of the codeword, affected by
αSR, so thatP (c2) = P (I (α|α2=0,α1=αSR

, γ, P,Ωz) < R).
Recall that the optimization ofPout,ptp(γ) involves the max-
imization of the mutual information atαo, so that this also
minimizesP (c2) and thus maximizesP (c1). In c2, D only
receives the first part of the codeword, affected byαSD, so
that the same reasoning as forP (c2) applies, replacingαSR

by αSD, so that alsoP (out|c2) is minimized. The extension
to B − 1 relays forB > 2 is straightforward.

Summarizing, the precoding matrix minimizingPout,ptp(γ)
also minimizesPout,rel(γul, γSR), if γSD = γRD = γul.
This is illustrated in Fig. 4, whereγSR = γul + 5dB (other
interuser channel conditions yield the same conclusions).The
outage probability corresponding to discrete input alphabets
is minimized because it approaches the outage probability
corresponding to an i.i.d. continuous Gaussian input alphabet
very closely.
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Fig. 4. The outage probabilities of the BF relay channel withreal inputs
are shown for a fixed spectral efficiencyR = 0.9 bpcu. The input alphabet
is derived fromΩz = 8-R2 or Ωz = 4-R2 .

In the case thatγSD 6= γRD, the optimization procedure has
to be slightly modified. Denoting asb′ the index of the sub-

channel with the smallest average SNR, then the hypersurface
now only touches the outage boundary atαb′,o, so that only
this magnitude should be optimized.
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[8] A. Guillén i Fàbregas and G. Caire, “Multidimensionalcoded modula-
tion in block-fading channels,”IEEE Tr. on Inf. Theory, vol. 54, no. 5,
pp. 2367-2372, 2008.

[9] T.E. Hunter,Coded cooperation: a new framework for user cooperation
in wireless systems, Ph.D. thesis, University of Texas at Dallas, 2004.

[10] J.N. Laneman, D. Tse, and G.W. Wornell, “Cooperative diversity in
wireless networks: Efficient protocols and outage behavior,” IEEE Tr.
on Inf. Theory, vol. 50, no. 12, pp. 3062-3080, Dec. 2004.

[11] A. Lozano, A. M. Tulino, and S. Verdú, “Optimum power allocation for
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Digital Subscriber Lines,”Proc. Intern. Conf. on Comm. (ICC), Beijing,
China, May 2008.

[15] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity.
Part I. System description. Part II. Implementation aspects and perfor-
mance analysis,”IEEE Tr. on Comm., vol. 51, no. 11, pp. 1927-1948,
Nov. 2003.


	Introduction
	A new channel equation for BF channels
	Method to Upper Bound Outage Probability
	An Upper Bound on the Outage Probability
	Application to Cooperative Communications
	References

