118 research outputs found

    Interference Mitigation in Large Random Wireless Networks

    Full text link
    A central problem in the operation of large wireless networks is how to deal with interference -- the unwanted signals being sent by transmitters that a receiver is not interested in. This thesis looks at ways of combating such interference. In Chapters 1 and 2, we outline the necessary information and communication theory background, including the concept of capacity. We also include an overview of a new set of schemes for dealing with interference known as interference alignment, paying special attention to a channel-state-based strategy called ergodic interference alignment. In Chapter 3, we consider the operation of large regular and random networks by treating interference as background noise. We consider the local performance of a single node, and the global performance of a very large network. In Chapter 4, we use ergodic interference alignment to derive the asymptotic sum-capacity of large random dense networks. These networks are derived from a physical model of node placement where signal strength decays over the distance between transmitters and receivers. (See also arXiv:1002.0235 and arXiv:0907.5165.) In Chapter 5, we look at methods of reducing the long time delays incurred by ergodic interference alignment. We analyse the tradeoff between reducing delay and lowering the communication rate. (See also arXiv:1004.0208.) In Chapter 6, we outline a problem that is equivalent to the problem of pooled group testing for defective items. We then present some new work that uses information theoretic techniques to attack group testing. We introduce for the first time the concept of the group testing channel, which allows for modelling of a wide range of statistical error models for testing. We derive new results on the number of tests required to accurately detect defective items, including when using sequential `adaptive' tests.Comment: PhD thesis, University of Bristol, 201

    On Coding for Reliable Communication over Packet Networks

    Full text link
    We present a capacity-achieving coding scheme for unicast or multicast over lossy packet networks. In the scheme, intermediate nodes perform additional coding yet do not decode nor even wait for a block of packets before sending out coded packets. Rather, whenever they have a transmission opportunity, they send out coded packets formed from random linear combinations of previously received packets. All coding and decoding operations have polynomial complexity. We show that the scheme is capacity-achieving as long as packets received on a link arrive according to a process that has an average rate. Thus, packet losses on a link may exhibit correlation in time or with losses on other links. In the special case of Poisson traffic with i.i.d. losses, we give error exponents that quantify the rate of decay of the probability of error with coding delay. Our analysis of the scheme shows that it is not only capacity-achieving, but that the propagation of packets carrying "innovative" information follows the propagation of jobs through a queueing network, and therefore fluid flow models yield good approximations. We consider networks with both lossy point-to-point and broadcast links, allowing us to model both wireline and wireless packet networks.Comment: 33 pages, 6 figures; revised appendi

    Radio Access for Ultra-Reliable Communication in 5G Systems and Beyond

    Get PDF

    Delay Performance of MISO Wireless Communications

    Full text link
    Ultra-reliable, low latency communications (URLLC) are currently attracting significant attention due to the emergence of mission-critical applications and device-centric communication. URLLC will entail a fundamental paradigm shift from throughput-oriented system design towards holistic designs for guaranteed and reliable end-to-end latency. A deep understanding of the delay performance of wireless networks is essential for efficient URLLC systems. In this paper, we investigate the network layer performance of multiple-input, single-output (MISO) systems under statistical delay constraints. We provide closed-form expressions for MISO diversity-oriented service process and derive probabilistic delay bounds using tools from stochastic network calculus. In particular, we analyze transmit beamforming with perfect and imperfect channel knowledge and compare it with orthogonal space-time codes and antenna selection. The effect of transmit power, number of antennas, and finite blocklength channel coding on the delay distribution is also investigated. Our higher layer performance results reveal key insights of MISO channels and provide useful guidelines for the design of ultra-reliable communication systems that can guarantee the stringent URLLC latency requirements.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Multiple Access for Massive Machine Type Communications

    Get PDF
    The internet we have known thus far has been an internet of people, as it has connected people with one another. However, these connections are forecasted to occupy only a minuscule of future communications. The internet of tomorrow is indeed: the internet of things. The Internet of Things (IoT) promises to improve all aspects of life by connecting everything to everything. An enormous amount of effort is being exerted to turn these visions into a reality. Sensors and actuators will communicate and operate in an automated fashion with no or minimal human intervention. In the current literature, these sensors and actuators are referred to as machines, and the communication amongst these machines is referred to as Machine to Machine (M2M) communication or Machine-Type Communication (MTC). As IoT requires a seamless mode of communication that is available anywhere and anytime, wireless communications will be one of the key enabling technologies for IoT. In existing wireless cellular networks, users with data to transmit first need to request channel access. All access requests are processed by a central unit that in return either grants or denies the access request. Once granted access, users' data transmissions are non-overlapping and interference free. However, as the number of IoT devices is forecasted to be in the order of hundreds of millions, if not billions, in the near future, the access channels of existing cellular networks are predicted to suffer from severe congestion and, thus, incur unpredictable latencies in the system. On the other hand, in random access, users with data to transmit will access the channel in an uncoordinated and probabilistic fashion, thus, requiring little or no signalling overhead. However, this reduction in overhead is at the expense of reliability and efficiency due to the interference caused by contending users. In most existing random access schemes, packets are lost when they experience interference from other packets transmitted over the same resources. Moreover, most existing random access schemes are best-effort schemes with almost no Quality of Service (QoS) guarantees. In this thesis, we investigate the performance of different random access schemes in different settings to resolve the problem of the massive access of IoT devices with diverse QoS guarantees. First, we take a step towards re-designing existing random access protocols such that they are more practical and more efficient. For many years, researchers have adopted the collision channel model in random access schemes: a collision is the event of two or more users transmitting over the same time-frequency resources. In the event of a collision, all the involved data is lost, and users need to retransmit their information. However, in practice, data can be recovered even in the presence of interference provided that the power of the signal is sufficiently larger than the power of the noise and the power of the interference. Based on this, we re-define the event of collision as the event of the interference power exceeding a pre-determined threshold. We propose a new analytical framework to compute the probability of packet recovery failure inspired by error control codes on graph. We optimize the random access parameters based on evolution strategies. Our results show a significant improvement in performance in terms of reliability and efficiency. Next, we focus on supporting the heterogeneous IoT applications and accommodating their diverse latency and reliability requirements in a unified access scheme. We propose a multi-stage approach where each group of applications transmits in different stages with different probabilities. We propose a new analytical framework to compute the probability of packet recovery failure for each group in each stage. We also optimize the random access parameters using evolution strategies. Our results show that our proposed scheme can outperform coordinated access schemes of existing cellular networks when the number of users is very large. Finally, we investigate random non-orthogonal multiple access schemes that are known to achieve a higher spectrum efficiency and are known to support higher loads. In our proposed scheme, user detection and channel estimation are carried out via pilot sequences that are transmitted simultaneously with the user's data. Here, a collision event is defined as the event of two or more users selecting the same pilot sequence. All collisions are regarded as interference to the remaining users. We first study the distribution of the interference power and derive its expression. Then, we use this expression to derive simple yet accurate analytical bounds on the throughput and outage probability of the proposed scheme. We consider both joint decoding as well as successive interference cancellation. We show that the proposed scheme is especially useful in the case of short packet transmission

    PERFORMANCE LIMITS FOR ENERGY-CONSTRAINED COMMUNICATION SYSTEMS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Methods for Massive, Reliable, and Timely Access for Wireless Internet of Things (IoT)

    Get PDF

    LEGOStore: A Linearizable Geo-Distributed Store Combining Replication and Erasure Coding

    Full text link
    We design and implement LEGOStore, an erasure coding (EC) based linearizable data store over geo-distributed public cloud data centers (DCs). For such a data store, the confluence of the following factors opens up opportunities for EC to be latency-competitive with replication: (a) the necessity of communicating with remote DCs to tolerate entire DC failures and implement linearizability; and (b) the emergence of DCs near most large population centers. LEGOStore employs an optimization framework that, for a given object, carefully chooses among replication and EC, as well as among various DC placements to minimize overall costs. To handle workload dynamism, LEGOStore employs a novel agile reconfiguration protocol. Our evaluation using a LEGOStore prototype spanning 9 Google Cloud Platform DCs demonstrates the efficacy of our ideas. We observe cost savings ranging from moderate (5-20\%) to significant (60\%) over baselines representing the state of the art while meeting tail latency SLOs. Our reconfiguration protocol is able to transition key placements in 3 to 4 inter-DC RTTs (<< 1s in our experiments), allowing for agile adaptation to dynamic conditions
    corecore