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Summary

The presence of constraints on the availability and usage of energy impacts the

performance of communication systems, characterized in terms of metrics such

as throughput, reliability, and delay. This impact may be significant when the

transmitter and/or receiver does not have a dedicated power source and relies on

energy harvesting for its operation. In this dissertation, we formulate and analyze

performance limits for three different energy-constrained communication systems,

and draw meaningful design insights for each of these three different systems.

First, we consider a polling based multiaccess system where energy-constrained

nodes employ automatic repeat request (ARQ) and transmit data over a noisy

communication channel. The goal here is to reduce the average packet delay

and the average energy usage, relative to an uncoded system, through joint use

of forward error correction (FEC) codes and ARQ. We show that reducing the

average service time via FEC codes is sufficient to reduce the average packet

delay. Further, we show that a reduction in average service time translates into an

equal amount of percentage savings in energy usage. Additionally, we characterize

the fundamental limit on the percentage reduction in average service time using

best possible FEC codes and present useful system design guidelines.

Secondly, we consider an energy harvesting transmitter which uses harvested

energy for transmission of data packets. The data and energy arrivals are random,

and an exact system analysis is challenging because the data queue dynamics are

influenced jointly by the energy arrival process and the data service process. We

formulate a two stage virtual queueing system to obtain approximate closed-form

expressions for the average packet delay under different energy arrival statistics.

The derived results are shown to be robust via comparison with Monte-Carlo

simulation results for the physical queueing system.

Thirdly, we consider an energy harvesting receiver which uses the received

signal to simultaneously harvest energy as well as to decode the information em-

xi



bedded in the signal. For a given receiver energy requirement, the goal is to obtain

the fundamental limit on the information transfer rate. When the receiver energy

buffer is small, the energy content in the signal should be sufficiently regular to

avoid power outage. Here, we investigate achievable information rates under three

different classes of constrained codes for enabling real-time energy transfer. The

first class of constrained codes, called the constant subblock-composition codes,

require that each subblock within every codeword has the same composition. The

second class of constrained codes, called the subblock energy-constrained codes,

allows different subblocks to have different composition while ensuring sufficient

energy within each subblock. The third class of constrained codes ensures that

each codeword carries sufficient energy within a sliding time window. For each

of these three classes of constrained codes, we analyze the capacity and highlight

the tradeoff between delivery of sufficient energy and achieving high information

transfer rates.

xii
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Chapter 1

Introduction

Reliable communication over noisy channels was shown possible by Shannon [1]

for rates upper bounded by the channel capacity. This could be achieved by using

asymptotically long codewords. However, a delay-constrained communication sys-

tem may not permit the use of long codewords [2] because of high encoding and

decoding delays. In this scenario, many insights offered by classical information

theory do not apply directly. Towards resolving this issue, researchers have aimed

to quantify the capacity for fixed blocklengths [3], [4], and have also explored al-

ternative engineering methods like the automatic repeat request (ARQ) protocol

at the data link layer where retransmissions are requested for packets in error [5].

Another practical issue not adequately addressed by classical information theory

is that of random and bursty data arrival at the transmitter [2]. In this case, the

queueing behavior of the arriving data packets may be analyzed together with

characterization of information theoretic limits [6], and investigations made under

packet delay constraints [7].

Constraints on the availability and usage of energy may also critically affect

the performance of communication systems. For instance, a wireless micro-sensor

node is typically battery operated and hence energy is a precious resource due to

1



Chapter 1. Introduction

finite energy storage capability at the node [8]. When the cost of regularly replac-

ing the batteries is high or when sensors operate in environments that rule out

frequent energy replenishment, the energy constraint directly affects the sensor’s

lifetime and thus entails the implementation of energy-efficient algorithms and

protocols [9]. In this regard, the use of energy harvesting [10] holds the promise of

virtually perpetual node operation, where energy is harnessed from either natural

resources (such as sun or wind) or man-made phenomena (such as wireless energy

transfer). However, realizing this potential requires judicious design optimization

due to uncertainty in the energy arrival process, both in terms of arrival instances

and the amount of energy harvested [11].

In this thesis, we study achievable limits on performance metrics, such as

throughput and delay, for energy-constrained communication systems. This in-

troductory chapter provides an outline for the thesis and is arranged as follows.

Section 1.1 gives the motivation for the study. Section 1.2 provides a mapping of

the different problem scenarios investigated in the thesis to the respective chap-

ters. The thesis contributions are detailed in Section 1.3 while Section 1.4 provides

an outline of different chapters in the thesis.

1.1 Motivation

In this section, we motivate the study of performance limits for the three different

energy-constrained communication systems analyzed in this thesis.

• First, we consider a system where energy-constrained nodes are polled for

transmission by a central server, and the link layer at each node employs

automatic repeat request (ARQ) to ensure error free delivery of packets.

On noisy communication channels, packets errors may significantly increase

the delay due to retransmissions [12]. In this scenario, quantifying the mini-

2



Chapter 1. Introduction

mum achievable packet delay helps to benchmark practical design approaches

towards managing delay sensitive applications. Although the packet error

probability (PEP), and hence the number of retransmissions, can be reduced

by employing physical layer forward error correction (FEC) codes (also called

channel codes) [13], the use of FEC codes results in addition of redundant

bits which increase the packet transmission time. A small number of re-

dundant bits may not sufficiently reduce the PEP, while a large number of

redundant bits may increase the packet delay due to the high transmission

time. This observation naturally leads to the question of finding the appro-

priate coding scheme for minimizing delay, and quantifying its impact on the

average energy usage for packet transmission. We address these questions

in this thesis and quantify fundamental performance limits using the best

possible FEC codes.

• Secondly, we consider an energy harvesting transmitter where the harvested

energy is used for transmission of data packets. The data packets arrive

randomly and wait in a queue for accumulation of sufficient energy and

for service completion of previously arrived packets. In this scenario, the

problem of quantifying the exact average packet delay is hard because the

data queue dynamics are influenced jointly by the energy arrival process

and the data service process. The difficulty in obtaining an exact delay

expression raises questions on selection criteria of system design parameters

which will ensure that the average packet delay is less than a given threshold.

In this thesis, we present a closed-form expression for the average packet

delay which is shown to be exact when the service time is negligible, and

robust even for relative high values of the average service time. We derive

results for single-source energy harvesting, and extend the results for the
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useful case of multi-source energy harvesting.

• Thirdly, we consider the problem of simultaneous energy and information

transfer to an energy harvesting receiver. Here, the receiver uses the same

received signal both for decoding information and for harvesting energy,

which is employed to power its circuitry. The tradeoff between reliable com-

munication and delivery of energy at the receiver was first characterized

by Varshney [14] using a general capacity-power function, where transmit-

ted codewords were constrained to have average received energy exceed a

threshold. However, in practical applications, imposing only an average

power constraint is not sufficient; we also need to regularize the transferred

energy content. This is because a codeword satisfying the average power

constraint may still cause power outage at the receiver if the energy content

in the codeword is bursty, since the receive energy buffer with a relatively

small storage capacity may drain during intervals with low signal energy.

This scenario raises the following questions: (i) What structure should we

impose on transmitted codewords to ensure that the receiver does not suffer

from power outage. (ii) How do we characterize achievable information rates

for a given set of codeword constraints. (iii) What is the penalty in rate due

to codeword constraints providing real-time energy transfer relative to the

case where only the average received energy per codeword is constrained to

exceed a threshold.

One approach to providing real-time energy transfer is to divide each code-

word into smaller subblocks and then constrain each subblock to carry suf-

ficient energy. Another approach is to ensure that each codeword carries

sufficient energy within a moving time window. In this thesis, we investi-

gate achievable information rates under three different classes of constrained
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codes for enabling real-time energy transfer. For each of these three classes

of constrained codes, we analyze the capacity and highlight the tradeoff be-

tween delivery of sufficient energy and achieving high information transfer

rates.

1.2 Thesis Overview

In this section, we provide a mapping of the different communication systems

analyzed in this thesis to the different chapters in this thesis.

1. First, we consider a multiaccess system where energy-constrained nodes em-

ploy automatic repeat request and transmit data over a noisy communication

channel. This system is analyzed in detail in Chapter 3, where we investi-

gate the reduction in delay and energy usage via FEC codes. Further, we

characterize the fundamental limit on the percentage reduction in average

service time using best possible error correcting codes.

2. Secondly, in Chapter 4, we consider an energy harvesting transmitter which

uses harvested energy from the environment for transmission of data pack-

ets. The data and energy arrivals are random, and an exact system analysis

is challenging because the data queue dynamics are influenced jointly by

the energy arrival process and the data service process. In Chapter 4, we

formulate a two stage virtual queueing system to obtain closed-form approx-

imate expressions for the average packet delay under different energy arrival

statistics. The derived results are shown to be robust via comparison with

Monte-Carlo simulation results for the physical queueing system.

3. Thirdly, we consider an energy harvesting receiver which uses the received

signal to simultaneously harvest energy as well as to decode the information
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embedded in the signal. For a given receiver energy requirement, the goal

is to obtain the fundamental limit on the information transfer rate. In

this scenario, we propose three different codeword constraints for enabling

real-time energy transfer. The capacity under these three different codeword

constraints is analyzed in Chapter 5, Chapter 6, and Chapter 7, respectively.

• In Chapter 5, we propose the use of constant subblock-composition codes

for providing regular energy content to the receiver. Here, the code-

words are partitioned into smaller subblocks, and each subblock is con-

strained to have the same composition. This composition is chosen to

maximize the information rate while ensuring that sufficient energy is

carried within every subblock duration.

• In Chapter 6, we propose the use of subblock energy-constrained codes

which allows different subblocks to have different composition while still

carrying sufficient energy within each subblock.

• In Chapter 7, we consider a third class of codeword constraint which

requires that each codeword carries sufficient energy within a sliding

time window.

For each of the above three classes of constrained codes, we provide bounds

on capacity and analyze the tradeoff between delivery of sufficient energy

and achieving high information transfer rates.

1.3 Thesis Contributions

The research contributions on the different communication systems studied in this

thesis are summarized below.
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1.3.1 Reducing delay and energy usage via FEC codes

We consider a polling based multiple access scheme where the link layer employs

Stop-and-Wait ARQ to ensure error free delivery of data packets and study the

impact of FEC codes on the packet delay and energy usage. The main contribu-

tions in this thesis, related to use of FEC codes for reducing the packet delay and

energy usage in such a polling based system, are summarized as follows:

1. We harness the average waiting time expression for our communication

model to prove that a coded system results in lower average packet delay

compared to an uncoded system if it has lower average service time (AST)

relative to the uncoded system. We also give explicit sufficient conditions

comparing any two channel coding schemes, under which the coding scheme

with lower AST also achieves lower average packet delay. When the queue

switching time is negligible, we show that the percentage reduction in av-

erage packet delay is at least as much as the percentage reduction in AST

through the use of channel coding.

2. We show that when the energy per transmitted bit is kept constant, the ratio

of average transmit energy for the coded and uncoded system is same as the

ratio of the AST for the coded and uncoded system. Thus, the percentage

reduction in AST due to coding translates into an equal percentage reduction

in average transmit energy.

3. We show that the reduction in AST using channel coding for large packet

lengths can be bounded as a function of the reduction in AST for smaller

packet lengths. This helps to quantify the reduction in AST through channel

coding for arbitrarily large packet sizes.

4. We provide several bounds on the reduction in AST using the best possible
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FEC codes. Further, we give a necessary condition when FEC will help to

reduce AST and a sufficient condition when FEC will not help. The search

for best possible codes provides the insight that for Gaussian noise channels

with hard-decision decoding, a relatively high PEP (∼ 10−2) obtained us-

ing as high a coding rate as possible, results in AST which is close to the

smallest achievable AST. Additionally, it is observed that the performance

of a bounded distance decoder is sufficiently close to that of the optimum

maximum likelihood decoder.

5. We show that the packet delay can be further reduced through opportunistic

combining and joint encoding of data packets. This is shown by using in-

formation theoretic results which assert that the probability of packet error

can be reduced by increasing the packet length.

1.3.2 Packet delay analysis at an energy harvesting trans-

mitter

Here, we consider an energy harvesting transmitter which uses the harvested en-

ergy for the transmission of data packets. The energy arrival process is modeled

as a discrete random process and data is assumed to arrive randomly in the form

of fixed sized packets. Since the energy arrival process and the data service pro-

cesses jointly impact the data queue dynamics, the characterization of the average

packet delay is challenging. In this thesis we derive closed-form expressions for

the average packet delay and the probability of data loss due to buffer overflow

through the use of virtual queues. The main contributions are summarized below:

1. We formulate a virtual queueing system which decouples the wait stages for

the energy arrival process and the service process. This decoupling enables

us to obtain closed-form expressions for the average packet delay and the
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probability of data packet loss due to buffer overflow.

2. We derive the average packet delay with single-source energy harvesting in

three different settings: (i) Unit-energy arrivals where each energy arrival

brings energy which is sufficient to transmit one data packet. (ii) Fractional-

energy arrivals where each energy arrival brings only a fraction of the energy

required to transmit one data packet. (iii) Bulk-energy arrivals where each

energy arrival brings sufficient energy for transmission of multiple data pack-

ets.

The unit-energy arrivals provide a simple base-line setting where the average

waiting time for energy arrival is derived by obtaining steady-state probabil-

ities of a one-dimensional Markov chain which models the evolution of data

and energy buffer occupancy. On the other hand, the analysis of fractional

and bulk energy arrival cases is more challenging, where the buffer occu-

pancy dynamics has to be modeled as a two-dimensional Markov chain. In

each of the case of fractional and bulk energy arrivals, a close examination of

the relation among the steady-state probabilities reveals a certain structure

which we exploit to obtain the exact expression for the average waiting time

for energy arrival.

3. We extend the approach used for analyzing fractional and bulk-energy ar-

rivals to the useful case of multi-source energy harvesting. Here, the energy is

harvested from two independent sources, with potentially different quantity

and rate of energy arrival from each source.

4. We use the closed-form expressions for the average packet delay to analyze

the maximum throughput which the system can support under an average

delay constraint, and discuss the trade-off between throughput and system

cost.
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5. The derived closed-form expressions for the average packet delay and the

probability of data loss are shown to be exact when the service time is

negligible. The Monte Carlo simulation results for the physical queueing

system are compared with the corresponding closed-form expressions for the

virtual queueing systems. The derived expressions are shown to be robust

even when the service time is increased up to sixty percent of the average

packet delay.

1.3.3 Constrained codes for simultaneous energy and in-

formation transfer

As a third energy-constrained communication system, we consider an energy-

harvesting receiver that uses the same received signal both for decoding infor-

mation and for harvesting energy, which is employed to power its circuitry. In this

thesis, we investigate achievable information rates for three different proposed

classes of constrained codes for enabling real-time energy transfer. The first class

of constrained codes, called constant subblock-composition codes (CSCCs), require

that each codeword is partitioned into smaller subblocks where each subblock

has the same composition and carries sufficient energy. The second class of con-

strained codes, called subblock energy-constrained codes (SECCs), allows different

subblocks to have different composition while ensuring that sufficient energy is

carried within each subblock. The third class of constrained codes ensures each

codeword carries sufficient energy within a sliding time window. Our contributions

for each of these three classes of constrained codes is summarized below.

• Constant Subblock-Composition Codes (CSCCs)

1. Here, each subblock in any given codeword has the same fixed compo-

sition, and this subblock-composition is chosen to maximize the rate
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of information transfer while meeting the energy requirement. In this

thesis, we consider discrete memoryless channels and characterize the

CSCC capacity as a function of the required energy per symbol.

2. We show that CSCC capacity can be computed efficiently by exploiting

certain symmetry properties.

3. For a given energy storage capability at the receiver, we derive a nec-

essary and sufficient condition on the subblock length to avoid power

outage at the receiver for all possible CSCC sequences.

4. Compared to constant composition codes, we quantify the rate loss

incurred due to the additional constraint of restricting all subblocks

within codewords to have the same composition.

5. For a given rate of information transfer, we derive a lower bound for the

error exponent using CSCC in terms of the error exponent for constant

composition codes.

• Subblock Energy-Constrained Codes (SECCs)

1. For this class of constrained codes, different subblocks may have differ-

ent composition while still satisfying the energy constraint per subblock.

In this thesis, we characterize the exact SECC capacity as a function

of the required energy per symbol.

2. We provide a sufficient condition on the subblock length to avoid power

outage at the receiver for all possible SECC sequences.

3. We compare SECC capacity with CSCC capacity, and also provide

different bounds on the SECC capacity.

4. We characterize the random coding error exponent for SECCs.

• Constraining codewords to carry sufficient energy in a sliding time window

11
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1. Here, we assume that the transmitter uses on-off keying where bit one

corresponds to transmission of a high energy signal. The transmitter

uses only those codewords which have at least d ones in a sliding window

of W = d+1 bits. We show that with this constraint, the noiseless code

capacity is achieved by sequences generated from a finite state Markov

machine.

2. We also characterize achievable rates when such constrained codes are

used on the following communication channels:

– Binary Symmetric Channel

– Binary Erasure Channel

– Z-Channel

For each of the three different classes of codeword constraints, we provide

numerical examples and analyze the tradeoff between delivery of sufficient energy

and achieving high information transfer rates.

1.4 Thesis Outline

In this section, we provide an outline of the different chapters in this thesis.

• Chapter 2: Background

In this chapter, we review some basic concepts related to information the-

ory and queueing theory, and present a concise overview of the Pollaczek-

Khinchin formula and the Blahut-Arimoto algorithm. Information theoretic

quantities (such as entropy, mutual information and channel capacity) and

queueing theoretic terms (such as arrival rate, service rate, waiting time, and

packet delay) are defined and discussed briefly. The Pollaczek-Khinchin for-

mula [15] expresses the average waiting time of a packet in a M/G/1 queueing
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system, and is applied in Chapter 4 towards obtaining a closed-form expres-

sion for the average packet delay at an energy harvesting transmitter. The

Blahut-Arimoto algorithm [16],[17] is an iterative algorithm for the capacity

of a discrete memoryless channel, and is applied in Chapter 6 to numerically

compute the capacity of subblock energy-constrained codes. Additionally,

in Section 2.5 of this chapter, we present a detailed literature survey related

to different problems addressed in this thesis.

• Chapter 3: Reducing Delay and Energy Usage Via FEC Codes

In this chapter, we consider a polling based multiaccess system where energy-

constrained nodes employ automatic repeat request (ARQ) and transmit

data over a noisy communication channel. Here, we investigate the reduc-

tion in the average packet delay and the average energy usage, relative to an

uncoded system, through joint use of forward error correction (FEC) codes

and ARQ. We first establish that relative to an uncoded system, it is suffi-

cient to reduce the average service time (AST) using FEC in order to achieve

lower average packet delay. We then show that the percentage reduction in

AST due to coding translates into an equal percentage reduction in average

transmit energy when the energy per coded bit is fixed. Further, we char-

acterize quantify the reduction in AST that can be achieved using the best

possible FEC codes. Additionally, we show that the average packet delay

can be further reduced in certain cases by opportunistically combining and

encoding several packets jointly.

• Chapter 4: Packet Delay Analysis at an Energy Harvesting Transmitter

Consider an energy harvesting transmitter which uses the harvested energy

for transmission of data packets. The data packets arrive randomly and

wait in a queue for accumulation of sufficient energy and for service com-
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pletion of previously arrived packets. Thus, the data queue dynamics are

influenced jointly by the energy arrival process, the data arrival process, and

the data service process. We formulate a two stage virtual queueing system

which decouples the wait stages for the energy arrival process and the service

process. This decoupling helps us to obtain closed-form expressions for the

average packet delay and the probability of data packet loss due to buffer

overflow for different energy arrival statistics. These expressions are used

to determine the maximum throughput under given quality of service (QoS)

constraints. The derived expressions are shown to be exact when the service

time is negligible. Even for relative high values of the average service time,

we show the robustness of these expressions via Monte Carlo simulations.

• Chapter 5: Constant Subblock-Composition Codes

The study of simultaneous information and energy transfer is relevant for

communication from a powered transmitter to a receiver which uses the

same received signal both for decoding information and for extracting en-

ergy to power its circuitry. When the receiver energy buffer is small, the

energy content in the signal should be sufficiently regular to avoid power

outage. In this chapter, we introduce the constant subblock-composition

codes (CSCCs) where codewords are divided into smaller subblocks and all

the subblocks are constrained to have the same composition. This subblock-

composition is chosen to maximize the rate of information transfer while

meeting the energy requirement. For discrete memoryless channels, we es-

tablish the CSCC capacity as a function of the required energy per symbol

at the receiver. Compared to constant composition codes, we quantify the

rate loss incurred due to the additional constraint of restricting all subblocks

within codewords to have the same composition. Further, we derive a lower
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bound for the CSCC error exponent in terms of the error exponent for con-

stant composition codes.

• Chapter 6: Subblock Energy-Constrained Codes

For the application of simultaneous energy and information transfer, we an-

alyze the subblock energy-constrained codes (SECCs) which by definition are

codes which carry sufficient energy in every subblock duration. Compared to

constant subblock-composition codes, the SECCs allow different subblocks

to have different composition and thus achieve higher rates of information

transfer while still meeting the real-time energy requirement. We character-

ize the exact SECC capacity, and also provide different bounds on the SECC

capacity. Further, we characterize and bound the random coding error ex-

ponent for SECCs. We also provide a sufficient condition on the subblock

length to avoid power outage at the receiver for all possible SECC sequences.

• Chapter 7: Codes Satisfying Sliding Window Energy Constraint

We study binary codes in which each codeword is constrained to have at least

d ones in a sliding window of W = d+ 1 consecutive bits. This constraint is

equivalent to having at least d ones between successive zeros, which in turn

defines a Type-1 (d,∞) run-length limited (RLL) code. We consider on-off

keying (bit “1” (resp. bit “0”) is represented by the presence (resp. absence)

of a carrier), where this sliding window constraint is useful for simultaneous

energy and information transfer when the receiver relies on the received

signal to fulfill its real-time power requirements. We give a probabilistic

proof that the noiseless capacity of a (d,∞) RLL code can be achieved by

using a d + 1 state Markovian chain. We also give analytical expressions

for achievable rates when these constrained codes are used on the (i) binary

symmetric channel, (ii) Z-channel and (iii) binary erasure channel.
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Chapter 2

Background

In this chapter, we review some basic concepts related to information theory and

queueing theory, and present mathematical preliminaries which will be used in

the remainder of the thesis. Additionally, in Section 2.5, we present a detailed

literature survey related to the different communication systems analyzed in this

thesis.

2.1 Communication Systems

Source
Encoder

Error Correction
     Encoder

Modulator

Demodulator

 Channel

Error Correction
     Decoder

Source
Decoder

Source

Destination

Figure 2.1: Digital Communication System Block Diagram

A general block diagram of a communication system is shown in Fig. 2.1.

The source of information is an arbitrary message, e.g. a time varying voltage

or a bit stream, which is intended for use by the destination. As pointed out

19



Chapter 2. Background

in [18], information may be intended for transmission from here to there (as in

communication links) or from now to then (as in data storage and retrieval). A

detailed description of each of the blocks in Fig. 2.1 could be found in standard

texts [19], [20]. Here, we provide a quick overview of these basic building blocks.

The source encoder digitizes the data and compresses it to remove redundancy.

The error correction encoder, on the other hand, adds redundancy to provide

robustness against noise and errors which may potentially be introduced by the

communication channel. The modulator has the function of mapping bits to a

channel waveform. The demodulator, error correction decoder, and the source

decoder, perform corresponding reverse operations at the receiver.

The error correction encoding (also referred to as channel encoding [13]) will

be used in Chapter 3 to reduce the probability of message error at the receiver. An

information theoretic view of the communication system is adopted in Chapters 5,

6, and 7, where we derive bounds on achievable rates for reliable communication

to an energy constrained receiver. We next provide a brief overview of information

theory.

2.2 Information Theory

In 1948, Claude E. Shannon published a paper titled “A Mathematical Theory of

Communication” in the Bell Labs Technical Journal [1]. This paper, considered as

one of the most remarkable papers in the history of engineering, laid the ground

work of the scientific discipline, “information theory”. It provides fundamental

limits on operations such as compression and fast reliable data communication.

Although for the first 25 years of its existence, information theory was only consid-

ered a beautiful theory, advancements in device technology in later years enabled

system development to follow information theoretic principles.
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The concept of information is related to the concept of entropy, which is a

measure of uncertainty of a random variable. Formally, the entropy H(X) of a

discrete random variable X, taking values in a finite alphabet X , with probability

mass function PX(x) is defined as

H(X) ,
∑
x∈X

PX(x) log2

1

PX(x)
, (2.1)

where the unit of information is called a bit. For a given x ∈ X , smaller values

of PX(x) result in higher values of log2
1

PX(x)
, and so, the more unlikely the event

X = x is, the more information it contains.

Let PXY (x, y) denote the joint distribution of a pair of discrete random vari-

ables (X, Y ). Then the conditional entropy of random variable X, given random

variable Y , is defined as

H(X|Y ) ,
∑
x,y

PXY (x, y) log2

PY (y)

PXY (x, y)
, (2.2)

where PY (y) =
∑

x∈X PXY (x, y) is the distribution of Y .

The mutual information I(X;Y ) is the relative entropy between the joint dis-

tribution PXY (x, y) and the product distribution PX(x)PY (y), and is defined as

I(X;Y ) ,
∑
x,y

PXY (x, y) log2

PXY (x, y)

PX(x)PY (y)
(2.3)

= H(X)−H(X|Y ). (2.4)

A discrete channel is a system consisting of an input alphabet X , an output

alphabet Y , and a probability transition matrix PY |X(y|x) that expresses the prob-

ability of receiving symbol y given that symbol x is transmitted. The channel is

memoryless if the probability distribution of the output depends only on the input
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at that time and is conditionally independent of previous inputs and outputs.

Mutual information is an important quantity in characterizing fundamental

limits in channel coding problems. Let M denote a finite message set M =

{1, . . . ,M}, with m ∈ M. Fig. 2.2 shows a transmitter wanting to transmit

message m to a receiver through a discrete memoryless channel (DMC). A com-

munication engineer designs an encoder which encodes a message into a codeword

Xn, which is then transmitted through the DMC in n channel uses. The receiver

needs a decoder which recovers the message based on the received signal Y n. It

can be shown [21] that as the number of channel uses n become sufficiently large,

with arbitrary small probability of error, the data rate can be made arbitrarily

close to the channel capacity defined as

C , max
PX

I(X;Y ). (2.5)

Message
Encoder Decoder

Channel

X

m mX
n n

Y

Y
P Estimate of 

message

Figure 2.2: A discrete memoryless channel

2.2.1 Binary Block Codes

The encoder in Fig. 2.2 maps message m, belonging to the message set M, to a

n-length codeword, Xn. When the input alphabet is binary (i.e. X = {0, 1}), the

set of codewords form a binary block code of length n. If the size of the message

set is a power of 2 (i.e. M = 2k), each input message can be represented by k bits.

These k input bits to the channel encoder are called information bits while the n

output bits are called coded bits, with n ≥ k. The rate of a binary block code of

length n with 2k codewords is given by Rc = k/n, while the redundancy is given
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by n− k.

The Hamming distance between two binary n-tuples x and y, denoted d(x,y),

is the number of places in which they differ. The minimum distance of a binary

block code C = {ci|i = 1, . . . , 2k}, denoted dmin, is the smallest distance between

any two distinct codewords of the code, i.e.,

dmin , min
i 6=j

d(ci, cj) , ci, cj ∈ C. (2.6)

It can be shown [13], [22] that a code with minimum distance dmin can detect

dmin − 1 or fewer bit errors. This code can correct t or fewer bit errors as long as

2t < dmin. In Chapter 3 of this thesis, we use bounds on the performance of best

possible binary block codes to reduce the packet delay and energy usage.

Over the years, the design of practical efficient codes has helped us in achieving

data transmission rates which are very close to the channel capacity [23]. Next,

we provide a brief overview of the Blahut-Arimoto algorithm which helps to nu-

merically compute the capacity for a given discrete memoryless channel.

2.2.2 Blahut-Arimoto Algorithm

An input distribution PX that maximizes I(X;Y ) in (2.5) is called a capacity-

achieving input distribution. The classical Blahut-Arimoto algorithm [16], [17]

solves the problem of computing both the capacity and a capacity-achieving input

distribution for a given DMC. If we define

Q(x) , PX(x) , W (y|x) , PXY (y|x) (2.7)

I(Q,W ) , I(X;Y ) =
∑
x,y

Q(x)W (y|x) log
W (y|x)∑

xQ(x)W (y|x)
, (2.8)

then the Blahut-Arimoto algorithm can be described as follows.
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Let Q(0) denote an initial chosen input distribution with Q(0)(x) > 0 for all

x ∈ X . For iterations r = 0, 1, 2, . . . perform the following two steps alternatively.

• Step 1: For each x ∈ X , calculate

T (r)(x) = exp
∑
y∈Y

W (y|x) log
Q(r)(x)W (y|x)∑
xQ

(r)(x)W (y|x)
. (2.9)

• Step 2: For each x ∈ X , the new input probability Q(r+1)(x) is calculated

according to

Q(r+1)(x) =
T (r)(x)∑
x̃∈X T

(r)(x̃)
. (2.10)

For each r = 0, 1, 2, . . ., the sequence Q(r) of input distributions produced by the

above two steps fulfills

C ≥ I(Q(r+1),W ) ≥ I(Q(r),W ). (2.11)

Q(r) converges to a capacity-achieving input distribution for r →∞, and

min
x

log
T (r)(x)

Q(r)(x)
≤ I(Q(r),W ) ≤ C(W ) ≤ max

x
log

T (r)(x)

Q(r)(x)
, (2.12)

and all the inequalities turn to equalities when Q(r) is a capacity-achieving distri-

bution. Thus, the iterations can be terminated with the assurance that I(Q(r),W )

is within ε of capacity when

max
x

log
T (r)(x)

Q(r)(x)
− I(Q(r),W ) < ε. (2.13)

In this thesis, the Blahut-Arimoto algorithm is applied in Chapter 6 to compute

the capacity of subblock energy-constrained codes.
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2.3 Layering and Network Stack

Application

Presentation

Session

Transport

Network

Data Link

Physical

Figure 2.3: The seven layer OSI model

A layered architecture, like the seven-layer open systems interconnect (OSI)

model (see Fig. 2.3), divides the overall networking task into layers and defines

a hierarchy of services to be provided by the individual layers. The services at

the layers are realized by designing protocols for the different layers, and a direct

communication between nonadjacent layers is typically forbidden. This modular

approach has advantages such as simplicity of design, and availability of standard

interchangeable modules. Detailed description of each of the OSI layers can be

found in standard texts such as [24] and [15]. In this thesis, we restrict our

attention to the data link layer and the physical layer, and analyze their impact

on overall system performance.

The physical layer provides a link for transmitting a sequence of bits between

any pair of nodes joined by a physical communication channel. Tasks such as

error correction coding and modulation are performed at this layer, which aim to

provide efficient communication over unreliable channels. The purpose of the data

link layer is to convert the usually unreliable bit pipe at the physical layer into a

higher-level, virtual communication link for sending packets asynchronously but
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error-free in both directions over the link. From the standpoint of the link layer,

a packet is just a string of bits that comes from the next higher layer. Automatic

repeat request (ARQ) is typically implemented at the link layer to detect packet

errors at the receiver, and then to request the transmitter to retransmit erroneous

packets.

In Chapter 3 of this thesis, we study the joint impact of error correction coding

(at the physical layer) and ARQ (at the link layer) on reducing packet delay.

2.4 Queueing Theory

Queueing theory provides a framework for analyzing an important performance

measure of data networks: the average delay required to deliver a packet from

origin to destination. In this thesis, we restrict our attention to the delay at the

link layer, where packets are assumed to arrive with a given statistical model. For

a given node packet, we define the packet delay as the sum of the queueing delay

(which is the time spent by the packet waiting in the link layer queue) and the

service time (which is the time taken between the removal of that packet from the

link layer buffer for transmission and its error-free delivery to the higher layer at

the receiver). We also refer to the queueing delay for a packet as its waiting time.

We refer the reader to [15], [25] for a detailed review of queueing theory.

arrival process 
queue server

departure process 

Figure 2.4: A single server queue

A single server queue is illustrated in Fig. 2.4. We are interested in estimating

metrics such as the average number of packets in the queue, and the average

packet delay. These metrics are estimated in terms of known information such as
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the packet arrival rate (the average number of packets entering the system per

unit time) and the service rate (the average number of packets which get served

when the server is constantly busy).

If Nav denotes the average number of packets waiting in the queue, λd denotes

the packet arrival rate, and Tw denotes the average waiting time, then Little’s

Theorem states that these quantities are related as

Nav = λdTw. (2.14)

Queueing theory also provides tools to estimate delay in a multiuser scenario,

when several users share a transmission channel. Such a scenario is considered

in Chapter 3 of this thesis, where users are polled in a cyclic order by a central

server. A polled user is granted access to the channel for successful transmission

of one packet (on top of the queue); once the packet is successfully transferred

to the server, the server takes a certain time to switch from one user queue to

another during the polling process.

The interesting paradigm of coupled-queues is analyzed in detail in Chapter 4 of

the thesis, where we consider a communication system where the energy consumed

for transmission of data is supplied by an external recharge process. The data

packets arrive randomly and wait in a queue for accumulation of sufficient energy

and for service completion of previously arrived packets. Here, the data queue

dynamics are influenced jointly by the energy arrival process, the data arrival

process, and the data service process. In Chapter 4, we formulate a two stage

virtual queueing system which helps us to obtain closed-form expressions for the

average packet delay for different energy arrival statistics.

Next, we present a brief description of the useful Pollaczek-Khinchin for-

mula [15] for the average waiting time of a packet in a M/G/1 queueing system,
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where M denotes a Poisson packet arrival process, G denotes a general packet

service process which is independent of the arrival process, and 1 denotes a sin-

gle server system. We use the Pollaczek-Khinchin formula in Chapter 4 towards

obtaining a closed-form expression for the average packet delay at an energy har-

vesting transmitter.

2.4.1 Pollaczek-Khinchin Formula

Consider a single-server queueing system where data packets arrive according to

a Poisson process with rate λd, and the packet service time has a general distri-

bution. Let Ts and T 2
s denote the mean service time and mean-squared service

time, respectively. The Pollaczek-Khinchin (P-K) formula states that the mean

data packet waiting time, denoted Tw, can be expressed as [15]

Tw =
λdT 2

s

2(1− λdTs)
, (2.15)

where it is assumed that λdTs < 1 to prevent the queue from becoming un-

bounded in the steady state. Note that when the service time is exponentially

distributed (M/M/1 queue), then T 2
s = 2

(
Ts
)2

, while for a deterministic service

process (M/D/1 queue) we have T 2
s =

(
Ts
)2

. It is interesting to note that the av-

erage waiting time for the M/D/1 queue is exactly half their values for the M/M/1

queue with same λd and Ts.

We now give a sketch of the proof of the P-K formula using the concept of mean

residual service time. Let Tsi and Twi
denote the service time and the waiting time,

respectively, of the i-th data packet. Let Tri denote the residual service time seen

by the i-th packet, i.e., if packet j is already being served when i arrives, then

Tri is the remaining time until packet j service time is complete. If Ni denote the
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number of packets found waiting in queue by the i-th packet upon arrival, then

Twi
= Tri +

i−1∑
j=i−Ni

Tsj . (2.16)

By taking the expectation and using the independence of the random variables Ni

and Tsi−1
, . . . , Tsi−Ni

, we have

Tw = E(Tri) + Ts E(Ni) = Tr + Ts ·N, (2.17)

where Tr is the mean residual time and N is the expected number of packets in

the queue. By Little’s law [15], N = λdTw, and thus (2.17) can be expressed as

Tw =
Tr

1− λdTs
(2.18)

If M(t) denotes the number of service completions within the time interval [0, t],

then it follows that [15]

Tr = lim
t→∞

1

t

M(t)∑
i=1

Tsi
2

= lim
t→∞

1

2

M(t)

t

M(t)∑
i=1

Tsi
M(t)

(2.19)

=
1

2

(
lim
t→∞

M(t)

t

) lim
t→∞

M(t)∑
i=1

Tsi
M(t)

 =
1

2
λdT 2

s , (2.20)

and we obtain (2.15) by substituting (2.20) in (2.18).

2.5 Related Work

In this section, we review existing work and present a literature survey related to

the different communication systems analyzed in this thesis.
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2.5.1 Reducing delay and energy usage via FEC codes

We first consider a system where users are polled for transmission by a central

server, and the link layer of each user employs automatic repeat request (ARQ)

to ensure error free delivery of packets. In this thesis, we apply bounds on the

performance of forward error correction (FEC) codes to quantify their impact on

packet delay and energy usage, and show that the knowledge of tradeoffs at the

physical layer is vital for optimizing network performance.

Work related to reduction of delay due to FEC codes has been done in different

contexts in the past. The joint impact of ARQ and FEC on average service time

is analyzed in [26] while its impact on reducing delay in a multi-hop wireless

sensor network is investigated in [27]. However, [26] and [27] do not discuss the

fundamental limit on delay using the best possible codes.

The use of packet-level FEC (where the message is divided into smaller packets

and coding is performed across packets) for reducing the average number of packet

transmissions for successful delivery of the message was analyzed for broadcast

systems in [28] and for multicast systems in [29].

In [30], the authors analyze the reduction in data retrieval latency due to

channel coding in the context of distributed storage. Although the work in [31]

focuses on the choice of appropriate modulation and coding scheme (MCS) for

improving user throughout in a network, it does not analyze the impact of MCS

selection on packet delay.

In [32], a point-to-point wireless packet communication link with truncated

ARQ is considered. The transmitter chooses MCS from a fixed set and exhaustive

numerical search is employed for finding that MCS which maximizes the through-

put subject to a maximum average packet delay and packet loss rate. This exhaus-

tive search does not provide intuitive insight into the trade-off between reducing
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packet errors through channel coding and an increase in packet length due to

addition of redundancy.

A fixed set of modulation and coding schemes are analyzed in [5] for maximiz-

ing spectral efficiency under delay and error performance constraints in wireless

fading channels with truncated ARQ. This paper aims at adaptively choosing that

modulation and coding scheme which maximizes the spectral efficiency under delay

and error performance constraints.

The trade-off between channel coding and ARQ in Rayleigh block-fading chan-

nels for maximizing throughput is analyzed in [33]. This work aims at maximizing

the long-term average successful throughput by striking a balance between pro-

viding sufficient error protection through channel coding and keeping a sufficiently

high code rate such that the number of information bits in each coded packet is

large. However, [5] and [33] do not address the case where the data to be trans-

mitted arrives in a random fashion and hence ignores the impact of coding on the

queueing delay.

The system performance using joint adaptive modulation and coding (AMC)

and ARQ is analyzed in [34], [35] where the MCS is chosen from a fixed set,

and hence these works do not characterize fundamental performance limits which

can be achieved using best possible codes for a given blocklength and coding

rate. The use of joint AMC, packet fragmentation, and ARQ is considered in

[36] where punctured convolutional codes are employed for FEC. Although [36]

analyses the impact of coding and fragmentation on delay and throughput, the

issue of characterizing the performance limits using best possible error correction

codes is again not addressed.

The queueing delay performance using random linear coding on randomly ar-

riving packets is analyzed in [37] for multicast transmission over packet erasure

channels. In [38], the queueing behavior is studied for a discrete-time model where
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the packet arrival process is Bernoulli and the communication medium is a bit-

erasure channel with memory. It is assumed that random codes with maximum

likelihood decoding are used for protection against erasure. However, the analysis

is limited to a single user setting.

The delay distribution is characterized in [39] for a point-to-point Markovian

modulated binary erasure channel. The use of erasure codes is assumed such that

an arbitrarily small error probability can be achieved using any coding rate that is

less than the channel capacity. However, such an assumption may not hold when

the codeword length is upper bounded [3].

Packet transmission schedules which minimize energy subject to a deadline

or a delay constraint are considered in [40]. The work in [40] is motivated by

the observation that the energy required to transmit a packet can be reduced by

lowering the transmission power and code rate, and therefore transmitting the

packet over a longer period of time. In contrast, [41] show that the belief that

a longer transmission duration lowers energy consumption may be misleading for

short-range applications if the RF circuit power is included in the energy budget.

Tight bounds on the achievable rates for a given communication channel and

probability of error were established in [3]. As an application, this work also shows

that these bounds could be used to choose the coding rate which maximizes the

throughput (or equivalently, minimizes the average service time). However, they

did not consider the impact of coding on the packet waiting time.

The impact of link layer scheduling algorithms, other than round-robin polling,

on system throughput has also been analyzed in the past. For instance, the greedy

maximal scheduling (GMS) [42] determines a schedule by choosing links in decreas-

ing order of queue backlog while conforming to interference constraints. In [43], it

was shown that GMS is throughput-optimal [44] for networks which satisfy certain

conditions. However, GMS may only achieve a fraction of the capacity region on
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general network topologies [42], [44].

2.5.2 Packet delay analysis at an energy harvesting trans-

mitter

The ability of energy harvesting communication systems to reduce cost and in-

crease system lifetime has resulted in their use in different practical applica-

tions [10]. The research community has aimed to optimize the performance of

such systems under varied constraints and assumptions [45]–[57].

Most of the research on energy harvesting communication systems has been

on minimizing the data transmission completion time [45]–[47] or maximizing the

throughput [48]–[52]. Although the knowledge of future energy and data arrival

times is assumed in [45]–[48], such information may not be available in practice

owing to the random nature of energy and data arrival processes. In this regard,

reasonable assumptions on only the probability distribution of the arrivals, rather

than exact knowledge of the time of future arrivals, help to provide a pragmatic

approach to system design [49].

The optimal competitive ratio for maximizing the data rate over arbitrary

varying energy arrivals and channel fading is derived in [50]. Algorithms for com-

puting the lexicographically maximum data collection rate in energy harvesting

sensor networks are presented in [51] under the constraint that no node ever runs

out of energy. The work in [52] considers the problem of constructing utility op-

timal scheduling algorithms in an energy harvesting network where, in every time

slot, the network decides on data admission and power allocation over each com-

munication link. Energy management strategies are discussed in [53] for a wireless

energy harvesting node with a delay constraint on packet transmission, and it is

assumed that a new data packet is generated only after the previous packet is
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successfully transmitted or discarded due to delay violation. However, [48]–[53]

do not consider the case where the data to be transmitted arrives at random in-

stances and may have to be buffered in a data queue when sufficient energy is not

available in the energy buffer.

Random arrival of data and harvested energy is considered in [54] together

with the assumption of availability of power from a power grid. The problem of

minimizing the long-term average data queue length subject to an average grid

power constraint is analyzed. However, the assumption on using grid power in [54]

may not hold for low-cost embedded devices. In [58], the energy harvesting process

is modeled with a two-state Markov chain for a time-slotted communication system

where events occur in each slot with a fixed probability and the probability of event

loss due to energy run-out is derived for this model.

In [55], the authors present an energy management scheme where the battery

discharge probability falls exponentially with the battery size while the data loss

probability falls polynomially with the data buffer size. [56] considers the problem

of maximizing the throughput while maintaining the stability of the data queue

and proposes online policies for the same. Energy management policies which

minimize a linear combination of the mean data queue length and the mean data

loss rate are obtained in [57]. Although the buffering of the arriving data is

considered in [55]–[57], the problem of quantifying the average delay per data

packet is not addressed.

The average packet delay is an important metric for delay sensitive real-time

applications. But sufficient attention has not been given to the problem of quan-

tifying the exact average packet delay in an energy harvesting communication

system. The fact that the data queue dynamics are influenced jointly by the en-

ergy arrival process and the data service process makes this problem hard to solve.

In a related work, a closed-form expression for the average delay for event process-
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ing is derived in [59] for an energy harvesting system. However, its limitations are

that the impact of the event service time on the queueing delay is ignored and the

expression for the average event delay is not exact. In [48], an upper bound on the

delay is provided in an energy harvesting communication system when the data

arrival rate is less than a certain threshold and data buffer size is infinite. This

threshold, however, is obtained as a solution to a dynamic programming problem.

In this thesis, we formulate a two stage virtual queueing system which decou-

ples the wait stages for the energy arrival process and the data service process. We

assume the knowledge of the distribution of data and energy arrivals which is used

to derive closed-form expressions for the average packet delay and the probability

of data queue overflow. These expressions are shown to be exact when the service

time is negligible, and robust even for relative high values of the average service

time. Based on the delay and packet loss requirements for a given application,

these expressions can be used to choose design parameters (such as the energy

buffer size and the data packet arrival rate) such that the desired performance

requirements are satisfied. We also extend the results for the important case of

multi-source energy harvesting [60], [61].

2.5.3 Constrained codes for simultaneous energy and in-

formation transfer

Although wireless charging of portable electronic devices [62] and implantable

biomedical devices [63] has attracted the attention of researchers over the last few

years, pioneering work on wireless power transfer was conducted over a century ago

by Hertz and Tesla [64]. Similarly, wireless information transfer has a rich history,

including works by Popov [65], Bose [66], and Marconi [67]. In fact, Marconi’s

wireless telegraph device, capable of transatlantic radio communication, helped
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save over 700 lives during the tragic accident of the Titanic in 1912 [68]. However,

the first work in an information-theoretic setting on analyzing fundamental trade-

offs between simultaneous information and energy transfer is relatively recent [14].

The study of simultaneous information and energy transfer is relevant for commu-

nication from a powered transmitter to an energy-harvesting receiver which uses

the same received signal both for decoding information and for harvesting energy.

The energy harvested by the receiver is employed to power its circuitry.

The tradeoff between reliable communication and delivery of energy at the

receiver was characterized in [14] using a general capacity-power function, where

transmitted codewords were constrained to have average received energy exceed a

threshold. This tradeoff between capacity and energy delivery was extended for

frequency-selective channels in [69]. Since then, there have been numerous exten-

sions of the capacity-power function in various settings [54], [70]–[72]. Biomedi-

cal applications of wireless energy and information transfer have been proposed

through the use of implanted brain-machine interfaces that receive data and energy

through inductive coupling [63], [73], [74].

Codes with different constraints on the codewords have been suggested in the

past, depending on the constraints at the transmitter, the properties of the com-

munication channel, or the properties of the storage medium. For digital in-

formation storage on magnetic medium [75], codewords are usually designed to

meet the runlength constraint [76] or are optimized for partial response equal-

ization with maximum-likelihood sequence detection (PRML) [77]. The study of

information capacity using runlength-limited (RLL) codes on binary symmetric

channels (BSC) was carried in [78]–[80]. The use of RLL codes for simultaneous

energy and information transfer was proposed and analyzed in [81], [82].

A class of binary block codes called multiply constant-weight codes (MCWC),

where each codeword of length mn is partitioned into m equal parts and has
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weight w in each part, was explored in [83] owing to their potential application

in implementation of low-cost authentication methods [84]. Note that MCWC,

introduced in [83] as a generalization of constant weight codes [85], are themselves a

special case of CSCCs with input alphabet size equal to two. When each codeword

in an MCWC is arranged as an m × n array and additional weight constraints

are imposed on all the columns, the resulting two-dimensional weight constrained

codes have potential application in optical storage systems [86] and in power line

communications [87].

Power line communications (PLC) requires the power output to be as constant

as possible so that information transfer does not interfere with the primary func-

tion of power delivery. One way to achieve this on the PLC channel (which suffers

from narrow-band interference, white Gaussian noise, and impulse noise [88]), is

to employ permutation codes [89] where each codeword of length n is a permu-

tation of n different frequencies, with each frequency viewed as an input symbol.

Higher rates of information transfer may be achieved using constant composition

codes [90] at the cost of local variation in power while ensuring that the power

expended is same upon completion of each codeword. When the codeword length

is a multiple of the frequency alphabet size, the composition may be chosen such

that each frequency occurs equal number times in each codeword [91].

The codewords employed by an energy harvesting transmitter are constrained

by the instantaneous energy available for transmission. The capacity of these con-

strained codes over an additive white Gaussian noise (AWGN) channel has been

analyzed when the energy storage capability at the transmitter is zero [92], in-

finite [93], or some finite quantity [94], [95]. The capacity of an AWGN channel

with processing cost at an energy harvesting transmitter was characterized in [96].

The DMC capacity using an energy harvesting transmitter equipped with a finite

energy buffer was analyzed in [97]. A comprehensive summary of the recent con-
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tributions in the broad area of energy harvesting wireless communications was

provided in [11].

One approach to providing real-time energy transfer is to divide each code-

word into smaller subblocks, and constrain each subblock to carry sufficient en-

ergy. Another approach is to ensure that each codeword carries sufficient energy

within a moving time window. In this thesis, we investigate achievable informa-

tion rates under three different classes of constrained codes for enabling real-time

energy transfer. For each of these three classes of constrained codes, we analyze

the capacity and highlight the tradeoff between delivery of sufficient energy and

achieving high information transfer rates.
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Chapter 3

Reducing Delay and Energy

Usage Via FEC Codes

We consider a scenario where multiple energy-constrained nodes share a common

wireless channel and are polled by a central server for transmission in a round-

robin manner. The data to be transmitted by a node arrives randomly at its link

layer in the form of fixed length packets. We assume that the link layer of each

node uses Stop-and-Wait ARQ [15] to ensure error free transfer of data packets.

For a given node packet, we define the packet delay as the sum of the queueing

delay (which is the time spent by the packet waiting in the link layer queue) and

the service time (which is the time taken between the removal of that packet from

the link layer buffer for transmission and its error-free delivery to the higher layer

at the server). The transmission time for a packet is the time taken for a single

transmission of a packet from a node to the server. We also refer to the queueing

delay for a packet as its waiting time.

The traditional layered protocol architecture in a communication network has

been closely scrutinized by researchers who have used the dependence between

protocol layers to propose efficient communication schemes [98]–[100]. The average
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packet delay is an important “higher-layer” metric for delay sensitive wireless

sensor networks [101]. On noisy communication channels, packets errors may

significantly increase the delay due to retransmissions [12]. Although the packet

error probability (PEP), and hence the number of retransmissions, can be reduced

by employing physical layer forward error correction (FEC) codes (also called

channel codes) [13], the use of FEC codes results in addition of redundant bits

which increase the packet transmission time. A small number of redundant bits

may not sufficiently reduce the PEP, while a large number of redundant bits may

increase the packet delay due to the high transmission time.

We remark that although efforts have been made to marry the disciplines of

networking and information theory [2], [102], some gaps remain in their respec-

tive approaches. For instance, since the probability of packet error (and hence

the retransmissions) increases with an increase in length of uncoded packets [12],

a typical approach in network protocol design is to limit the packet size. How-

ever, from information theory we know that the packet error probability on noisy

channels can be reduced through channel coding by fixing the coding rate and

increasing the packet length [3], [103]. Since by fixing the coding rate we fix the

fraction of redundant bits in the coded packet, an increase in the packet length

may actually help in increasing the throughput (by reducing the PEP) [3]. This

observation gives an intuitive explanation on why our proposed scheme of op-

portunistic combining and encoding of data packets (Sec. 3.6) helps in reducing

delay. Our work in this chapter is a step towards extending the notion that in-

formation theoretic results can provide meaningful design guidelines for practical

communication networks.

In this chapter, we first establish that relative to an uncoded system, it is

sufficient to reduce the average service time (AST) using FEC in order to achieve

lower average packet delay. We then study and quantify the reduction in AST
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that can be achieved using the best possible FEC codes. Further, we show that

when the energy per transmitted bit is kept constant, the ratio of average transmit

energy for the coded and uncoded system is same as the ratio of the AST for the

coded and uncoded system. Thus, the percentage reduction in AST due to coding

translates into an equal percentage reduction in average transmit energy.

The specific findings and contributions from our work are as follows: (i) We

provide several bounds on the reduction in AST using the best possible FEC

codes. (ii) We give a sufficient condition when no FEC scheme can help reduce

the AST. (iii) For Gaussian channels, we find that a relatively high PEP (∼ 10−2)

obtained using as high a coding rate as possible, typically results in sufficiently

small AST. (iv) The performance of optimum maximum likelihood decoding can be

approached by a lower complexity bounded distance decoder. (v) Average packet

delay can be further reduced in certain cases by opportunistically combining and

encoding several packets jointly.

The remainder of this chapter is structured as follows. The system model is

described in Sec. 3.1, and sufficient conditions for reducing average packet delay

are derived in Sec. 3.2. The metric for quantifying the reduction in average service

time is defined in Sec. 3.3 while in Sec. 3.4 we show that the percentage reduction

in AST due to coding translates into an equal percentage reduction in average

energy for successful packet transfer. FEC codes which minimize average service

time are discussed in Sec. 3.5. Reduction in average packet delay via opportunistic

packet combining is discussed in Sec. 3.6 and numerical examples are presented in

Sec. 3.7. Finally the results are summarized in Sec. 3.8.
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3.1 System Model

We consider a scenario where nodes share a common physical channel and are

polled by a central server for transmission in a round-robin manner. On being

polled, a node transmits if it has data waiting to be sent; else the server polls

the next node in the polling list for transmission. The communication model

assumes that the link layer of each node uses Stop-and-Wait ARQ, and that the

data packets received in error are retransmitted until their successful reception is

acknowledged by the receiver. We assume that the ACK/NACK response upon

reception of data packet is error-free and instantaneous.

Note that the Stop-and-Wait ARQ protocol is used by the medium access

control (MAC) layer of the IEEE 802.11 Wireless LAN standard [104], and the

Bluetooth standard [105] for packets protected by the cyclic redundancy check

(CRC) bits. The use of ARQ for delay sensitive multimedia applications has been

investigated in [106].

In our model, a polled node is granted access to the channel for successful

transmission of one packet (on top of the queue); once the packet is successfully

transferred to the server, the server takes a certain time to switch from one node

queue to another during the polling process. This switching time can be used for

exchange of control information between the server and the node before the actual

transmission of data packets.

Note that the polling based multiple access scheme has been shown to achieve

higher throughput than the contention based approach under heavy traffic con-

ditions [107] and is implemented in the IEEE 802.11 MAC sub-layer as a Point

Coordination Function (PCF) [104]. The polling model has also been proposed

for use in body area networks [108].

We assume that for all the nodes, the packet arrival process at their respective
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Figure 3.1: A central server polling the nodes in a cyclic order

link layers is Poisson with rate λd (measured in terms of packets per second) and

that the arrival process for different nodes are independent of each other. The

modulation type and the symbol rate for transmission are assumed to be fixed for

all the nodes.

The data packet length and the probability of packet error for all nodes are

assumed to be same. We assume that each data packet contains necessary header

fields for its identification. For error detection, CRC parity check bits are added to

each packet, and then FEC code is employed to reduce the probability of packet

error. We shall refer to this system model as a Poisson Arrival Polling Model

with Packet Retransmission (PAPMPR). A packet with no FEC will be called an

uncoded packet. The various parameters used in this article are summarized in

Table 3.1.
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Variables Description

λd Data packet arrival rate for each node
k Length of an uncoded packet (including CRC bits)
n Length of a packet encoded using forward error correction
p Probability of packet error
T Time taken to transmit one uncoded packet
Rc Coding rate (Rc = k/n)
Ts Average service time for a data packet

T 2
s Mean squared service time for a data packet
Tw Average waiting time (in queue) for a data packet
TD Average packet delay
Tv Average time to switch from one node to another
σ2
v Variance of the queue switching time
N Number of nodes
ρ Total load offered to the system (ρ = NλdTs)
ν? Metric to quantify reduction in average service time
q BSC crossover probability

Table 3.1: Description of variables

3.1.1 Average service time of data packets

Let T denote the time taken to transmit an uncoded packet of length k. If a node

employs a rate Rc ≤ 1 code on k bits, then the number of coded bits become

n = k/Rc. Since the modulation type and the symbol rate for transmission are

fixed, an increase in the packet length from k to n increases the packet transmission

time from T to T/Rc. Let p denote the probability of packet error and Ts denote

the service time for error-free transfer of a node packet. Then Ts is a discrete

geometric random variable with probability mass function given by

Pr

(
Ts = j

T

Rc

)
= pj−1(1− p) j = 1, 2, . . . (3.1)

Note that the above expression uses the assumption that the ACK/NACK re-

sponse upon reception of data packet is error-free and instantaneous.

If Ts and T 2
s denote the AST and mean squared service time, respectively, for
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the transfer of a packet from a node to the server, then

Ts =
∞∑
j=1

(
j
T

Rc

)(
pj−1(1− p)

)
=

T

Rc(1− p)
, (3.2)

T 2
s =

∞∑
j=1

(
j2T

2

R2
c

)(
pj−1(1− p)

)
=

T 2(1 + p)

R2
c(1− p)2

=
(
Ts
)2

(1 + p). (3.3)

The first and second moments of the service time for an uncoded system can be

obtained by substituting Rc = 1 in the above equations.

3.1.2 Average waiting time of data packets

Let N denote the number of nodes in the system, Tv denote the average time

taken by the server to switch from one node queue to another, and σ2
v denote the

variance of the queue switching time. If ρ denotes the total offered load to the

system [25], then

ρ = NλdTs. (3.4)

Let Tw denote the average waiting time for a node packet in the link layer

queue. Using the concept of mean residual service time and the fact that the

order in which the packets are served in a cyclic polling process is independent of

the service time, we have [15]

Tw =
σ2
v

2Tv
+
NλdT 2

s + (N + ρ)Tv + σ2
vNλd

2(1− ρ−NλdTv)
. (3.5)

Note that the condition for Tw to be bounded is ρ+NλdTv < 1 ⇐⇒ Nλd(Ts+

Tv) < 1. This condition (rather than the condition ρ < 1) is required because the

server consumes some queue switching time after serving each packet, thereby

effectively increasing the average service time from Ts to Ts + Tv.

Remark : Note that the average waiting time for the special case of N = 1
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reduces to the Pollaczek-Khinchin formula [15]

Tw =
λdT 2

s

2(1− ρ)
, (3.6)

since there is no queue switching in a single node case.

3.1.3 Average packet delay

If TD denotes the average packet delay, then we have TD = Ts + Tw, where Ts and

Tw are given by (3.2) and (3.5), respectively.

3.2 Sufficient condition for reducing delay

In this section we compare two coded systems and derive sufficient conditions

under which one coded system results in lower average packet delay compared to

the other. The following theorem will aid us in expressing the sufficient conditions

explicitly in the form of corollaries.

Theorem 1. For PAPMPR, let T̃s, T̃ 2
s , and T̃D denote the AST, mean squared

service time, and average packet delay, respectively, of a coded system. Similarly,

let T̂s, T̂ 2
s , and T̂D denote the AST, mean squared service time, and average packet

delay, respectively, of another coded system. Then,

T̃s < T̂s, T̃ 2
s < T̂ 2

s =⇒ T̃D < T̂D. (3.7)

Proof: Please refer to Appendix A.1.

We use Theorem 1 to prove the following corollary comparing the average

packet delay of coded and uncoded systems.
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Corollary 1. Let Rc, p̃, T̃s, T̃ 2
s , and T̃D denote the rate, PEP, AST, mean squared

service time, and average packet delay, respectively, for the coded system. Let

p, Ts, T 2
s , and TD denote the PEP, AST, mean squared service time, and average

packet delay, respectively, for the uncoded system. Then,

T̃s < Ts =⇒ T̃D < TD. (3.8)

Proof: We shall first prove that

T̃s < Ts =⇒ T̃ 2
s < T 2

s . (3.9)

From (3.2), we have

T̃s < Ts ⇐⇒ T

Rc(1− p̃)
<

T

1− p
⇐⇒ Rc(1− p̃) > 1− p (3.10)

=⇒ 1− p̃ > 1− p, (since Rc < 1)

⇐⇒ p̃ < p. (3.11)

Using (3.3) and (3.11), we get (3.9). Now, (3.8) follows from (3.7) and (3.9).

We now consider two different coded systems each with coding rate less than

one. The following corollaries state sufficient conditions under which the coded

system with lower AST also results in lower average delay.

Corollary 2. Let p̃, T̃s, T̃ 2
s , and T̃D denote the PEP, AST, mean squared service

time, and average packet delay, respectively, for one coded system; and let p̂, T̂s, T̂ 2
s ,

and T̂D denote the PEP, AST, mean squared service time, and average packet

delay, respectively, for another coded system. If p̃ < p̂ and T̃s < T̂s, then it implies

T̃D < T̂D.
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Proof: Since p̃ < p̂, T̃s < T̂s, we have T̃ 2
s < T̂ 2

s (use (3.3)). Now the claim

follows from (3.7).

Corollary 3. Let p̃ and p̂ denote the PEP for two different coded system, and let

0 < ε < 1. If p̃ < ε and T̃s < T̂s
(
1− ε

2

)
, then T̃D < T̂D.

Proof:

T̃s < T̂s

(
1− ε

2

)
=⇒ T̂s

T̃s
> 1 +

ε

2
. (3.12)

Thus, (
T̂s

T̃s

)2

> 1 + ε > 1 + p̃ ≥ 1 + p̃

1 + p̂
. (3.13)

Hence T̂ 2
s > T̃ 2

s (from (3.3)) and the claim follows from (3.7).

Corollary 4. Let T̃s and T̂s be the AST for two different coding schemes having

the same coding rate Rc. Then, T̃s < T̂s implies T̃D < T̂D.

Proof: Since both coding schemes have the same coding rate, from (3.2)

and (3.3) we have

T̃s < T̂s =⇒ p̃ < p̂ =⇒ T̃ 2
s < T̂ 2

s , (3.14)

and the corollary follows from (3.7).

The above results imply that for a broad set of cases, the coded system which

results in lower AST also results in lower average packet delay. The minimization

of average service time results in a simpler optimization problem which is inde-

pendent of system parameters such as packet arrival rate and the number of nodes

in the system.

The following proposition is useful since it quantifies the reduction in average

packet delay in terms of the reduction in AST.

Proposition 1. For PAPMPR, let p̃, T̃s, T̃ 2
s , T̃w, and T̃D denote the rate, PEP,

AST, mean squared service time, average waiting time and average packet delay,
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respectively, for the coded system. Let p, Ts, T 2
s , Tw, and TD denote the PEP, AST,

mean squared service time, average waiting time and average packet delay, respec-

tively, for the uncoded system. Further, let k denote the uncoded packet length. If

T̃s < Ts and the queue switching time is negligible (that is, Tv → 0 and σ2
v → 0),

then

T̃D

TD
<
T̃s

Ts
. (3.15)

Proof: Please refer to Appendix A.2.

Remark : The converse to the above proposition need not always be true: a

coded system with lower average packet delay, compared to an uncoded system,

may have relatively higher AST. This is because the average packet delay depends

on both the first and second moments of the service time. The following example

illustrates this scenario.

Example: Consider a single-node system where packets, each comprising of

120 bits, arrive at the node link-layer at a rate of λd = 500 packets/sec. Assume

that the packet transmission time for the uncoded packet is T = 1 ms. When the

packets are transmitted over a channel with bit error rate of 0.004, the PEP for

the uncoded packet is 0.38, while the corresponding AST is 1.6176 ms. However,

using a rate Rc = 3/5 code, the PEP can be reduced to less than 10−5 (refer

Sec. 3.5.1), but the AST increases to 1.6667 ms since the packet transmission is

increased due to addition of redundancy. However, in this scenario, the average

packet delay for the uncoded case is 6.3458 ms while the delay for the coded case

is 5.8334 ms, since the coded system has lower mean squared service time due to

its lower PEP.
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3.3 Quantifying the reduction in average service

time

From the corollaries in Section 3.2 we know that for a wide variety of cases,

the codes which are designed to reduce the AST also achieve lower average packet

delay. In this section, we formulate a metric which measures the maximum possible

reduction in the AST through channel coding.

Let the probability of error for an uncoded packet of length k be denoted as

p. By an (n, k) binary code, we shall mean a code where each codeword length is

n and the number of codewords are 2k. Let Cn,k denote an (n, k) code with PEP

p̃. We define

ν(Cn,k) =
n(1− p)
k(1− p̃)

. (3.16)

If T̃s and Ts denote the AST for the coded and uncoded systems, respectively,

then from (3.2) and (3.16), we note that

T̃s

Ts
=
n(1− p)
k(1− p̃)

= ν(Cn,k). (3.17)

Now, we define

ν?(k) = min
n, Cn,k

ν(Cn,k), (3.18)

where, for a fixed value of k, the minimization above is over all (n, k) block codes

with n ≥ k. Thus ν?(k) is a measure of how much the AST of a coded system be

reduced relative to the AST of an uncoded packet of length k.

The following proposition shows that ν?(k) obtained for relatively small values

of k can also be used to give an upper bound on ν?(mk) corresponding to larger

uncoded packet sizes with length mk where m is a positive integer.
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Proposition 2. Let m be an integer greater than one. Then,

ν?(mk) ≤ (ν?(k))m . (3.19)

Proof: Please refer to Appendix A.3.

3.4 Transmit energy usage

Here, we compare the transmit energy usage for successful transfer of a node

packet for the uncoded and coded systems. Let E denote the energy spent in

transmitting L uncoded bits from a node to the server in a single transmission

of the data packet. If the packet transmission is in error, then the packet has to

be re-transmitted and every such re-transmission results in an energy spending of

E. Let p denote the probability of packet error for the uncoded case and let Es

denote the total energy spent for successful transfer (including energy used during

re-transmissions) of a packet. Then Es is a discrete geometric random variable

with probability mass function given by

P (Es = kE) = pk−1(1− p), k = 1, 2, . . . (3.20)

If Es denote the mean energy spent in successful transfer of packet between the

node and the server, then

Es =
E

1− p
. (3.21)

Now, if a rate R error correcting code is employed by a node on L information

bits, then the effective packet length becomes L̃ = L/R. If we assume that the

transmit energy per coded bit is equal to the energy per uncoded bit and Ẽ denotes

the energy spent in transmitting the coded packet, then Ẽ = E/R. If p̃ denotes
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the probability of packet error and Ẽs denotes the average transmit energy for

successful packet transfer for the coded case, then

Ẽs =
Ẽ

1− p̃
=

E

R(1− p̃)
(3.22)

Comparing (3.21) and (3.22) we note that the average transmit energy for

coded case is less than the uncoded case if and only if

R(1− p̃) > 1− p (3.23)

We note that the condition in (3.23) is same as the condition for the average

service time of the coded system to be lower than the average service time of the

uncoded system (see (3.10)).

Further, using (3.2), (3.21), and (3.22), we have

Ẽs

Es
=
T̃s

Ts
(3.24)

and hence compared to an uncoded system, the percentage reduction in average

service time by employing channel coding also results in an equal reduction in

average transmit energy.

3.5 On Codes which Minimize Average Service

Time

In this section, we investigate codes which result in smallest possible AST relative

to an uncoded system. The following proposition gives a necessary condition for

a FEC code to result in lower AST compared to an uncoded system.
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Proposition 3. Let k and p denote the length and the PEP, respectively, for an

uncoded packet. Then a necessary condition for an (n, k) binary error correcting

code to result in lower AST relative to the uncoded system is

n <
k

1− p
. (3.25)

Proof: Let p̃ denote the PEP using the (n, k) code. Let Ts and T̃s denote

the AST for the uncoded and coded systems, respectively. Then from (3.17),

T̃s < Ts ⇐⇒ n <
k(1− p̃)
(1− p)

=⇒ n <
k

1− p
, (3.26)

where the last inequality follows since 0 < p̃ < 1.

The following proposition shows that when the PEP for the uncoded packet is

sufficiently small, then no FEC scheme can reduce the AST.

Proposition 4. When the PEP, p, of an uncoded packet of length k satisfies

p < 1/(k + 1), then the AST cannot be reduced through any FEC code.

Proof: When p < 1/(k + 1), then we have k
1−p < k + 1. This inequality

together with the statement of Proposition 3 implies that a necessary condition

for an (n, k) binary code to reduce the average service time is given by

n <
k

1− p
< k + 1. (3.27)

The above equation shows that n cannot exceed k and AST is minimized when

n = k (corresponding to the uncoded case).

Remark: In view of the above proposition, it is interesting to note that the

Bluetooth standard for exchanging data over short distances provides the option
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of not applying FEC when PEP for the uncoded packet is small [105].

From (3.17) and (3.18) we observe that in order to select the code which

minimizes the AST, we need to consider the joint impact of the coding rate Rc =

k/n and the associated PEP p̃.

For a fixed k, the choice of n for which an (n, k) code minimizes the AST

(and hence yields ν?(k) in (3.18)) is not obvious. A large value of n may offset

the reduction in packet retransmissions by the penalty due to an increase in the

packet transmission time, while a small value of n may not sufficiently reduce the

PEP. However, from Proposition 3 we know that n which minimizes the AST lies

in the range k ≤ n < k/(1− p) where p is the PEP for the uncoded packet.

For obtaining ν?(k) we require, for a given n, the knowledge of the smallest

PEP which can be obtained using an (n, k) code. Towards this, we discuss useful

bounds on PEP (Sec. 3.5.1) which are applied, in turn, to bound ν?(k).

We consider an additive white Gaussian noise (AWGN) channel with hard-

decision decoding at the receiver [19]. We assume that the energy per coded

bit is fixed, independent of the coding rate, and binary signaling is employed.

Thus, the channel seen from the output of the channel encoder to the input of

the corresponding decoder is equivalent to a binary symmetric channel (BSC)

[21]. Further, since the energy per coded bit is kept fixed (independent of the

coding rate), the crossover probability of the equivalent BSC does not change

upon changing the coding rate.

When the energy per coded bit is Ec and the noise power spectral density is

N0, the BSC crossover probability, denoted by q, is given by

q =
1

2
erfc

(√
Ec
N0

)
, (3.28)

54



Chapter 3. Reducing Delay and Energy Usage Via FEC Codes

where erfc is the complementary error function:

erfc(x) =
2√
π

∞∫
x

e−t
2

dt . (3.29)

We now investigate bounds on the PEP which will be applied to bound the

reduction in AST using (3.16) and (3.18).

3.5.1 PEP using the best possible codes

We analyze bounds on p̃, the PEP using FEC, which will be applied to characterize

the maximum reduction in AST, and hence the packet delay, achievable using best

possible coding schemes. We consider both lower and upper bounds on p̃ in the

following.

Upper bound on p̃ using bounded distance decoding

If d denotes the minimum distance of an (n, k) code, then the bounded distance

decoder correctly decodes the received word if and only if the error pattern has

weight less than or equal to t = bd−1
2
c [22]. In this case, the PEP on BSC with

crossover probability q is given by

p̃ = 1−
t∑
i=0

(
n

i

)
qi(1− q)n−i. (3.30)

This bounded distance decoder has the advantage of having lower computational

complexity than the Maximum-Likelihood (ML) decoder [109].

For k ≤ n < 256, we select codes with best known minimum distance [110],[111]

and employ bounded distance decoding.

For moderate to large packet sizes, a lower bound on the minimum distance

may be obtained using the Gilbert-Varshamov (GV) bound [22]. The GV bound
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for binary linear codes states that it is possible to construct an (n, k) code with

minimum distance at least d for which the following inequality holds:

d−2∑
i=0

(
n

i

)
≥ 2n−k. (3.31)

If δ = d/n denotes the relative distance of the code, then the asymptotic

form of GV bound for binary linear codes states that for every δ < 0.5 and

0 < ε ≤ 1−H(δ), there exists a code with rate Rc ≥ 1−H(δ)− ε, where H(δ) is

the binary entropy function H(δ) = −δ log2 δ − (1− δ) log2(1− δ).

For a binary code with rate Rc, the relative GV distance δGV (Rc) is defined

as the root δ < 0.5 of the equation H(δ) = 1− Rc. If we define t = bnδGV (Rc)−1
2

c,

then an upper bound on the probability of error may be obtained using (3.30).

Random-coding union bound on p̃

The upper bound on the PEP obtained in (3.30) uses only the knowledge of the

minimum distance of the code. A tighter upper bound can be obtained by using

the complete spectral information of the code. Note that the spectrum of a linear

code is the set (A0, A1, . . . , An) where Aw denotes the number of codewords of

weight w. In case we have the knowledge of the spectrum, the following upper

bound on the probability of error by Polytrev may be applied [3], [112] to BSC

with crossover probability q:

p̃ ≤
n∑
l=0

ql(1− q)n−l min

{(
n

l

)
,

n∑
w=0

AwB(l, w, n)

}
, (3.32)

where

B(l, w, n) =
∑

w/2≤r≤min{l,w}

(
w

r

)(
n− w
l − r

)
. (3.33)

As mentioned in [3], the upper bound in (3.32) can be extended to a random
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binary linear code to obtain (3.35). In the following, we provide a sketch of the

steps required to derive (3.35) from (3.32).

If m is any binary vector of length k, then for a random generator matrix G,

mG is a uniformly distributed over the space of length n binary vectors. Since

there are
(
n
w

)
binary vectors of length n and weight w, the probability that mG has

weight w is given by
(
n
w

)
/2n. Further, since there are 2k codewords, the expected

number of codewords of weight w are

E[Aw] = 2k ×

(
n

w

)
2n

= 2k−n
(
n

w

)
. (3.34)

Note that for a fixed l, min
{(

n
l

)
,
∑n

w=0 AwB(l, w, n)
}

is a concave function

of {Aw}. This follows because
∑n

w=0AwB(l, w, n) is a linear (and hence concave)

function of {Aw}, and the minimum of two concave functions is again concave [113].

The Jensen’s inequality for concave functions states that if f(x) is a concave

function of x, then E[f(x)] ≤ f(E[x]). Thus averaging (3.32) over the ensemble

of randomly chosen generator matrices, we obtain the expression for the average

probability of error as

p̃ ≤ E

[
n∑
l=0

ql(1− q)n−l min

{(
n

l

)
,

n∑
w=0

AwB(l, w, n)

}]

=
n∑
l=0

ql(1− q)n−l E

[
min

{(
n

l

)
,

n∑
w=0

AwB(l, w, n)

}]
(a)

≤
n∑
l=0

ql(1− q)n−l min

{(
n

l

)
,

n∑
w=0

E[Aw]B(l, w, n)

}
(b)
=

n∑
l=0

ql(1− q)n−l min

{(
n

l

)
,

n∑
w=0

2k−n
(
n

w

)
B(l, w, n)

}
, (3.35)

where (a) follows from Jensen’s inequality and (b) results from (3.34).
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Approximating p̃ using Normal Approximation

If p̃ denotes the target PEP, then the maximum number of information bits which

can be carried by the packet using the best possible coding scheme can be approx-

imated using normal approximation [3], [114] as

k ≈ nC −
√
nV Q−1(p̃) +

1

2
log2 n, (3.36)

where C = 1+q log2 q+(1−q) log2(1−q) is the channel capacity for the BSC, V =√
q(1− q) log2

1−q
q

is the channel dispersion for the BSC, and Q is the Gaussian

Q-function.

The above approximation can be used, in turn, to get a measure of the PEP

when the best possible channel coding scheme is used. When the number of

uncoded and coded bits are denoted as k and n, respectively, then the PEP using

the best possible coding scheme can be approximated as

p̃ ≈ Q

(
nC − k + 0.5 log2 n√

nV

)
. (3.37)

Sphere-Packing lower bound on p̃

The sphere-packing lower bound on the PEP for a (n, k) binary linear code on a

BSC with crossover probability q is [22]

p̃ ≥
n∑

i=t+1

(
n

i

)
qi(1− q)n−i − αt+1q

t+1(1− q)n−(t+1), (3.38)

where t is the greatest integer such that

αt+1 = 2n−k − 1−
(
n

1

)
−
(
n

2

)
− · · · −

(
n

t

)
≥ 0. (3.39)
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The lower bound given by (3.38) is tight in the sense that equality is achieved

for perfect (where αt+1 = 0) and quasi-perfect codes [22]. Note that the sphere-

packing bound on p̃ is the smallest error probability that can be achieved using

any (n, k) binary code. Thus, it acts as a performance benchmark for any practical

encoding-decoding scheme on a BSC.

The bounds on the PEP discussed in this section will be employed to obtain

bounds on the reduction in AST through channel coding which are illustrated

through numerical examples in Sec. 3.7. In the next section, we show that packet

delay may be further reduced by opportunistically combining packets and jointly

encoding the combined packet.

3.6 Opportunistic Packet Combining for Reduc-

ing Delay

Consider the scenario where a node polled for transmission has several packets in

its link layer queue which are waiting for their transmission. So far, we have seen

that performing channel coding on data packet of fixed size k can potentially lead

to significant reduction in the average packet delay. We now enquire if additional

reduction in packet delay can be obtained if the node opportunistically combines

two or more packets in its link layer queue into larger ‘super-packet’ and then

perform error correction coding on such super-packets. We consider only the

single user scenario, and thus no switching among queues is required.

Through an appropriate use of channel coding, an increase in packet length,

in general, can help in reducing the PEP on noisy channels when the overall

coding rate is kept constant, as long as the transmission rate is below channel

capacity [3], [103]. This observation can be argued using the reliability function

of a noisy channel [103], [115]. In fact, the PEP can be made arbitrarily small
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Figure 3.2: Coding rate Rc versus length of the uncoded packet, k, for a fixed
packet error probability of p = 10−2.

by sufficiently increasing the packet length (provided the transmission rate is less

than the channel capacity).

Equivalently, an increase in packet length can help to increase the coding rate

(and thus reduce the fraction of redundant bits) while keeping the PEP constant.

Fig. 3.2 shows that when the PEP is fixed to 10−2, the required coding rate

increases as a function of the uncoded packet size. The curves are obtained for

different Ec/N0 using normal approximation (3.36).

In this section, we study a scheme where a node opportunistically combines and

jointly encodes m data packets when the data queue has m packets waiting for

transmission, where m is an integer greater than one. Thus, in this opportunistic

transmission scheme, either the data packets are transmitted independently (when

the data queue has less than m packets) or m data packets are encoded and

transmitted together (when the data queue has at least m packets).

Since each uncoded packet consists of necessary headers (for identification) and

CRC bits (for error detection), the formation of super-packets leads to reduction
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in overhead since only one set of header and CRC bits are required for each

super-packet. Further, by use of appropriate channel coding, the PEP can be

reduced while keeping the same coding rate. However, on the other hand, since

packet combining increases packet length, the average delay experienced by the

first packet in the super-packet may increase due to increase in transmission time.

We want to know if, on average, the packet delay may be reduced by formation of

larger super-packets.

We now present conditions when opportunistic packet combining leads to a

reduction in delay for the single node case. Let each data packet comprise of kI

information bits and kO overhead bits consisting of CRC and header bits. Thus,

we have

k = kI + kO. (3.40)

Since the time taken for transmission of k bits is given by T , the time taken

for transmitting kI bits is θT where θ = kI/k. Similarly, the time taken for

transmission of kO bits is (1− θ)T .

Assume that a node has m data packets waiting for transmission in its data

queue, where m is an integer greater than one. When each data packet is en-

coded and transmitted one at a time, then let R1 and p1 denote the coding rate

and probability of packet error, respectively, corresponding to the coding scheme

which minimizes ν?. On the other hand, when the node chooses to form a super-

packet by combining the m waiting packets, let Rm and pm denote the coding rate

and probability of packet error, respectively, corresponding to the coding scheme

which minimizes ν?. The following proposition gives conditions under which the

opportunistic combining and joint encoding of packets leads to lower delay in a

single use scenario.

Proposition 5. Consider an opportunistic transmission scheme where the trans-
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Figure 3.3: Comparison of Dm and Dm,super for k = 70, kO = 32 and m = 6

mitter jointly encodes m packets whenever there are m data packets waiting in

the data queue. Compared to the conventional scheme, where each data packet is

always transmitted independently, the opportunistic transmission scheme results

in lower average packet delay if

Rm(1− pm)

R1(1− p1)
>

2(m− 1)θ + 2

m+ 1
. (3.41)

Proof: Please refer to Appendix A.4.

Since a larger packet size helps in obtaining a higher coding rate while main-

taining the same PEP (see Fig. 3.2), it follows that Rm(1 − pm) > R1(1 − p1).

Thus, the condition given by (3.41) implies that average packet delay can be re-

duced via packet combining, provided the reduction in redundancy and overhead

is sufficient to overcome the increase in transmission time.

Consider a scenario where a node has m packets waiting for transmission at

time t = 0. Let Dm denote the mean delay for these m waiting packets, rela-

tive to t = 0, when each packet is encoded and transmitted independently. Let
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Dm,super denote the mean delay for these m waiting packets, relative to t = 0, when

these packets are combined into a super-packet and encoded jointly. As shown in

Appendix A.4, the condition given by (3.41) is equivalent to Dm,super < Dm.

Fig. 3.3 compares Dm and Dm,super for k = 70, kO = 32 and m = 6. The

BPSK symbol rate is assumed to 5 Mbps, and hence T = 14µs. The values

of R1, p1, and Rm, pm (for generating the respective curves) are obtained using

the normal approximation (3.37). When Ec/N0 is low, the probability of error,

and hence the average delay, is high. The formation of super-packet and joint

encoding of the combined packets with increased length in case Ec/N0 < 4 dB

helps to bring the probability of error in the vicinity of 10−2 using sufficiently

higher rate code (compared to independent transmission of each packet) such that

(3.41) is satisfied.

Remark : When m packets are waiting in the data queue at t = 0, and these

packets are encoded and transmitted independently, the delay relative to t = 0

experienced by the first packet (on top of queue) is low while the delay for mth

waiting packet is relatively high. However, all the m packets experience the same

delay (relative to t = 0) in case of joint encoding of the super-packet which also

aids in reducing the peak delay.

3.7 Numerical Examples

3.7.1 Using a fixed set of coding schemes

We consider a system where the packet arrival rate per node is λd = 1000 pack-

et/sec, σ2
v = 0, and the number of information bits in each data packet are fixed to

k = 120 bits. We assume that the transmitter employs binary phase shift keying

(BPSK) modulation with a symbol rate of 5 × 106 symbols/sec. Hard-decision
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Figure 3.4: Probability of packet error for the uncoded and coded cases. Each
data packet comprises of 120 information bits.

decoding is employed at the receiver.

We seek to compare the average packet delay for the uncoded and coded

case where we consider the following candidate binary linear block codes: a

(127, 120) single-error correcting Bose-Chaudhuri-Hocquenghem (BCH) code, a

(63, 45) triple-error correcting BCH code, and a (7, 4) single-error correcting Ham-

ming code [22].

Since each transmitted packet comprises of 120 information bits, the packet

consists of 30 codewords using the (7, 4) Hamming code. When (63, 45) BCH code

is employed, the information bits are padded to 135 bits prior to encoding which

ensures that integer number of code blocks are present in the transmitted packet,

and thus each packet in this case comprises of 3 codewords.

Fig. 3.4 plots Monte Carlo simulation results for the probability of packet error

for the uncoded and coded cases as a function of Ec/N0 where Ec is the energy

per coded bit and N0 is the one-sided noise power spectrum density. The results

show that the triple-error correcting (63, 45) BCH code yields the lowest error
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Figure 3.5: Average service time as a function of SNR

probability.

Figs. 3.5 and 3.6 plot the average service time and the average packet delay,

respectively, as a function of Ec/N0 when the number of nodes in the system are

N = 4 and the queue switching time is Tv = 0.0024 ms. These figures indicate

that, in general, a coding scheme having lower average service time also results

in lower average packet delay, hence corroborating the claims made in Sec. 3.2.

When the signal-to-noise ratio (SNR) is low, the probability of packet error for

the uncoded case is high and the large number of retransmissions result in high

average packet delay. The reduction in error probability from using the triple-

error correcting (63, 45) BCH code results in lowest average packet delay when

Ec/N0 is between 2 dB and 4 dB. However, when the SNR is relatively high, the

average packet delay is dominated by the packet transmission time of each node

(since retransmissions are less likely). When Ec/N0 varies from 5 dB and 7 dB,

the (127, 120) coding scheme with a relatively high coding rate of 120/127 results

in the lowest average packet delay. Moreover, when Ec/N0 = 8 dB the uncoded

scheme yields the smallest packet delay since the uncoded error probability is
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Figure 3.6: Average packet delay as a function of SNR

sufficiently small (close to 2 × 10−2); any further reduction in error probability

through channel coding gets offset by the increase in transmission time due to

addition of redundancy.

3.7.2 Performance limits using the best possible coding

scheme

In this subsection, we quantify the reduction in average service time through the

use of the best possible coding scheme. We first consider the case where the

packet lengths are relatively small (less than 200 bits). For bounded distance

decoding of these small blocklengths, we select codes with best known minimum

distance [110], [111]. Later, we consider the case where the packet lengths are

relatively large (between 500 to 5000 bits). For bounded distance decoding of

these large packet lengths, we use the asymptotic form of the Gilbert-Varshamov

bound to come up with lower bound on the minimum distance of best codes.
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Figure 3.7: Probability of packet error with a fixed coding rate of Rc = 0.85 and
Ec/N0 = 6.8 dB (q = 0.001).

Relatively small packet lengths

Fig. 3.7 plots the different bounds and approximations on the probability of error

with coding rate of Rc = 0.85 with Ec/N0 = 6.8 dB. This value of Ec/N0 implies

that the equivalent BSC has crossover probability of roughly q = 0.001 using

(3.28). The length of the coded packet, n, is obtained by rounding k/Rc to the

closest integer. The figure shows that for k = 40, 80, and 125, the probability of

error with bounded distance decoding is very close to the sphere packing bound.

This implies that the corresponding codes are close to being ‘perfect’. Note that

the zigzagging of the curves occurs because the code size is of the form 2k where

k is restricted to be an integer; similar observations were made in [3].

Fig. 3.8 plots v? for Ec/N0 = 6.8 dB (q = 0.001). For k ≤ 80, the PEP for

the uncoded system (given by 1− (1− q)k) is less than 0.077. For these lengths,

from (3.17) we observe that in order for a coded system to achieve lower average

service time, we need a coding scheme with rate Rc resulting in PEP p̃ such that

Rc(1− p̃) > 1− 0.077 = 0.923. Fig. 3.8 shows that no such coding scheme exists
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Figure 3.8: v? versus uncoded packet length for Ec/N0 = 6.8 dB (q = 0.001).

and hence the uncoded system is the most efficient in this case. It can be verified

that when k ≤ 80, the maximization of Rc(1− p̃) using the sphere-packing bound

(3.38) occurs at Rc = 1, which corresponds to the uncoded case.

One might be tempted to only use short packets in networking, since uncoded

is optimal. However, packets in the network stack have header information, which

carries no information. So the shorter the packet, the higher the cost of overhead.

Hence longer packets are used in practice to mitigate the cost of overhead.

However, the PEP for the uncoded system increases with an increase in the

length of the packet. Higher values of PEP increase the number of retransmissions,

which in turn lead to an increase in the AST. Thus for relatively large values of

k, the reduction in PEP through channel coding at the cost of increase in the

packet length has the potential of reducing the overall AST. Indeed, the AST

using bounded distance decoding is reduced to less than 87 percent of the AST

for an uncoded system for k = 200 when a single error correcting (208, 200) code

is employed.

Although ν? typically decreases with the uncoded packet length k, Fig. 3.8
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shows an interesting phenomenon where ν? increases from k = 120 to k = 125 for

the case of bounded distance decoding. We first note that if Rc,k and p̃k denote the

coding rate and PEP, respectively, which achieves ν?(k), then

ν?(125)

ν?(120)
= (1− q)5 × Rc,120(1− p̃120)

Rc,125(1− p̃125)
,

where q = 0.001 is the crossover probability which models the channel in Fig. 3.8.

Next, numerical optimization over best possible codes shows that Rc,120 = 0.945,

p̃120 = 0.0074, while for k = 125 we have Rc,125 = 0.939, p̃125 = 0.0080. Applying

these values in the above equation shows that ν?(125) > ν?(120). We remark

that this phenomenon of ν? increasing with k is quite rare because PEP typically

decreases with an increase in k and Rc.

Fig. 3.8 also shows that the performance of bounded distance decoding using

codes with large minimum distance is very close to the performance limit of any

coded system given by the sphere packing bound. This is somewhat surprising

since the channel capacity using bounded distance decoding, denoted CB, on a

BSC with crossover probability q is bounded as [116]

1−H(2q) ≤ CB ≤ 1−H(0.5− 0.5
√

1− 4q), q < 0.25, (3.42)

and is strictly less than the BSC channel capacity 1−H(q), where H denotes the

binary entropy function.

Some light can be shed on the effectiveness of bounded distance decoding

for these packet lengths by noting that the coding rate Rc which minimizes the

AST for bounded distance decoding is greater than 0.94 while the corresponding

probability of error is around 10−2 (refer Table 3.2). Since the AST is minimized

when Rc(1− p̃) is maximized, the numerical results outline the fact that instead of
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BDD RCB NA SPB
k Rc p̃ Rc p̃ Rc p̃ Rc p̃

40 1.0000 0.0392 1.0000 0.0392 1.0000 0.0392 1.0000 0.0392
80 1.0000 0.0770 1.0000 0.0770 1.0000 0.0770 1.0000 0.0770
120 0.9449 0.0074 0.9160 0.0078 0.9160 0.0078 0.9449 0.0074
160 0.9524 0.0126 0.9302 0.0131 0.9195 0.0134 0.9524 0.0125
200 0.9615 0.0188 0.9259 0.0014 0.9259 0.0014 0.9615 0.0187

Table 3.2: Rc and p̃ which minimize ν?(n, k) for given k and q = 0.001

BDD RCB NA SPB
k Rc p̃ Rc p̃ Rc p̃ Rc p̃

40 0.8696 0.0775 0.7692 0.0154 0.8000 0.0894 0.8696 0.0764
80 0.8511 0.0687 0.8081 0.0775 0.8163 0.0757 0.8696 0.0727
120 0.8451 0.0551 0.8219 0.0598 0.8219 0.0598 0.8633 0.0515
160 0.8333 0.0449 0.8290 0.0457 0.8290 0.0457 0.8377 0.0130
200 0.8333 0.0349 0.8333 0.0349 0.8333 0.0349 0.8584 0.0306

Table 3.3: Rc and p̃ which minimize ν?(n, k) for given k and q = 0.01

lowering the PEP arbitrarily, it is required that p̃ is brought in the vicinity of 10−2

by employing very high code rates. As an example, we note that a coding scheme

with rate 0.9 and PEP 10−2 achieves lower AST than a coding scheme with rate

0.89 and PEP 10−6 since the former results in a higher value of Rc(1− p̃).

Remark : We use the following acronyms in Tables 3.2 and 3.3. (i) BDD: Bounded

Distance Decoding, (ii) RCB: Random Coding Bound, (iii) NA: Normal Approx-

imation, (iv) SPB: Sphere Packing Bound.

The value of v? when Ec/N0 = 4.3 dB (q = 0.01) is plotted in Fig. 3.9 for

k ∈ [40, 200]. When q = 0.01, the PEP for the uncoded packet for these lengths

is relatively high, ranging from 0.33 to 0.87. When channel coding is employed in

this case, the coding rate which minimizes the AST is between 0.8 to 0.9, while

the corresponding PEP is in the range [10−1, 10−2] (refer Table 3.3). This again

shows that instead of trying to make PEP arbitrarily small, it is enough to get it

close to 10−2 using high rate codes. As shown in Fig. 3.9, the AST using channel
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Figure 3.9: v? versus uncoded packet length for Ec/N0 = 4.3 dB (q = 0.01).

coding is reduced to less than one-fifth of the AST for the uncoded packet when

k = 200. This shows that the potential for reducing the AST using coding is

higher when the PEP for the uncoded system is relatively high. Since the PEP for

the uncoded system increases with an increase in the packet length, the reduction

in the AST is even more significant for larger packet lengths.

Relatively large packet lengths

Here, we use the asymptotic form of the Gilbert-Varshamov bound for obtaining

a lower bound on the minimum distance of good codes. The asymptotic form of

the Gilbert-Varshamov bound states that there exists a length n block code of

rate Rc for which the minimum distance approaches nδGV (Rc) where δGV (Rc) is

the root of the equation H(δ) = 1−Rc. For large packet lengths, the asymptotic

version of the sphere-packing bound states that the number of correctable errors

is approximately nδGV (Rc) [22].

Fig. 3.10 plots ν? for Ec/N0 = 6.8 dB and k ∈ [500, 5000]. It shows that the

AST, with an appropriate channel coding scheme, can be reduced to less than

71



Chapter 3. Reducing Delay and Energy Usage Via FEC Codes

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

−3

10
−2

10
−1

10
0

Length of the uncoded packet, k

ν
⋆

 

 
Bounded Distance Decoding
Normal Approximation
Sphere Packing Bound
Upper Bound using Prop. 2

Figure 3.10: ν? versus uncoded packet length for Ec/N0 = 6.8 dB (q = 0.001).

one-tenth the AST for the uncoded case for k ≥ 2500. The upper bound on ν? is

obtained using Proposition 2 where the base value for k = 500 is initialized using

the normal approximation. The figure shows that the bound is relatively tight for

smaller values of m, but gradually becomes weak as m increases. We observe that

the performance of bounded distance decoding is again close to the best achievable

performance (characterized by the sphere-packing bound). The coding rates which

yielded these performance were higher than 0.9 for packet lengths 500 ≤ k ≤ 5000

and the corresponding probability of packet error was around 10−2. This again

shows that good performance may be achieved when the coding scheme yields a

probability of error close to 10−2 with a code rate as high as possible.

3.8 Discussion

In this chapter, we applied bounds on the performance of FEC codes to quan-

tify their impact on packet delay, and showed that the knowledge of tradeoffs

involved in the choice of physical layer parameters is vital for optimizing network
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performance. This work is a step towards extending the notion that information

theoretic results can provide meaningful design guidelines for practical communi-

cation networks.

We applied results from multi-terminal queueing theory to prove that compared

to an uncoded system it is sufficient to reduce the AST using channel coding in

order to achieve lower packet delay. The minimization of AST posed a simpler

optimization problem, independent of system parameters such as packet arrival

rate and the number of nodes in the system. When the queue switching time in the

polling system is negligible, we proved that the percentage reduction in average

packet delay is at least as much as the percentage reduction in AST obtained using

channel coding.

We analyzed the tradeoff between a reduction in packet retransmission and an

increase in transmission time due to addition of redundancy using channel coding.

For instance, it was shown that a coding scheme with PEP 10−2 and coding rate

0.9 results in lower AST compared to a code with PEP 10−6 and coding rate 0.89.

The conventional viewpoint in network protocol design is to limit the size of

data packets since the probability of error of an uncoded packet increases with

packet length. However, we showed that when an appropriate channel coding

scheme is employed, the average packet delay can be reduced by opportunistically

combining several packets and jointly encoding the combined packets.

We showed that network performance can be enhanced by tailoring the physical

layer parameters to the specific channel conditions. The key takeaways can be

succinctly summarized as follows: (i) instead of trying to make the PEP close

to zero via FEC codes, we should aim to bring it close to 10−2 using as high

a coding rate as possible, (ii) the performance of maximum likelihood decoding

can be approached by using a bounded distance decoder, and (iii) delay may

be further reduced in certain cases by opportunistically combining and encoding
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several packets jointly.

Further, we showed that the percentage reduction in AST due to channel

coding translates into an equal reduction in average transmit energy required for

successful packet transfer when the energy per coded bit is fixed.
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Chapter 4

Packet Delay Analysis at an

Energy Harvesting Transmitter

Consider an energy harvesting transmitter which uses the harvested energy for

transmission of data packets. The data packets arrive randomly and wait in a

queue for accumulation of sufficient energy and for service completion of previously

arrived packets. Thus, the data queue dynamics are influenced jointly by the

energy arrival process, the data arrival process, and the data service process. We

formulate a two stage virtual queueing system which decouples the wait stages for

the energy arrival process and the service process. This decoupling helps us to

obtain closed-form expressions for the average packet delay and the probability of

data packet loss due to buffer overflow.

We first derive the results for single-source energy harvesting, and then extend

them for the useful case of multi-source energy harvesting. The derived closed-

form expressions are shown to be exact when the service time becomes negligible.

We provide Monte Carlo simulations and show the robustness of these expressions

even for relative high values of the average service time.

The results in this chapter should be useful to both system designers and re-
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searchers. Using the closed-form expressions derived in this chapter, an energy

harvesting system designer may appropriately choose the system parameters (for

example, the energy buffer size, the data packet arrival rate, and the packet trans-

mission rate) such that the desired performance levels are met. The derived ex-

pression for the average packet delay is used to numerically quantify the maximum

throughput under an average delay constraint.

The rest of the chapter is organized as follows. The system model is presented

in Sec. 4.1 and the virtual queueing system is introduced in Sec. 4.2. The unit-

energy arrival case, where each energy arrival brings energy which is sufficient

to transmit one data packet, is analyzed in Sec. 4.3. The fractional-energy ar-

rival case, where each energy arrival brings only a fraction of the energy required

to transmit one data packet, is presented in Sec. 4.4. The bulk-energy arrival

scenario, where each energy arrival brings sufficient energy for transmission of

multiple data packets, is analyzed in Sec. 4.5. We extend the approach used for

analyzing fractional and bulk-energy arrivals to the useful case of multi-source

energy harvesting in Sec. 4.6, where energy is harvested from two independent

sources, with potentially different quantity and rate of energy arrival from each

source. In Sec. 4.7, we show that the derived closed-form expressions can be ap-

plied to quantify the maximum throughput which the system can support while

meeting the required quality of service (QoS) constraints. The Monte Carlo simu-

lation results for a variety of cases are presented in Sec. 4.8 which help us to draw

insights regarding the impact of design parameters on packet delay. Concluding

remarks and discussions are presented in Sec. 4.9.
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4.1 System Model

We consider a communication system (see Fig. 4.1) where the energy consumed

for transmission of data is supplied by an external recharge process. The energy

arrivals are modeled as a Poisson process and each arrival corresponds to a fixed

amount of energy. The Poisson energy arrivals model piezoelectric energy harvest-

ing from mechanical vibrations [117]–[119] and this energy model has been used

previously in [120], [121]. We also note that commercial products based on har-

vesting piezoelectric energy from passing vehicles on roadways have already been

built [122]. We assume that the energy storage process is ideal with no energy

leakage [59].

The data to be transmitted is assumed to arrive in a fixed packet size, inde-

pendent of energy arrivals. We assume that each data packet consumes one unit

of energy for transmission. This is not too simplifying an assumption since the en-

ergy arrivals could correspond to unit-energy arrivals (one energy packet required

for transmission of one data packet), or fractional-energy arrivals (multiple energy

packets required for one data packet), or bulk-energy arrivals (one energy packet

is sufficient for transmission of multiple data packets).

Data packet arrivals are modeled as a Poisson process. This model for real-

time arrival of data packets is common and has been used in energy harvesting

communication systems [59], [117], [118], [120] and sensor networks [123]–[125]. We

assume that receiving or processing of data packets does not consume significant

amount of energy and that data transmission is the only energy consuming task.

This assumption is justified when the distance between the transmitter and the

receiver is large and the energy spent in transmission dominates the total energy

consumption. Equivalently, we may assume that the power management at the

transmitter uses a dedicated battery for low energy consumption tasks (such as
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Figure 4.1: Model of the physical queueing system in an energy harvesting trans-
mitter having bounded energy and data storage.

receiving and processing packets) while the harvested energy is used for packet

transmission.

The service (transmission) time of each data packet may have a general dis-

tribution. The general distribution may be specialized to the deterministic case

where the transmission time is fixed. The general distribution of the packet ser-

vice time can also capture the time variation in the channel access in case of a

time-shared channel. We assume that the transmit power is sufficient to meet

the required probability of packet error for the given communication channel and

hence packet retransmissions are not considered.

The energy buffer can store up to Be units of energy and the data buffer

has a capacity of Bd data packets. The data or energy arrivals which find the

corresponding queue to be full are lost. The transmission of an arriving data

packet starts as soon as the following two conditions are met: (i) at-least one unit

of energy is present in the energy buffer and (ii) the transmission of previously

queued data packets has completed. If either of these two conditions are not

met, the data packet is either queued (when the data buffer is not full) or else

discarded (when the data buffer is full). Note that the energy level in the energy
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buffer reduces by one unit after transmission of each data packet.

We refer to the queueing system for this system model as the Physical Queueing

System (see Fig. 4.1).

We define data packet delay to be the time between the arrival of a data packet

at the data queue of the energy harvesting transmitter and the completion of its

transmission. Thus, data packet delay is the sum of the time spent by the packet

waiting in the data queue and the transmission time. We define data packet loss

to be the event when an arriving data packet is discarded due to the data buffer

being full.

We derive closed-form expressions for the average data packet delay and the

probability of data packet loss. In order to obtain the above metrics of interest,

we formulate a two stage Virtual Queueing System which is described next.

4.2 Virtual Queueing System

The virtual queueing system decouples the wait stages for the energy arrival pro-

cess and the service process as shown in Fig. 4.2. In stage one, each data packet

waits in the queue until it is paired with one unit of energy in a First-Come-First-

Served (FCFS) manner. The buffer sizes for the data and the energy queues in

the first stage of the virtual queueing system are Bd and Be, respectively, which

are equal to the corresponding buffer sizes in the physical queueing system. Also,

the data and energy arrival processes in the first stage are same as that in the

physical queueing system.

The data packets after being paired with one unit of energy, instantly move

to the stage two of the virtual queueing system. The second stage is assumed to

have infinite storage capacity and the service process for the data packets in the

second stage is same as that for the physical queueing system.
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Figure 4.2: Model of the two stage virtual queueing system. Arriving data packets
which find sufficient energy in stage one energy queue instantly move to the second
stage where they wait for their turn to get transmitted.

4.2.1 Comparing the Physical and Virtual Queueing Sys-

tems

We now compare the virtual queueing system with the physical queueing system.

We will refer to each energy arrival as an energy packet. Table 4.1 summarizes

the important variables that are used in this chapter. TW denotes the average

waiting time for data packets in the physical queueing system. TW1 and TW2

denote the average waiting time for data packets in the first and second stages of

the virtual queueing system, respectively. These average waiting times correspond

to only those data packets which are queued. Data packets which are lost due to

buffer overflow are ignored in the delay analysis. The mean transmission time of

data packets is denoted by τ . Since the packet delay is the sum of waiting and

transmission time, the average data packet delay in the virtual queueing system,

denoted by TD, is given by

TD = TW1 + TW2 + τ. (4.1)

The probability of data packet loss in the first stage of the virtual queueing

system is denoted as Ploss. We will use the closed-form expressions for TD and
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Variables Description

Bd Buffer size of data queue for stage one of virtual queue
Be Buffer size of energy queue for stage one of virtual queue
Nd(t) Number of data packets in stage one of virtual queue at time t
Ne(t) Number of energy packets in stage one of virtual queue at time t
Nav Average number of data packets waiting in stage one of virtual queue
λd Arrival rate of data packets
λe Arrival rate of one unit of energy
τ Mean transmission time of data packets
β Work-to-resource ratio (λd/λe)
TW Avg. waiting time for data packets in physical queue
TW1 Avg. waiting time for data packets in stage one of virtual queue
TW2 Avg. waiting time for data packets in stage two of virtual queue
TD Avg. packet delay in virtual queue
Ploss Probability of data packet loss in virtual queue

Table 4.1: Description of variables

Ploss to approximate the average data packet delay and the probability of data

packet loss, respectively, in the physical queueing system. The motivation for this

approximation is as follows: when the transmission time is negligible, the data

packets get serviced instantly and τ → 0, TW2 → 0. With negligible transmission

time, the data packets in the physical queueing system wait only for energy arrival,

so TW → TW1 and the probability of data loss in the physical queueing system

tends to Ploss. Thus, the physical queueing system becomes identical to the first

stage of the virtual queueing system when the transmission time is zero.

When the transmission time is significant, the physical and virtual queueing

systems behave identically as long as Bd and Be are infinite. When Be is finite and

Bd is infinite, the virtual queueing system offers potentially larger energy storage

capacity compared to the physical queueing system. This is due to the second

stage of the virtual queue having an unbounded buffer and the fact that energy in

the first stage energy queue reduces by one unit the moment a data packet moves

to the second stage. The additional energy packets in the virtual queueing system

reduce the waiting time of the data packets and hence TW > TW1 + TW2.

However, when Bd is finite and Be is infinite, the virtual queueing system
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offers potentially larger data storage capacity compared to the physical queueing

system. This causes TW < TW1 + TW2 because the additionally queued data

packets increase the waiting time of the subsequent data packets.

We first analyze the virtual queueing system for the relatively simple case of

unit-energy arrivals, where the evolution of the data and energy buffer occupancy

in the first stage is modeled as a one-dimensional Markov chain. We deal with

fractional and bulk energy arrivals in the subsequent sections.

4.3 Unit-Energy Arrivals

Here, since every energy arrival corresponds to one unit of energy, each data packet

needs one energy packet to move to the second stage of the virtual queueing system.

We now obtain exact expressions for Ploss and TW1.

4.3.1 Obtaining Ploss and TW1

Let λd and λe denote the data and energy arrival rates, respectively. Let Nd(t) and

Ne(t) denote the number of data and energy packets in the respective queues of the

first stage in the virtual system at time t. Since the paired data and energy packets

instantaneously move to the second stage, the state of the stage one queueing

system is captured by M(t) = Nd(t)−Ne(t). Since data and energy inter-arrival

times are exponentially distributed, its memoryless property implies that M(t) is a

continuous-time Markov chain. We consider the time instances 0, δ, 2δ, . . . , kδ, . . .

where δ is a small positive number. If we define Mk := M(kδ), then {Mk|k =

0, 1, . . .} is a discrete-time Markov chain with steady-state occupancy probabilities

equal to those of the continuous chain M(t).

When the packet arrival process is Poisson with rate λ, then the probability of

exactly one arrival occurs in the time interval [t, t + δ] is independent of t and is
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given by λδ e−λδ = λδ (1− λδ+ (1/2)(λδ)2− . . .) = λδ+ o(δ), where o(δ) denotes

a function of δ with lim
δ→0

(o(δ)/δ) = 0. Similarly, the probability of two or more

arrivals in [t, t + δ] is easily shown to be o(δ) while the probability of no packet

arrival in [t, t+ δ] is given by 1− λδ + o(δ).

Since both data and energy arrivals are Poisson, the transition probabilities

Pi,j = P{Mk+1 = j|Mk = i} are

P−Be,−Be = 1− λdδ + o(δ) ; PBd,Bd
= 1− λeδ + o(δ)

Pi,i = 1− (λd + λe)δ + o(δ), −Be < i < Bd ; Pi,i+1 = λdδ + o(δ), −Be ≤ i < Bd,

Pi,i−1 = λeδ + o(δ), −Be < i ≤ Bd ; Pi,j = o(δ), j 6= i, i− 1, i+ 1.

The discrete-time Markov chain {Mk|k = 0, 1, . . .} has finite number of states with

−Be ≤Mk ≤ Bd. It is irreducible because it can transition from any state to any

other state in a finite number of steps. It is also aperiodic because Pi,i > 0 for

−Be ≤ i ≤ Bd. An irreducible and aperiodic finite Markov chain has a unique

steady-state probability vector [15]. Thus, unique steady-state probabilities exist

for {Mk}. Let the steady-state probabilities be denoted as

Pn := lim
k→∞

P{Mk = n} = lim
t→∞

P{M(t) = n}. (4.2)

Since the frequency of transitions from state n to state n + 1 is equal to the

frequency of transitions from n+ 1 to n in the steady state, we have

Pn (λdδ + o(δ)) = Pn+1 (λeδ + o(δ)) , −Be ≤ n < Bd. (4.3)

Dividing the above equation by δ and taking the limit δ → 0,

Pnλd = Pn+1λe, −Be ≤ n < Bd. (4.4)
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We now define the work-to-resource ratio as

β = λd/λe. (4.5)

Thus β denotes the ratio of the rate at which work (data packet) is generated to

the rate at which resource (energy packet) arrives. From (4.4) and (4.5), it follows

that

Pn = βBe+nP−Be , −Be ≤ n ≤ Bd. (4.6)

When β = 1, the steady state probabilities for all states are equal. Because the

sum of steady state probabilities is equal to 1, we have

Pn = 1/(Be +Bd + 1), −Be ≤ n ≤ Bd, β = 1. (4.7)

When β 6= 1, by summing the probabilities in (4.6) to 1, we get

P−Be =
1− β

1− βBe+Bd+1
. (4.8)

Since the data arrival process is Poisson and independent of the energy arrival

process, the probability of data packet loss is equal to the unconditional steady-

state probability of the data queue being full [15]. Thus, Ploss = PBd
and we

get

Ploss =


1/(Be +Bd + 1), if β = 1

βBe+Bd − βBe+Bd+1

1− βBe+Bd+1
, if β 6= 1.

(4.9)

From (4.9) we observe that Ploss does not depend on the individual buffer sizes

but rather on the sum Be +Bd.

Let Nav denote the average number of data packets waiting in stage 1 queueing
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sub-system. Then,

Nav =

Bd∑
n=1

nPn =

Bd∑
n=1

nβBe+nP−Be

=


(

1
Be+Bd+1

)(
Bd(Bd+1)

2

)
, if β = 1

βBe+1

(
(1−βBd+1)−(1−β)(Bd+1)βBd

(1−β)(1−βBe+Bd+1)

)
, if β 6= 1.

(4.10)

Using Little’s Law, we have Nav = (1− Ploss)λdTW1 and hence

TW1 =
Nav

(1− Ploss)λd
(4.11)

=


Bd(Bd+1)

2(Be+Bd)λd
, β = 1

1
λd

(
βBe+1

1−βBe+Bd

) [
(1−βBd+1

1−β )− (Bd + 1)βBd

]
, β 6= 1.

(4.12)

4.3.2 Asymptotic Analysis of Ploss and TW1

We now present an asymptotic analysis of Ploss and TW1 when the buffer sizes

become large. The analysis is divided into three cases depending on the value

of β. We will refer to the system as being adequately-resourced, inadequately-

resourced, and resource-balanced, for the cases when β < 1, β > 1, and β = 1,

respectively.

• When the system is adequately-resourced (β < 1) and Be → ∞, then from

(4.9), (4.12) we note that Ploss → 0 and TW1 → 0. In this case, an arriving

data packet is instantly paired with an energy packet. However, when Be is

finite and the data buffer size is large, then the probability of data packet
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loss and the average waiting time in stage one can be approximated as

Ploss ≈ (1− β)βBe+Bd , β < 1, Bd � 1 (4.13)

TW1 ≈
βBe+1

λd (1− β)
, β < 1, Bd � 1. (4.14)

Here Ploss reduces exponentially as the sum Be +Bd increases. The approx-

imation for TW1 in (4.14) shows that it becomes independent of the actual

value of Bd and reduces exponentially with Be.

• When the system is inadequately-resourced (β > 1) and Bd is large, then

from (4.9) and (4.12) we get

Ploss ≈
β − 1

β
=
λd − λe
λd

, β > 1, Bd � 1 (4.15)

TW1 ≈
β

λd

(
Bd −

(
1

β − 1

))
, β > 1, Bd � 1. (4.16)

Here Ploss tends to a constant value independent of the actual buffer sizes.

From (4.16) we note that TW1 grows almost linearly with Bd and is indepen-

dent of the energy buffer size.

Even when Bd is small and Be � 1 in an inadequately-resourced system,

from (4.9) and (4.12) we observe that both Ploss and TW1 are independent

of the actual value of Be.

• When the system is resource-balanced (β = 1), then from (4.12) we observe

that TW1 →∞ as Bd →∞. However, when Bd has a fixed finite value and

Be →∞, then TW1 → 0. From (4.9) it follows that Ploss falls inversely with

the sum Bd +Be for large buffer sizes.
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4.3.3 Obtaining TW2

The rate at which data packets arrive at the second stage is equal to λd (1− Ploss).

If we approximate the packet arrival process at the second stage by a Poisson

process, we obtain an approximation for TW2 as follows:

TW2 ≈
λd (1− Ploss) T̄ 2

2 (1− λd (1− Ploss) τ)
, (4.17)

where the expression on the right is the waiting time in queue for a data packet in

an M/G/1 queue with arrival rate λd (1− Ploss), mean service time τ and mean-

squared service time T̄ 2 [15].

The motivation for approximating the packet arrival process at the second stage

as Poisson with rate λd (1− Ploss) is as follows. After an arrival of data-energy

packet-pair to the second stage, if energy packets are waiting in the first stage

energy queue, then the inter-arrival time for the next packet-pair is independent

and exponentially distributed with mean 1/λd. For the case when λe > λd and

Be → ∞, we note that in the steady state, energy packets wait for data packet

arrival and the packet-pair arrival process at the second stage tends to Poisson

with rate λd while Ploss → 0. However, when both Bd and Be are finite, it follows

from (4.9) that Ploss > 0 and the packet arrival rate at the second stage becomes

λd (1− Ploss).

The overall average packet delay is obtained using (4.1). Next, we analyze

the more challenging case of fractional-energy arrivals where the exact closed-

form expression for TW1 is derived by harnessing the structure in an associated

two-dimensional Markov chain.
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4.4 Fractional-Energy Arrivals

Here, each energy arrival corresponds to only a fraction of the energy required

to transmit a data packet. In this case, we will capture the state of the virtual

queueing system by a pair of variables. Then, we exploit the structure of the

resulting two-dimensional Markov chain to derive the steady-state system proba-

bilities. These in turn are used to obtain exact closed-form expressions for Ploss

and TW1.

We assume that each energy arrival brings 1/Kf units of energy where Kf is

a positive integer greater than one. We define an energy-frame as a contiguous

block of Kf energy packets. The inter-arrival time of energy-frames is the sum of

Kf independent exponential random variables and hence has an Erlang distribu-

tion. Also, one energy-frame corresponds to one unit of energy which is used for

transmitting one data packet. We denote data packet and energy-frame arrival

rates by λd and λe, respectively. Note that the energy packet arrival rate in this

case is Kfλe.

Let Ne(t) denote the number of energy packets in the energy queue of the first

stage at time t. We define Y (t) to be the quotient and Z(t) to be the remainder,

respectively, when Ne(t) is divided by Kf . Thus Y (t) is the number of energy-

frames present at time t in the energy queue. We define M(t) = Nd(t) − Y (t)

where Nd(t) is the number of data packets in the data queue of the first stage at

time t. Note that −Be ≤M(t) ≤ Bd and 0 ≤ Z(t) ≤ Kf − 1.

The state of the stage one queueing system is captured by the ordered pair

X(t) = (M(t), Z(t)). Since data and energy inter-arrival times are exponen-

tially distributed, its memoryless property implies that X(t) is a continuous-time

Markov chain whose state-space is given by S = {(j1, j2) | − Be < j1 ≤ Bd, 0 ≤

j2 ≤ Kf−1}∪(−Be, 0). We now present the steady-state analysis of the stage one
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queueing system which leads to exact closed-form expressions for Ploss and TW1.

4.4.1 Stage One Steady-State Probabilities

The Markov chain X(t) is irreducible because it can transition from any state to

any other state in a finite number of steps. We denote the steady-state probability

distribution for X(t) as P(j1,j2) := limt→∞ P{X(t) = (j1, j2)}, and let Pj denote

the vector [P(j,k−1) · · · P(j,1) P(j,0)]
T , for −Be < j ≤ Bd. In the steady-state, since

the frequency of transition out of a given set of states is equal to the frequency of

transition in to those set of states, we have the following balance equations

A Pj1 = B Pj1−1, −Be + 1 < j1 < Bd , (4.18)

where A and B are Kf ×Kf invertible matrices given by

A =



Kfλe 0 0 · · · 0

λd +Kfλe −Kfλe 0
. . . 0

0 λd +Kfλe −Kfλe
. . . 0

...
. . . . . . . . . . . .

0 0
. . . λd +Kfλe −Kfλe


,

B =



λd λd · · · λd λd

λd 0 · · · 0 0

0 λd
. . . 0 0

...
. . . . . . . . . . . .

0 0
. . . λd 0


,
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with det(A) = (−1)Kf−1(Kfλe)
K
f and det(B) = (−1)Kf−1(λd)

K
f . The probability

vector PBd
is related to PBd−1 as follows

Ã PBd
= B PBd−1, (4.19)

where Ã is a Kf ×Kf matrix given as

Ã =



Kfλe 0 0 · · · 0

Kfλe −Kfλe 0 · · · 0

0 Kfλe −Kfλe · · · 0

...
. . . . . . . . . . . .

0 0
. . . Kfλe −Kfλe


. (4.20)

Note that Ã is a lower triangular matrix, like A, with det(Ã) = (−1)Kf−1(Kfλe)
K
f .

Let r = λd/(Kfλe) and v be defined as v =
[
r r(1 + r) · · · r(1 + r)Kf−1

]T
. Then

we have P−Be+1 = P(−Be,0)v. From (4.18) and (4.19), we get

Pj1 = P(−Be,0)

(
RBe+j1−1 v

)
, −Be + 1 ≤ j2 < Bd (4.21)

PBd
= P(−Be,0)

(
R̃ RBe+Bd−2 v

)
, (4.22)

where R = A−1B, R̃ = (Ã)−1B. Equations (4.21) and (4.22) show that the steady

state probability of any given state can be expressed in terms of P(−Be,0). Since

the steady-state probability of all the states sum to 1, we have

(
P(−Be,0)

)−1
= 1 + 1T

(
Be+Bd−2∑

j=0

Rj + R̃RBe+Bd−2

)
v, (4.23)

where 1 denotes a column vector of lengthKf consisting of all ones, and superscript

T denotes the transpose operation.
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4.4.2 Obtaining Ploss and TW1

If πj denotes the probability that there are j data packets in the first stage data

queue, then πj = 1TPj, 1 ≤ j ≤ Bd. Thus we have

Ploss = πBd
= P(−Be,0)1

T R̃RBe+Bd−2v. (4.24)

Note that similar to the unit energy arrival case, Ploss for fractional-energy

arrivals also depends only on the sum of the buffer sizes Bd + Be rather than on

individual data and energy buffer sizes.

The average number of data packets waiting in the first stage data queue,

denoted Nav, are given by

Nav =

Bd∑
j=1

jπj = P(−Be,0)

[ Bd−1∑
j=1

j 1TRBe+j−1 v + Bd 1T R̃RBe+Bd−2 v
]
. (4.25)

By applying Little’s Law, we obtain TW1 as

TW1 =
Nav

λd (1− Ploss)
, (4.26)

where Ploss and Nav are given by (4.24) and (4.25), respectively.

4.4.3 Obtaining TW2

TW2 is obtained using (4.17) while the overall average data packet delay is given

by (4.1).
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4.5 Bulk-Energy Arrivals

Here we analyze the case where each energy arrival corresponds to Kb units of

energy, where Kb is an integer greater than 1. Thus, in this case, each energy

arrival brings energy which is sufficient for transmission of Kb data packets. Note

that each energy arrival in this case can be interpreted as a bulk arrival of Kb

unit-energy packets. Since λe denotes the arrival rate of one unit of energy, the

arrival rate of energy packets for bulk-energy arrivals is given by λe/Kb.

Let Nd(t) denote the number of data packets in the data queue of the first stage

at time t. Let Ne(t) denote the number of unit-energy packets in the energy queue

of the first stage at time t. As before, Bd denotes the number of data packets

that can be stored in the data buffer, while Be denotes the number of unit energy

packets that be stored in the energy buffer. We assume that both Bd and Be are

multiples of Kb.

We define Y (t) to be the quotient and Z(t) to be the remainder, respec-

tively, when Nd(t) − Ne(t) is divided by Kb. Thus −Be/Kb ≤ Y (t) ≤ Bd/Kb

and 0 ≤ Z(t) ≤ Kb − 1. The state of the stage one queueing system is cap-

tured by the ordered pair X(t) = (Y (t), Z(t)). Since data and energy inter-arrival

times are exponentially distributed, its memoryless property implies that X(t) is a

continuous-time Markov chain. The state-space of the stage one queueing system

is given by S = {(j1, j2) | −Be/Kb ≤ j1 ≤ Bd/Kb− 1, 0 ≤ j2 ≤ Kb− 1} ∪ (Bd, 0).

4.5.1 Stage One Steady-State Probabilities

The Markov chain X(t) is irreducible because it can transition from any state to

any other state in a finite number of steps. We denote the steady-state probability

distribution for X(t) as P(j1,j2) := limt→∞ P{X(t) = (j1, j2)}, and let Pj1 denote

the vector [P(j1,Kb−1) · · · P(j1,1) P(j1,0)]
T , for −Be ≤ j1 ≤ Bd − 1. In the steady-
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state, since the frequency of transition out of a given set of states is equal to the

frequency of transition in to those set of states, we have the following balance

equations

A Pj1 = B Pj1+1, −Be/Kb ≤ j1 < Bd/Kb , (4.27)

where A and B are Kb ×Kb invertible matrices given by

A =



λd 0 0 · · · 0

λd + λe/Kb −λd 0
. . . 0

0 λd + λe/Kb − λd
. . . . . . ‘

...
. . . . . . 0

0 · · · 0 λd + λe/Kb −λd


,

B =



λe/Kb λe/Kb · · · λe/Kb λe/Kb

λe/Kb 0 · · · 0 0

0 λe/Kb
. . . 0 0

...
. . . . . . . . . . . .

0 0
. . . λe/Kb 0


,

with det(A) = (−1)Kb−1(λd)
K
b and det(B) = (−1)Kb−1(λe/Kb)

K
b .

Let r = λe
Kbλd

and v be defined as v =
[
r r(1 + r) · · · r(1 + r)Kb−1

]T
. From

the balance equations for the boundary states, we get

P(Bd/Kb)−1 = P(Bd/Kb,0)v. (4.28)

From (4.27) and (4.28), we get

Pj1 = P(Bd/Kb,0)

(
R(Bd/Kb)−j1−1 v

)
, −Be/Kb ≤ j1 ≤ (Bd/Kb)− 1, (4.29)

where R = A−1B. Equation (4.29) shows that the steady state probability of
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any given state can be expressed in terms of P(−Bd/Kb,0). Since the steady-state

probability of all the states sum to 1, we have

(
P(Bd/Kb,0)

)−1
= 1 + 1T

Be/Kb+Bd/Kb−1∑
j=0

Rj

v. (4.30)

4.5.2 Obtaining Ploss and TW1

Since the data arrival process is Poisson and independent of the energy arrival

process, the probability of data packet loss is equal to the unconditional steady-

state probability of the data queue being full. Thus we have

Ploss = PBd/Kb,0 =

1 + 1T

Be/Kb+Bd/Kb−1∑
j=0

Rj

v

−1

. (4.31)

From (4.31) we note that Ploss again depends only on the sum of the buffer sizes

Bd +Be rather than on individual data and energy buffer sizes.

Let βj be a length Kb vector defined as

βj = [(Kbj +Kb − 1) (Kbj +Kb − 2) · · · (Kbj + 1) Kbj]
T . (4.32)

Then the average number of data packets waiting in the first stage data queue is

given by

Nav =

(Bd/Kb)−1∑
j=0

βTj Pj

+BdPBd/Kb,0 = Ploss

(Bd/Kb)−1∑
j=0

βTj R
(Bd/Kb)−j1−1 v +Bd

 .

(4.33)

By applying Little’s Law, we obtain TW1 as

TW1 =
Nav

λd (1− Ploss)
, (4.34)
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where Ploss and Nav are given by (4.31) and (4.33), respectively.

4.5.3 Obtaining TW2

TW2 is obtained using (4.17) while the overall average data packet delay is given

by (4.1).

4.6 Multi-Source Energy Arrivals

The topic of multi-source energy harvesting has gained the attention of researchers

[60],[61] with the potential to provide a more robust system solution. If the energy

arrivals from different sources are (a) independent, (b) Poisson, and (c) energy

arrival from each source corresponds to the same amount of energy, then the

combined energy arrival process is again Poisson. In this case, the results derived

in previous sections can be applied to obtain closed-form expression for average

data packet delay by replacing the energy arrival rate with the sum of the rates

of individual energy arrivals.

However, when energy arrivals from different sources correspond to different

amounts of energy, then the combined energy arrival process is no longer Poisson.

In this section, we will derive closed-form expression for the average packet delay

with multi-source energy arrivals from two independent sources. In particular,

we consider the case where each energy arrival corresponds to either one unit of

energy or a fraction of one unit of energy. The case of combined unit-energy and

bulk-energy arrivals can be handled in a similar fashion.

We assume that the energy harvested from the two independent sources is

stored in a single energy buffer which can store up to Be units of energy. For

mathematical convenience, we assume that the data buffer capacity, Bd, and Be

are both positive even integers.
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The unit-energy arrival process is assumed to be Poisson and its arrival rate

is denoted as λe1. The fractional-energy arrival process is also Poisson and each

fractional arrival brings 1/Kf units of energy, where Kf is an integer greater

than one. We let the fractional-energy arrival rate be Kfλe2 where λe2 is the

rate of accumulation of one unit of energy with fractional-energy arrivals. The

combined energy arrival rate from the two sources for one unit of energy is given

by λe = λe1 + λe2.

Let Ne1(t) and Ne2(t) denote the number of unit-energy and fractional-energy

packets, respectively, in the energy queue of the first stage at time t. Let Y (t) be

the quotient and Z(t) the remainder, respectively, when Ne2(t) is divided by Kf .

Define M(t) = Nd(t)− (Ne1(t) + Y (t)) where Nd(t) is the number of data packets

in the data queue of the first stage at time t. Note that −Be ≤ M(t) ≤ Bd and

0 ≤ Z(t) ≤ Kf − 1.

The state of the stage one queueing system is captured by the ordered pair

X(t) = (M(t), Z(t)). Since data and energy inter-arrival times are exponen-

tially distributed, its memoryless property implies that X(t) is a continuous-time

Markov chain. The state-space of the stage one queueing system is given by

S = {(j1, j2) | −Be < j1 ≤ Bd, 0 ≤ j2 ≤ Kf − 1} ∪ (−Be, 0). (4.35)

The Markov chain X(t) is irreducible because it can transition from any state to

any other state in a finite number of steps. We denote the steady-state probability

distribution for X(t) as P(j1,j2) := limt→∞ P{X(t) = (j1, j2)}, and let Pj1 denote

the vector [P(j1,Kf−1) · · · P(j1,1) P(j1,0)]
T , for −Be + 1 ≤ j1 ≤ Bd. In the steady-

state, since the frequency of transition out of a given set of states is equal to the

frequency of transition in to those set of states, we have the following balance
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equations

A Pj = λd Pj−1 +B Pj+1, −Be + 1 < j < Bd , (4.36)

where A and B are Kf ×Kf matrices given by

A =



λsum −Kfλe2 0 · · · 0

0 λsum −Kfλe2
. . . 0

...
. . . . . . . . . . . .

0
. . . . . . λsum −Kfλe2

0 0
. . . 0 λsum


,

B =



λe1 0 0 · · · 0

0 λe1 0 · · · 0

...
. . . . . . . . . . . .

0
. . . . . . λe1 0

Kfλe2 0 · · · 0 λe1


.

with λsum = λd + λe1 +Kfλe2.

The balance equations for the boundary states can be expressed as

λd P−Be,0 = vT P−Be+1, (4.37)

Ã P−Be+1 = B P−Be+2, (4.38)

Â PBd
= λd PBd−1, (4.39)

where vT is a row vector of length Kf while Ã and Â are Kf ×Kf matrices given
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as follows

vT = [(λe1 +Kfλe2) λe1 · · · λe1] , (4.40)

Ã = A−

0(Kf−1)×Kf

vT

 , (4.41)

Â = A− λd I, (4.42)

with 0(Kf−1)×Kf
denoting a (Kf − 1) × Kf matrix consisting of all zeros, and I

denoting the Kf ×Kf identity matrix.

The process of deriving the steady-state probability in case of multi-source-

energy arrivals is simplified by pairing adjacent probability vectors and defining

Qj =

P2j−1

P2j

 . (4.43)

Now, (4.36) can equivalently be expressed as

Qj−1 = R Qj , (−Be/2) + 2 ≤ j ≤ (Bd/2) (4.44)

where R is a 2Kf × 2Kf matrix defined as

R =


((
λ−1
d A

)2 − λ−1
d B

)
−λ−1

d AB

−λ−1
d A −λ−1

d B

 . (4.45)

We can use (4.44) to express Qj−1 in terms of QBd/2 as

Qj−1 = R
Bd
2
−(j−1) QBd/2 , (−Be/2) + 2 ≤ j ≤ (Bd/2). (4.46)
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If we define

H1 =

[
λd I −Â

]
, (4.47)

H2 =

[
Ã −B

]
R

Bd+Be
2
−1 , (4.48)

H =

H1

H2

 , (4.49)

then using (4.46), the relations given by (4.38) and (4.39) can be compactly ex-

pressed as

H QBd/2 = 02Kf×1 . (4.50)

where 02Kf×1 is an all-zero vector. Further, if we define

wT =

[
λ−1
d vT 01×Kf

]
R

Bd+Be
2
−1 , (4.51)

then (4.37) can be equivalently expressed as

P−Be,0 = wTQBd/2 . (4.52)

Since the steady-state probabilities sum to 1, we have

P−Be,0 +

Bd/2∑
j=(−Be/2)+1

1TQj = 1 , (4.53)

where 1 denotes a length 2Kf column vector consisting of all-ones. Using (4.46)

and (4.52), condition (4.53) can be written as

uTQBd/2 = 1 , (4.54)
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where uT is a row vector given by

uT = wT + 1T

I +

Bd+Be
2
−1∑

j=1

Rj

 . (4.55)

Now, QBd/2 is the unique vector which satisfies (4.50) and (4.54), and it is

given by

QBd/2 = Hu
−1 e2Kf

, (4.56)

where Hu is a matrix which is obtained by replacing the last row of H matrix

(4.49) by uT , and e2Kf
is a column vector whose last entry is 1 and the other

entries are 0.

4.6.1 Obtaining Ploss and TW1

If πj denotes the probability that there are j data packets in the first stage data

queue, then πj = 1TPj, 1 ≤ j ≤ Bd. Since the data arrival process is Poisson

and independent of the energy arrival process, the probability of data packet loss

is equal to the unconditional steady-state probability of the data queue being full.

Thus, if we define g = [01×Kf
11×Kf

]T , then we have

Ploss = πBd
= gTQBd/2 = gTHu

−1 e2Kf
. (4.57)

Now, if hj =

[
(2j − 1)11×Kf

(2j)11×Kf

]T
, then the average number of data

packets waiting in the first stage data queue, denoted Nav, can be obtained as

Nav =

Bd∑
j=1

jπj =

Bd/2∑
j=1

hTj Qj
(a)
=

hTBd/2
+

(Bd/2)−1∑
j=1

hTj R
Bd
2
−j

Hu
−1 e2Kf

, (4.58)
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where (a) follows from (4.46) and (4.56). Finally, by applying Little’s Law we get

TW1 =
Nav

λd (1− Ploss)
=

(
hTBd/2

+
∑Bd/2

j=1 hTj R
Bd
2
−j
)
Hu
−1 e2Kf

λd
(
1− gTHu

−1 e2Kf

) . (4.59)

4.6.2 Obtaining TW2

TW2 is obtained using (4.17) while the overall average data packet delay is given

by (4.1).

4.7 Throughput under QoS constraints

The closed-form expressions derived in the previous section are useful in select-

ing system design parameters which maximize the throughput while meeting the

required QoS constraints. For applications with delay constraints, an energy har-

vesting communication system designer may wish to quantify the maximum data

packet arrival rate while ensuring that the average delay and the packet loss prob-

ability are less than the desired thresholds.

The QoS constraints may be specified by restricting the average packet delay

and the probability of packet loss due to buffer overflow, whose target value will be

denoted by Dtar and Ptar, respectively. A given data packet arrival rate λd is said

to be QoS-feasible if the corresponding average packet delay and the probability

of packet loss do not exceed Dtar and Ptar, respectively.

For a given set of system parameters such as τ, Bd, Be, λe1, and λe2, we let ΛQoS

denote the corresponding set of all QoS-feasible arrival rates,

ΛQoS = {λd |Av. delay ≤ Dtar, and Prob. loss ≤ Ptar}. (4.60)

Let λ∗d denote the maximum data packet arrival rate for which the average packet
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delay does not exceed Dtar and the probability of data packet loss due to buffer

overflow is less than or equal to Ptar. Thus,

λ∗d = max ΛQoS . (4.61)

Note that because a decrease in the data packet arrival rate only reduces the

average packet delay and the probability of data packet loss, the set ΛQoS is equal

to the closed interval [0, λ∗d] on the real line.

The average number of bits per second arriving at the energy harvesting trans-

mitter is given by the product of the data packet length and the data packet

arrival rate. Thus, λ∗d captures the maximum throughput of the energy harvesting

system under QoS constraints on delay and packet loss.

4.7.1 Choice of system design parameters: τ , Bd, and Be

In this subsection, we highlight the impact of choice of system design parameters

on λ∗d. Note that the quantity and rate of energy arrival are typically governed by

nature and the environment, and hence may not be directly controllable. On the

other hand, parameters such as τ , Bd, and Be may be selected to ensure that λ∗d is

adequate for a given energy harvesting communication application while satisfying

the QoS constraints.

A reasonable value of the average service time, τ , may be obtained via an

appropriate choice of the transmission bandwidth which determines the rate at

which data bits are transmitted. Since the packet delay is the sum of waiting time

and service time, the value of τ should be less than Dtar for communication to be

feasible. Indeed, ΛQoS = {0} if Dtar ≤ τ . This follows because a non-zero value of

λd will result in non-zero average waiting time and thus the average packet delay

will become greater than τ .
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In scenarios where the average packet delay is dominated by the waiting time

for energy arrivals, a further reduction in τ (by an increase in the transmission

bandwidth) will not have significant impact on λ∗d since the waiting time for energy

becomes a bottleneck. Thus, a judicious choice of τ is one which balances the cost

of bandwidth with the overall average packet delay by ensuring that the average

service time is kept modest relative to the average waiting time for arrival of

sufficient energy.

The data buffer size, Bd, has a direct impact on the probability of data packet

loss due to buffer overflow. An increase in Bd leads to smaller loss probability

since the additional storage capacity is used to queue data packets which would

otherwise have been lost. However, these additionally queued data packet (held

in the data buffer due to increase in Bd) strive for energy and transmission time,

and hence increase the average waiting time of future arriving data packets, which

leads to an increase in the average packet delay.

In the scenario where the data buffer size is unbounded, the probability of

data buffer overflow is zero, and only the delay constraint needs to be satisfied.

An increase in the data arrival rate increases the average packet delay since every

additional arrival tends to increase the waiting time for future data arrivals. Let

the maximum data packet arrival rate (4.61) corresponding to target delay values,

Dtar and D̃tar, be denoted as λ∗d and λ̃∗d, respectively. Then, because the average

packet delay increases continuously with increase in data arrival rate, it follows

that

τ < Dtar < D̃tar =⇒ λ∗d < λ̃∗d. (4.62)

For a fixed λe, whenever λd ≥ λe and Bd → ∞, the data queue length will

grow over time and the average packet delay tends to infinity in the steady state.
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Thus with an unbounded data buffer size, we have the inequality

λ∗d < λe, (4.63)

for all finite values of the target delay Dtar.

A suitable choice of the energy buffer size, Be, is vital for controlling the average

data packet delay. The additional energy storage capacity due to an increase in

Be helps to capture energy packets which might otherwise be discarded due to

the energy buffer being full. These additional energy packets aid in providing

energy to data packets, leading to a reduction of the average data packet delay.

This increase in Be for reducing delay is especially useful when λd < λe where the

energy queue is likely to become full over time.

Note that the additional energy packets, available due to an increase in Be, also

reduce the likelihood of the data queue to grow and hence reduce the probability

of data packet loss due to buffer overflow. Thus, for given target values of Dtar

and Ptar, an increase in Be helps to increase in λ∗d resulting in higher throughput

under given QoS constraints. However, an increase in Be may add to the monetary

cost and should be chosen judiciously to trade performance with cost. In the

next section, we present simulation results for different scenarios, highlighting the

impact of the choice of system design parameters on performance.

4.8 Simulation Results

In this section, we present Monte Carlo simulation results for the probability of

data packet loss and the average packet delay in the physical queueing system. The

simulation results are compared with the corresponding closed-form expressions

derived for the virtual queueing system in previous sections. The robustness of
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the closed-form expressions is shown even for relatively large values of the service

time. In the following figures, the numerical values obtained using the closed-form

analytical expressions are labeled as ‘Analytical’ while the Monte Carlo simulation

results are labeled as ‘Simulation’.

We assume that the data and energy arrivals are independent Poisson processes

and the service time is deterministic (as a special case of the general distribu-

tion). The energy harvesting process through piezoelectric generators is modeled

in [118]. This model is compared with the experimental results in [126] where an

electric charge of roughly 3.63 nC gets harvested by each compress-release cycle

of nanowires. In our simulations, we allow the electric charge harvested with each

compress-release cycle to vary from 1 nC to 4 nC. The arrived energy charges a

capacitor which acts as a energy storage device.

We assume that each data packet is comprised of 1000 bits and the energy

used in transmitting each bit is 20 pJ. Thus each data packet needs 20 nJ for its

transmission and we will refer to that as one unit of energy. Data transmission

rates of 10 Mbps and 100 kbps will be considered in the simulations which corre-

spond to τ = 0.1 ms and τ = 10 ms, respectively. The capacitor is assumed to

have a voltage rating of 10 V with a capacitance that ranges from 2 nF to 24 nF.

Hence the energy storage capacity ranges from 100 nJ to 1200 nJ.

Fig. 4.3 depicts the case where each energy arrival brings 4 nC of charge and

the capacitor harvests 20 nJ (that is, one unit of energy) with each energy arrival.

The value of λe, the average number of unit energy recharge cycles per second, is

equal to 55. The plot shows the variation in the average packet delay when the

capacitance (and hence the energy storage capacity) changes from 2 nF (Be = 5)

to 24 nF (Be = 60). The data packets arrive at an average rate of 50 packets per

second (λd = 50) and the size of the data buffer is 20 kbits (Bd = 20). This is an

adequately-resourced system with β = λd/λe = 50/55 < 1.
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Analytical with τ = 10 ms
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Figure 4.3: Average Packet Delay versus Energy Buffer Size with unit energy
arrival, λd = 50, λe = 55, Bd = 20.

Fig. 4.3 shows that the service time of τ = 0.1 ms is negligible compared

to the average packet delay for Be < 35. The wait for sufficient energy arrival

dominates the overall packet delay which falls exponentially with Be, as predicted

by (4.14). When τ = 10 ms and Be > 45, the service time contributes to more than

sixty percent of the average packet delay. Even in this case, the numerical values

obtained from the closed-form expressions closely match the simulation results.

Fig. 4.4 presents the probability of data packet loss with the same system

parameters as for Fig. 4.3. The expression for Ploss in the virtual queueing sys-

tem is independent of τ . The plot shows that the probability of packet loss falls

exponentially with Be (linear in the log scale), as indicated by (4.13). The sim-

ulation results for the physical queueing system indicate that the probability of

data packet loss is dominated by the event where the data buffer becomes full

solely due to packets waiting for sufficient energy and it does not vary much due

to a change in transmission time. Note that although the overall buffer size in the

virtual queueing system is more than that in the physical queueing system (due to
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Figure 4.4: Probability of Data Packet Loss versus Energy Buffer Size with unit
energy arrival, λd = 50, λe = 55, Bd = 20. For simulation results, the 95%
confidence interval is also plotted.

the infinite buffer in the second stage of the virtual queue), the numerical results

for the virtual queueing system match closely with the simulation results for the

physical queueing system. This is because in case of virtual queues, a packet loss

occurs only due to data packets waiting for sufficient energy to arrive in the first

stage. Note that Fig. 4.4 also plots the 95% confidence interval for simulation

results which highlights the relative accuracy of the results when the number of

simulation samples are finite and results may not converge.

Fig. 4.5 depicts the fractional-energy arrival case where each energy arrival

corresponds to 1/2 units of energy (Kf = 2). The number of 1/2 unit energy

recharge cycles are assumed to have an average rate of 110 per second and hence

the energy-frame arrival rate is λe = 55. The energy buffer size Be = 20 while

the data packet arrival rate is λd = 50. The corresponding probability of data

packet loss due to data buffer overflow is plotted in Fig. 4.6 which shows that

Ploss < 10−4 for Bd ≥ 40. The insight from this observation is that when Bd is
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Figure 4.5: Average Packet Delay versus Data Buffer Size with fractional-energy
arrival (Kf = 2), λd = 50, λe = 55, Be = 20.

large, the packet arrival rate at the second stage of the virtual queueing system

is approximately equal to λd (since Ploss is small) and hence the actual value of

Bd does not impact TW2. It is seen from Fig. 4.5 that the average packet delay

saturates to a constant value as Bd exceeds 40. This is not surprising since (4.14)

indicates that when λd < λe and Bd is large, then TW1 does not depend on the

exact value of Bd. Hence the average packet delay saturates to a constant value

for large Bd (since both TW1 and TW2 become independent of Bd).

Fig. 4.7 shows the fractional-energy arrival case where each energy arrival

corresponds to 1/4 units of energy. The number of 1/4 unit energy recharge cycles

are assumed to have an average rate of 220 per second and hence the energy-frame

arrival rate is λe = 55. The data storage capacity is Bd = 20 while λd = 50. For

these parameters, the inter-arrival time for arrival of one unit of energy is Erlang

distributed with mean 1/λe and variance 1/(Kfλ
2
e) where Kf = 4. In comparison,

the parameters chosen for Fig. 4.3 are similar except that the inter-arrival time
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Figure 4.6: Probability of Data Packet Loss versus Data Buffer Size with
fractional-energy arrival (Kf = 2), λd = 50, λe = 55, Be = 20. For simulation
results, the 95% confidence interval is also plotted.

for arrival of one unit of energy is exponentially distributed with mean 1/λe and

variance 1/λ2
e. Thus, the lower variance of energy arrivals causes the average

packet delay to be lower in Fig. 4.7 as compared to Fig. 4.3. Note that the overall

shape of the curves in Fig. 4.7 is roughly similar to those in Fig. 4.3.

Fig. 4.8 plots the probability of data packet loss with the same parameters as

in Fig. 4.7. On comparing Fig. 4.8 with Fig. 4.4, we observe that the probability

of data packet loss is lower in Fig. 4.8 due to a reduction in the variance of energy

arrivals.

Fig. 4.9 depicts the bulk-energy arrival case where each energy arrival cor-

responds to 2 units of energy (Kb = 2), λd = 50, and Bd = 20. As discussed

in Section 4.5, each energy arrival in this case can be interpreted as arrival of

two unit-energy packets. The average number of energy arrivals (of 2 units each)

is assumed to be 55/2 per second and hence the arrival rate of one unit of en-

ergy is λe = 55. Since the energy arrival (of 2 units each) is Poisson, it follows
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Figure 4.7: Average Packet Delay versus Energy Buffer Size with fractional-energy
arrival (Kf = 4), λd = 50, λe = 55, Bd = 20.

that the inter-arrival time for arrival of one unit of energy has variance equal to

(2Kb−1)/λ2
e where Kb = 2. In comparison, the parameters chosen for Fig. 4.3 are

similar except that the inter-arrival time for arrival of one unit of energy in that

case has variance 1/λ2
e. Thus, the higher variance in the arrival of unit-energy

causes the average packet delay to be larger in Fig. 4.9 as compared to Fig. 4.3.

The average packet delay for the multi-source energy harvesting comprising

of a combination of unit-energy arrivals from one source (with λe1 = 40) and

fractional-energy arrivals from the other source (with Kf = 4 and λe2 = 15) is

plotted as a function of Be in Fig. 4.10 where the data packet arrival rate is

assumed to be λd = 50. Note that although the rate of arrival of one unit of

energy from each of the two sources is less than λd, the combined rate of arrival of

one unit of energy, λe = λe1 +λe2 = 55, exceeds λd. We assume Bd = 20, and thus

the data buffer size as well as the arrival rate of data and energy packets chosen

for Fig. 4.10 are same as those chosen for Figs. 4.3 (only unit-energy arrivals)
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Figure 4.8: Probability of Data Packet Loss versus Energy Buffer Size with
fractional-energy arrival (Kf = 4), λd = 50, λe = 55, Bd = 20. For simulation
results, the 95% confidence interval is also plotted.

and 4.7 (only fractional-energy arrivals). Since the energy arrivals in this case are

a combination of unit-energy and fractional-energy, we observe that the average

packet delay curves in Fig. 4.10 lie in-between the corresponding curves in Figs. 4.3

and 4.7.

Fig. 4.11 plots the maximum possible data packet arrival rate when the aver-

age packet delay is constrained not to exceed Dtar. Here the data buffer size is

unbounded, τ = 10 ms, λe = 55, and it follows from (4.63) that λ∗d < 55 for all

finite Dtar. Fig. 4.11 shows that λ∗d increases monotonically with Dtar as indicated

by (4.62). This figure also highlights the impact of increasing the energy buffer

size, Be, on throughput. We observe that when Be is increased from 5 to 20, the

system can support higher throughput (due to increase in λ∗d) for a given delay

constraint. For the case when Be = 20, we find that λ∗d increases rapidly as Dtar

is increased from 12 ms to 30 ms. However, the increase in λ∗d is gradual when

Dtar is increased beyond 30 ms. Hence in this case, a target average packet delay
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Figure 4.9: Average Packet Delay versus Energy Buffer Size with bulk-energy
arrival (Kb = 2), λd = 50, λe = 55, Bd = 20.

of 30 ms represents a “sweet spot” where a sufficiently high throughput can be

achieved with a nominal delay.

In practice, the closed form expressions for the average packet delay obtained in

this chapter can help in making a judicious choice of system design parameters by

trading resources (such as the energy buffer size and the transmission bandwidth)

with performance metrics (such as delay and throughput).

4.9 Discussion

In this chapter, we derived closed-form expressions for the average packet delay and

the probability of data packet loss due to buffer overflow for an energy harvesting

communication system. After obtaining these expressions for single-source energy

harvesting, we extended the results to the important case of multi-source energy

harvesting. The derived expressions were shown to be exact when the service time

is zero, and robust even when the service time is increased up to sixty percent of
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Figure 4.10: Average Packet Delay versus Energy Buffer Size with multi-source
energy arrivals, λe1 = 40, λe2 = 15, Kf = 4, λd = 50, Bd = 20.

the average packet delay.

These results should be useful to both system designers and researchers in

this field. For instance, an energy harvesting system designer may appropriately

choose the system parameters (for example, the energy buffer size, the data packet

arrival rate, and the packet transmission rate) based on the derived expressions

to meet the desired QoS constraints.

The analytical approach presented in this chapter is also applicable to other

related models which are discussed below:

1. The study of coupled data and energy queues is similar to the study of

assembly-like queues in inventory systems [127]–[130]. The service of objects

in these systems does not begin until at-least one object from each queue is

present; just as a data packet is not transmitted until both data and energy

are present. Thus, our work is also useful in analyzing assembly-like queues

comprising of two independent queues with bounded capacity. The results
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on fractional-energy arrival (Section 4.4) could be applied, for instance, on

analyzing the delay in assembly of toy cars where the main body of the car

arrives in one queue and the wheels arrive in another queue, and each toy

gets serviced by fixing 4 wheels to a car body.

2. In multi-source energy harvesting, we assumed that energy is harvested from

two independent sources while the energy is consumed for the single task of

transmission of data packets. A ‘dual’ problem scenario is where energy is

harvested from a single source but is consumed for the twin tasks of data

reception and transmission of the sensed data in a wireless sensor network.

This ‘dual’ problem was considered in [118] where it is mentioned that finding

a closed-form expression for the steady-state probabilities of the Markov

model is not feasible. However, our analytical approach for multi-source

energy harvesting (Section 4.6) can be adapted to obtain exact closed-form

expression of the steady-state probabilities for this dual problem.
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Constant Subblock-Composition

Codes

The study of simultaneous information and energy transfer is relevant for commu-

nication from a powered transmitter to a receiver which uses the same received

signal both for decoding information and for extracting energy to power its cir-

cuitry. This has applications ranging from wireline [88], [131] to wireless [11], [71]

communications. The fundamental tradeoff between reliable communication and

delivery of energy at the receiver, in an information-theoretic setting, was first

characterized in [14] using a general capacity-power function, where transmitted

codewords were constrained to have average received energy exceed a threshold.

For practical application of simultaneous energy and information transfer from

a powered transmitter to an energy harvesting receiver, imposing only an average

received power constraint may not be sufficient; we may also need to regularize

the transferred energy content. This is because a codeword satisfying the average

power constraint may still cause power outage at the receiver if the energy content

in the codeword is bursty, since a receiver battery with small capacity may drain

during periods of low signal energy.
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In this chapter, we consider a discrete memoryless channel (DMC) and charac-

terize achievable information rates when codewords are divided into smaller sub-

blocks and each subblock is constrained to carry sufficient energy. We assume that

corresponding to transmission of each symbol in the input alphabet, the receiver

harvests a certain amount of energy as a function of the transmitted symbol. Since

different symbols may correspond to different energy levels, the requirement of suf-

ficient energy content within a subblock imposes a constraint on the composition

of each subblock. Towards meeting this subblock energy requirement, we intro-

duce the constant subblock-composition codes (CSCCs) where all the subblocks

in every codeword have the same fixed composition. This subblock-composition

is chosen to maximize the rate of information transfer while meeting the energy

requirement. Note that if xL1 denotes a given subblock of length L, then its com-

position is the distribution PxL1 on X defined by PxL1 (x) , N(x)
L
, x ∈ X , where

N(x) is the number of occurrences of symbol x in subblock xL1 .

For meeting the real-time energy requirement at a receiver which uses the

received signal to simultaneously harvest energy and decode information, we pro-

pose the use of CSCCs (Sec. 5.2.1) and establish their capacity as a function of

the required energy per symbol (Sec. 5.2.2). We show that CSCC capacity can be

computed efficiently by exploiting symmetry properties (Sec. 5.2.3) and present

bounds on subblock length for avoiding receiver energy outage (Sec. 5.2.4).

Compared to constant composition codes, we quantify the rate loss incurred

due to the additional constraint of restricting all subblocks within codewords to

have the same composition (Sec. 5.3.1). For a given rate of information transfer,

we derive a lower bound for the error exponent using CSCC in terms of the error

exponent for constant composition codes (Sec. 5.3.2).

For enabling real-time information transfer, we consider local subblock decod-

ing where each subblock is decoded independently (Sec. 5.4), and compare achiev-

116



Chapter 5. Constant Subblock-Composition Codes

TRANSMITTER CHANNEL

Figure 5.1: Simultaneous information and energy transfer from a transmitter to
an energy-harvesting receiver

able rates using local subblock decoding with those when all the subblocks within

a codeword are jointly decoded. We also provide numerical results highlighting

the tradeoff between delivery of sufficient energy to the receiver and achieving high

information rates (Sec. 5.5).

5.1 System Model

Consider communication from a transmitter to a receiver where the receiver uses

the received signal both for decoding information as well as for harvesting energy

(see Fig. 5.1). We model the effective communication channel from the output of

a digital modulator at the transmitter to the input to an information decoder at

the receiver as a DMC. Note that a DMC is characterized by input alphabet X ,

output alphabet Y , and a stochastic matrix W : X → Y with W = {W (y|x) : x ∈

X , y ∈ Y} where the matrix entry W (y|x) is the probability that the output is y

when the channel input is x.

A DMC is a reasonable communication channel model for simultaneous en-

ergy and information transfer. Consider, for instance, the use of a digital mod-

ulator at the transmitter which produces symbols from a signal constellation

X = {x1, . . . , xr}. At the receiver, the signal is split for use by the energy har-

vesting module and the information processing module, respectively. The input

to the information decoder at the receiver comprises of one of s quantized values
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Y = {y1, . . . , ys}, fed by a quantizer in the information processing path. For each

quantized value yi, 1 ≤ i ≤ s, and each transmitted symbol xj, 1 ≤ j ≤ r, the

likelihood Pr(yi|xj) can be computed based on the effective signal path from the

transmit modulator to the quantizer at the receiver. The communication channel

is thus a DMC with input alphabet X , output alphabet Y , and channel transition

probabilities Pr(yi|xj).

In practice, the effective channels seen by the information decoder and the

energy harvester may be different due to their respective pre-processing stages.

In [132], practical architectures for simultaneous information and energy reception

were defined: an integrated receiver architecture has shared radio frequency chains

between the energy harvester and the information decoder, whereas a separated

architecture has different chains.

In our work, we assume a generic receiver architecture where the received signal

is split between the energy harvesting path and the information processing path

with a static power splitting ratio. The effective communication channel seen by

the decoder in the information processing path is modeled as a DMC. We let b(x)

denote the energy harvested by the harvester after the signal split at the receiver,

when x ∈ X is transmitted. Thus, b is a map from the input alphabet X to the

set of non-negative real numbers, and higher energy is carried by symbols having

higher b-value. This map is assumed to be time-invariant, and reflects the scenario

where the statistical nature of the effective communication channel is due to the

noise in the receiver circuitry, which does not affect the harvested energy. The

quantification of b abstracts the implementation of a chosen receiver architecture,

which in turn helps to abstract the problem of the code design for simultaneous

energy and information transfer from implementation details.

In order to meet the real-time energy requirement at the receiver, we partition

the transmitted codeword into equal-sized subblocks (see Fig. 5.2) and require

118



Chapter 5. Constant Subblock-Composition Codes

X1X2XL+2X2L XLX(m-1)L+1XmL XL+1

LLL

     n 

Figure 5.2: Transmitted codeword partitioned into subblocks of length L.

that transmitted symbols be chosen such that the expected harvested energy in

each subblock exceeds a given threshold. This threshold is a function of the energy

consumption by the receiver circuitry including the information decoder. We will

denote the subblock length by L and assume that the codeword length, denoted

n, is a multiple of L. If a transmitted codeword is denoted (X1, X2, . . . , Xn), then

the constraint on sufficient energy within each subblock can be expressed as

1

L

L∑
i=1

b
(
X(j−1)L+i

)
≥ B, j = 1, 2, . . . ,m (5.1)

where j is the subblock index, B denotes the required energy per symbol at the

receiver, and m is the number of subblocks in a codeword. The choice of the

subblock length L depends on the energy storage capacity at the receiver; a small

energy buffer generally requires relatively small value of L to prevent energy outage

at the receiver.

The subblock energy constraint given by (5.1) becomes trivial if b(x) is same

for all x ∈ X (for instance, when the transmitted symbols belong to a phase-shift-

keying constellation). However, the constraint is non-trivial when b-values are not

constant (for instance, using on-off keying) and threshold B satisfies bmin < B <

bmax, where bmin = minx∈X b(x) and bmax = maxx∈X b(x).

For a given subblock j within a codeword, if N(x) denotes the number of

occurrences of x in the jth subblock, then (5.1) can also be expressed as

∑
x∈X

b(x)
N(x)

L
≥ B. (5.2)
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Note that N(x)/L denotes the fraction of time when symbol x appears in the

subblock. We now introduce constant subblock-composition codes which are a

nice way to meet the subblock energy constraint.

5.2 Constant Subblock-Composition Codes

5.2.1 Motivation and Definition

We have seen that for a given subblock, the energy constraint given by (5.1)

can equivalently be expressed as (5.2) and this constraint is satisfied provided the

fraction of time each symbol appears in the subblock is chosen appropriately. This

observation motivates the use of codes where the composition of each subblock in

all codewords is constant and is chosen such that (5.2) is satisfied. A constant

subblock-composition code (CSCC) is one in which all codewords are partitioned

into equal-sized subblocks and each subblock (in all codewords) has the same

composition P . The subblock composition P in CSCC is chosen to satisfy the

subblock energy constraint

EP [b(X)] ,
∑
x∈X

b(x)P (x) =
∑
x∈X

b(x)
N(x)

L
≥ B. (5.3)

5.2.2 Capacity using CSCC

Let PL denote the set of all compositions for input sequences of length L. For a

given type P ∈ PL, the set of sequences in X L with composition P is denoted by

T LP and is called the type class or composition class of P . In a CSCC with subblock-

composition P , every subblock in a codeword may be viewed as an element of T LP .

In order to compute the capacity of a CSCC on a DMC, we may view the L uses

of the original channel as a single use of the induced vector channel having input
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alphabet T LP and output alphabet YL. Since the underlying channel is memoryless,

the transition probabilities for a pair of input and output vectors is the product

of the corresponding transition probabilities of the underlying channel. If we let

xL1 = x1 . . . xL and yL1 = y1 . . . yL be given input and output vectors with xi ∈ X

and yi ∈ Y , respectively, then the transition probabilities for the induced vector

channel are:

WL(yL1 |xL1 ) =
L∏
i=1

W (yi|xi). (5.4)

Since each subblock in a codeword may be chosen independently, the capacity

using CSCC with subblock-composition P , denoted CL
CSCC(P ), is equal to 1/L

times the capacity of the induced vector channel with input alphabet T LP , output

alphabet YL, and transition probabilities given by (5.4). Thus if we denote XL
1 =

X1 . . . XL and Y L
1 = Y1 . . . YL, then

CL
CSCC(P ) = max

XL
1 ∈T L

P

I(XL
1 ;Y L

1 )

L
(5.5)

= max
XL

1 ∈T L
P

(
H(Y L

1 )

L
− H(Y L

1 |XL
1 )

L

)
(5.6)

= max
XL

1 ∈T L
P

(
H(Y L

1 )

L
−
∑L

i=1 H(Yi|Xi)

L

)
(5.7)

where the last equality follows from the memoryless property of the channel. The

maximization in (5.5) is over the distribution of input vector in T LP . We will

show that the maximum is achieved when the input vectors XL
1 are uniformly

distributed over T LP .

Theorem 2. The capacity of the induced vector-channel using CSCC with fixed

subblock-composition P is obtained via a uniform distribution over T LP .

Proof: Please refer to Appendix B.1.
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If we define the set of distributions

ΓLB , {P ∈ PL : EP [b(X)] ≥ B}, (5.8)

then the capacity using CSCC with subblock energy constraint (5.1), denoted

CL
CSCC(B), is defined as

CL
CSCC(B) = max

P∈ΓL
B

CL
CSCC(P ) (5.9)

5.2.3 Computing CSCC Capacity

By Theorem 2, the maximum is achieved in (5.7) when XL
1 is uniformly distributed

over T LP . The computation of the capacity expression with increasing subblock

length L seems challenging since the input and output alphabet size for the in-

duced vector channel grows exponentially with L. However, we will show that the

computational complexity of the CSCC capacity expression can be reduced using

the following observations.

First note that the probability distribution for the output vector in the induced

vector channel is given by

PY L
1

(yL1 ) =
1

|T LP |
∑
xL1 ∈T L

P

WL(yL1 |xL1 ), (5.10)

since the input vectors are uniformly distributed over T LP . If ỹL1 is another output

vector having the same composition as yL1 , then we have PY L
1

(yL1 ) = PY L
1

(ỹL1 ). This

is because the columns WL(yL1 |·) and WL(ỹL1 |·) of the vector channel transition

matrix are permutations of each other (see Appendix B.1). Thus output vectors

having the same composition have equal probability. However, even though the

input vectors are uniformly distributed, the output vectors in general are not

122



Chapter 5. Constant Subblock-Composition Codes

uniformly distributed. Also, since the symbols within an input vector xL1 ∈ T LP

are not independent, in general we have PY L
1

(yL1 ) 6=
∏L

i=1 PY (yi), where PY (y)

denotes the probability of output scalar symbol y.

Let QL denote the set of all compositions for output sequences of length L.

When XL
1 is uniformly distributed over T LP , the H(Y L

1 ) term in (5.7) can be

expressed as

H(Y L
1 ) = −

∑
yL1 ∈YL

PY L
1

(yL1 ) logPY L
1

(yL1 ) (5.11)

= −
∑
Q∈QL

∑
yL1 ∈T L

Q

PY L
1

(yL1 ) logPY L
1

(yL1 ) (5.12)

=
∑
Q∈QL

|T LQ |PY L
1

(yL1 ) log
1

PY L
1

(yL1 )
, (5.13)

where the last equality follows because PY L
1

(yL1 ) is same for all yL1 ∈ T LQ . Note

that we choose only one representative vector yL1 from each type class T LQ in the

last equality.

Secondly, the following proposition shows that the H(Yi|Xi) term in (5.7) is

same for all 1 ≤ i ≤ L, since the corresponding joint probabilities PXY (Xi =

x, Yi = y) are equal.

Proposition 6. For a random input vector XL
1 uniformly distributed over T LP with

corresponding output vector Y L
1 , the pairwise probability PXY (Xi = x, Yi = y), for

1 ≤ i ≤ L, satisfies

PXY (Xi = x, Yi = y) =
N(x)

L
W (y|x) = P (x)W (y|x). (5.14)

Proof: Please refer to Appendix B.2.
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Proposition 7. The CSCC capacity, CL
CSCC(B), is given by

max
P∈ΓL

B

1

L

∑
Q∈QL

|T LQ | PY L
1

(yL1 ) log
1

PY L
1

(yL1 )
−H(Y |X), (5.15)

where only one representative output vector yL1 is chosen from every type class

T LQ , PY L
1

(yL1 ) is given by (5.10), and H(Y |X) is evaluated using the joint pairwise

probability distribution given by (5.14).

Proof: Use (5.7) and (5.9) to express CL
CSCC(B). From Thm. 2, a uniform

distribution over T LP achieves capacity, and hence the entropy term H(Y L
1 ) in (5.7)

can be computed using (5.13). The claim in Prop. 7 follows by further noting that

the H(Yi|Xi) term in (5.7) is the same for all 1 ≤ i ≤ L, which can be evaluated

using the joint pairwise distribution in (5.14).

5.2.4 Choice of Subblock Length L

In this subsection, we derive bounds on subblock length L (as a function of the

energy storage capacity at the receiver) which will ensure that the receiver never

runs out of energy when the subblock-composition P is chosen to satisfy (5.3). It

will be seen that a large energy storage capacity allows for larger values of L and

hence results in higher rates of information transfer.

The energy storage capacity at the receiver is denoted Emax and we assume

that the receiver requires B units of energy per symbol for its processing. Let E(i)

denote the level of the energy buffer at the receiver at the completion of i− 1 uses

of the channel. The energy update equation, for i = 1, 2, . . . , is

E(i+ 1) = min
(
Emax, |E(i) + b(Xi)−B|+

)
, (5.16)

where Xi is the symbol transmitted in the ith channel use, and |z|+ , max(z, 0).
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We say that an outage occurs during ith channel use if E(i) + b(Xi) < B,

while an overflow event occurs if E(i) + b(Xi) − B > Emax. We partition the

input alphabet as X = X/ ∪ X., where

X/ = {x ∈ X | b(x) < B} , X. = {x ∈ X | b(x) ≥ B}. (5.17)

For CSCC with subblock-composition P ∈ ΓLB, we define

G =
∑
x∈X/

LP (x) (B − b(x)) , (5.18)

where G will be used to characterize useful properties of the energy update process.

Lemma 1. The energy update process satisfies the following properties for CSCC

with subblock-composition P ∈ ΓLB:

(a) If there is no energy outage or overflow during the reception of the first sub-

block, then E(L+ 1) ≥ E(1).

(b) If E(1) ≥ G, then there is no energy outage during the reception of the first

subblock.

(c) If E(1) ≥ G and Emax ≥ 2G, then E(L+ 1) ≥ G.

Proof: If there is no energy outage or overflow, then the total energy har-

vested during the reception of the first subblock is
∑

x∈X LP (x)b(x), while the

total energy consumed is LB and claim (a) follows since P satisfies (5.3).

Let Xi denote the transmitted symbol in the ith channel use, I = {1, 2, . . . , L},

and I< = {i ∈ I|Xi ∈ X/}. For i ∈ I, the level in the energy buffer decreases

during the ith channel use if and only if i ∈ I<, and the corresponding decrease

in energy level is B − b(Xi). Since the subblock has composition P , the sum of
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energy decrements over the reception of the first subblock is
∑

i∈I< B−b(Xi) = G,

and claim (b) follows.

For proving claim (c), we note that the condition E(1) ≥ G implies that there

is no energy outage during the reception of the first subblock (using claim (b)).

Further, if there is no overflow then E(L + 1) ≥ E(1) ≥ G (using claim (a)).

In case there is energy overflow in the ith channel use for any i ∈ I, we have

E(i+ 1) = Emax ≥ 2G, and thus E(L+ 1) ≥ E(i+ 1)−G ≥ G.

Lemma 1 is useful in proving the following theorem which gives a necessary

and sufficient condition on subblock length in order to avoid outage.

Theorem 3. A necessary and sufficient condition on L for avoiding energy outage

during the reception of CSCC codewords, with subblock-composition P satisfying

(5.3), is

L ≤ Emax∑
x∈X/

2P (x) (B − b(x))
, (5.19)

with E(1) ≥ G.

Proof: Please refer to Appendix B.3.

The initial condition on energy level, E(1) ≥ G, may be ensured by trans-

mitting a preamble, consisting of symbols with high energy content, before the

transmission of codewords. This preamble has bounded length and hence does

not affect the channel capacity.
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5.3 Comparing CSCC with Constant Composi-

tion Codes

5.3.1 Rate Comparison

Similar to subblock-composition, a codeword composition represents the fraction

of times each input symbol occurs in a codeword and a constant composition code

(CCC) is one in which all codewords have the same composition. Note that a

CSCC with subblock-composition P may also be viewed as a CCC with codeword

composition P , since all the subblocks in CSCC have the same composition. In

general for CCC, although all codewords have the same composition, different

subblocks within a codeword may have different compositions. Hence CCCs are

richer than CSCCs in terms of choice of symbols within each subblock. CCCs

were first analyzed by Fano [133] and shown to be sufficient to achieve capacity

for any discrete memoryless channel.

Let CCCC(P ) denote the maximum achievable rate using CCC with codeword

composition P . For P ∈ ΓLB (refer (5.8)), a CCC with codeword composition P

will ensure that the average received energy per symbol in a codeword is at least

B. However, it may violate the constraint on providing sufficient energy to the

receiver within every subblock duration. For a CCC, we have [133]

CCCC(P ) = I(X;Y ) = H(X)−H(X|Y ). (5.20)

We are interested in quantifying the information rate penalty incurred by using

CSCC compared to CCC, given by CCCC(P )− CL
CSCC(P ). This information rate

penalty is the price we pay for meeting the real-time energy requirement within

every subblock duration, compared to the less constrained energy requirement per
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codeword. Although the rate penalty can be numerically computed by explicit

computation of CCCC(P ) and CL
CSCC(P ), the numerical approach has the limita-

tion that the computation complexity of CL
CSCC(P ) increases with an increase in

subblock L.

In CSCC, since a transmitted subblock XL
1 is uniformly distributed over T LP ,

we have [134], p. 26

H(XL
1 ) = log |T LP | = LH(P )− L r(L, P ), (5.21)

where r(L, P ) denotes a function of L and P given as

r(L, P ) =
s(P )− 1

2L
log(2πL) +

1

2L

∑
a:P (a)>0

logP (a) +
ϑ(L, P )

12L ln 2
s(P ), (5.22)

with s(P ) denoting the number of elements x ∈ X with P (x) > 0, and ϑ(L, P ) is

a real number between zero and one which is chosen so that (5.21) is satisfied.

We now present simple analytical bounds for this rate penalty. The following

theorem shows that the rate penalty by using CSCC, relative to CCC, is bounded

by r(L, P ).

Theorem 4. The rate penalty is bounded as

0 ≤ CCCC(P )− CL
CSCC(P ) ≤ r(L, P ). (5.23)

Further, there exist channels for which the rate penalty meets the upper or lower

bound in (5.23) with equality.
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Proof: When XL
1 is uniformly distributed over T LP ,

CL
CSCC(P ) =

1

L

[
H(XL

1 )−H(XL
1 |Y L

1 )
]

(5.24)

(a)
= H(P )− r(L, P )− 1

L

L∑
i=1

H
(
Xi|Y L

1 , X
i−1
1

)
(b)

≥ H(P )− r(L, P )− 1

L

L∑
i=1

H(Xi|Yi)

(c)
= H(P )− r(L, P )−H(X|Y )

(d)
= CCCC(P )− r(L, P ), (5.25)

where X i−1
1 denotes X1, . . . , Xi−1, (a) follows from (5.21) and chain rule for en-

tropy, (b) follows since conditioning only reduces entropy, (c) follows from (5.14),

and (d) follows from (5.20). Now, (5.23) follows from (5.25). Explicit channels

can be constructed which meet the bounds in (5.23).

• CCCC(P ) = CL
CSCC(P ) = 0 for a binary symmetric channel (BSC) with

crossover probability equal to 0.5.

• For a noiseless channel, we have CCCC(P ) − CL
CSCC(P ) = r(L, P ) due to

equality in (b) as
∑L

i=1H(Xi|Y L
1 , X1, . . . , Xi−1) =

∑L
i=1H(Xi|Yi) = 0.

Corollary 5.

lim
L→∞

CL
CSCC(P ) = CCCC(P ) (5.26)

Proof: Note that for a fixed P , the value of r(L, P ) as a function of L is

non-negative and falls roughly as log(L)/L and thus tends to zero as L → ∞.

Thus (5.26) follows by taking the limit L→∞ in (5.23).

Remark : For a fixed subblock length L, the CSCC capacity can be achieved by

making the number of subblocks in a codeword arbitrarily large and performing

129



Chapter 5. Constant Subblock-Composition Codes

joint decoding over all the subblocks. However, when the number of subblocks

in a codeword are kept constant and the subblock length is increased without

bounds, then achievable rates using CSCC tend to CCC capacity. In particular,

when there is only one subblock in a codeword, then the CSCC code is same as a

CCC code whose capacity can be achieved by making L arbitrarily large.

Let Xn
1 = (X1, X2, . . . , Xn) denote any codeword of length n. If we impose the

average energy constraint on codewords,

1

n

n∑
i=1

b(Xi) ≥ B, (5.27)

then the channel capacity with this constraint is [14], [134]

max
PX :EPX

[b(X)]≥B
I(X;Y ). (5.28)

Information rates arbitrarily close to this capacity can be achieved by making the

codeword length sufficiently large. Moreover, if P ∗X is an input distribution which

maximizes (5.28), then this capacity can be achieved by a sequence of CCCs with

codeword composition tending to P ∗X [133], [134]. Thus, if CCCC(B) denotes the

capacity using CCC when the average energy per symbol is constrained to be at

least B, then

CCCC(B) = max
P :EP [b(X)]≥B

CCCC(P ) (5.29)

= max
PX :EPX

[b(X)]≥B
I(X;Y ). (5.30)

Thus the capacity with codeword constraints can be achieved by restricting the

codewords to have a fixed composition. This is possible because for a given trans-

mission rate, the codebook size increases exponentially with codeword length n
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while the number of different types of sequences only increase polynomially with

n.

The upper bound (5.22) on the rate penalty given by r(L, P ) is independent of

the underlying channel. In general, given a communication channel, the bounds

on rate penalty can be further improved. Consider, for example, a BSC with

crossover probability p0 where 0 < p0 < 0.5. For this channel, the upper bound

can be tightened using Thm. 5. We first define a binary operator ? and a function

h, respectively, as

a ? b , a(1− b) + (1− a)b. (5.31)

h(x) , −x log x− (1− x) log(1− x). (5.32)

We employ the above definitions to state the following theorem on bounding the

rate penalty for a BSC.

Theorem 5. For a BSC with crossover probability 0 < p0 < 0.5, input dis-

tribution denoted by P (0) = Pr(X = 0), P (1) = Pr(X = 1), and 0 < γ =

min(P (0), P (1)) ≤ 0.5 we have,

0 < CCCC(P )− CL
CSCC(P ) ≤ h(p0 ? γ)− h(p0 ? α) < r(L, P ), (5.33)

where α is chosen such that

h(α) = h(γ)− r(L, P ), 0 ≤ α < 0.5 . (5.34)

Proof: Please refer to Appendix B.4.

The proof of Theorem 5 uses Mrs. Gerber’s Lemma (MGL) [135]. Using

an extension [136] of MGL, the upper bound on the rate penalty can similarly

be improved for general memoryless binary-input symmetric-output channels. In
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particular, we have the following theorem for the binary erasure channel (BEC).

Theorem 6. For a BEC with erasure probability ε > 0,

CCCC(P )− CL
CSCC(P ) ≤ (1− ε)r(L, P ) < r(L, P ) (5.35)

Proof: Please refer to Appendix B.5.

For memoryless asymmetric binary-input, binary-output channels, an alternate

upper bound on the rate penalty (other than (5.23)) may be obtained using the

equality of the channel characteristic function and the gerbator [137]. As an

example, we have the following theorem for the Z-channel.

Theorem 7. For a Z-channel with γ = Pr(X = 1), and p0 = Pr(1→ 0), we have

CCCC(P )− CL
CSCC(P ) ≤ h (γ(1− p0))− h (α(1− p0)) , (5.36)

where h(·) is given by (5.32), and α is chosen such that

h(α) = h(γ)− r(L, P ), 0 ≤ α < 0.5 . (5.37)

Proof: Please refer to Appendix B.6.

The rate penalty bound given by (5.36) may sometimes be worse than the

bound in (5.23), depending on γ and p0. In general, the rate penalty for the

Z-channel can be upper bounded by min (r(L, P ), h (γ(1− p0))− h (α(1− p0))).

5.3.2 CSCC Error Exponent

For CCCs, it is well known [134], Thm. 10.2 that for every R > δ > 0 and every

type P of sequences in X n there exists an n-length block code of rate at least

R − δ such that all codewords are of type P and the maximum probability of
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error is upper bounded by exp[−n(Er(R,P,W )− δ)] for every DMC W , whenever

n is sufficiently large. Here Er(R,P,W ), characterizing the exponential rate of

decay of the probability of error with the blocklength, is called the random coding

exponent function of channel W with input distribution P , and is defined as [134]

Er(R,P,W ) , min
V

(
D(V ||W |P ) + [I(P, V )−R]+

)
, (5.38)

V ranging over all channels V : X → Y , D(V ||W |P ) =
∑
x,y

P (x)V (y|x) log
V (y|x)

W (y|x)
,

and I(P, V ) = HP (X)−HP×V (X|Y ).

The following theorem shows that the CSCC error exponent using subblock-

composition P is related to the CCC error exponent by the same term, r(L, P ),

used in rate loss bound (5.23).

Theorem 8. For every R > δ > 0, there exists a CSCC with subblock-composition

P , fixed subblock length L, codeword length n, rate at least R − δ, for which the

maximum probability of error on DMC W is upper bounded as

Pe ≤ exp[−n (Er(R + r(L, P ), P,W )− δ)], (5.39)

whenever n is a sufficiently large multiple of L. Thus, the CSCC error expo-

nent using subblock-composition P , with rate R on DMC W is lower bounded by

Er (R + r(L, P ), P,W ).

Proof: Please refer to Appendix B.7.

5.4 Real-time Information Transfer

So far, we could ensure real-time energy transfer to the receiver by placing con-

straints on the subblock-composition. For information transfer, although joint
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decoding of all the subblocks within a codeword is preferred for reducing the

probability of error, it also causes delay in information arrival.

For enabling real-time information transfer, the receiver may decode each sub-

block independently, and thus avoid waiting for arrival of future subblocks. Here,

since the subblock decoding proceeds the instant that subblock has been com-

pletely received, the information transfer delay is only due to subblock transfer

time and the corresponding decoding delay.

When each subblock within the transmitted sequence is decoded independent

of other subblocks, then each subblock may itself be viewed as a codeword. We will

refer to the independent decoding of subblocks as local subblock decoding (LSD).

We remark that this subblock based decoding is distinct from decoding for lo-

cally decodable codes that allows any bit of the message to be decoded with high

probability by only querying a small number of received bits [138].

5.4.1 Local Subblock Decoding

In case of local subblock decoding, each subblock may be treated as an independent

codeword since every subblock is decoded independently. We are interested in

estimating achievable rates with bounded error probability when local subblock

decoding is employed. We now provide a short review of an existing result on

achievable rates for constant composition finite blocklength codes. This result will

then be used (in Sec. 5.5) to compare rates between local (independent) subblock

decoding and joint subblock decoding.

Let M∗(n, ε) denote the maximum size of length-n constant composition code

for a DMC with average error probability no larger than ε. When the composition

of codewords is equal to an input probability distribution which maximizes the

mutual information and the channel satisfies some regularity conditions, then [4],
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[139], [140]

logM∗(n, ε) = nC −
√
nV Q−1(ε) +

1

2
log n+O(1) (5.40)

where C is the channel capacity, V is the information variance, and Q is the

Gaussian Q-function [140]. We remark that V is also termed channel dispersion

in literature [3]. Early results on finite blocklength capacity for memoryless sym-

metric channels are due to Weiss [141], which were generalized for the DMC and

strengthened by Strassen [142].

When each codeword has equal number of ones and zeros, the achievable rate

in bits per channel use for BSC with crossover probability p using CCC is approx-

imated as [139]:

log2M
∗(n, ε)

n
≈ C −

√
p(1− p)

n
log2

1− p
p

Q−1(ε) +
1

2n
log2 n, (5.41)

with C = 1 + p log2 p+ (1− p) log2(1− p).

5.5 Numerical Results and Discussion

In this section, we provide examples highlighting the tradeoff between delivery

of sufficient energy to the receiver and achieving high information transfer rates.

These results are used to draw meaningful insights into choice of subblock length

and subblock composition as a function of required energy per symbol at the

receiver.

Fig. 5.3 plots CL
CSCC(B) as a function of B for different values of L for a BSC

with crossover probability p0 = 0.1. The b-values are assumed to be b(0) = 0

and b(1) = 1. These b-values reflect the case of on-off keying where bit-1 (bit-0)

is represented by the presence (absence) of a carrier signal. Fig. 5.3 shows that,

in general, the value of information rate given by CL
CSCC(B) increases with an
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Figure 5.3: Plot of CL
CSCC(B) versus B for BSC with crossover probability p0 =

0.1, b(0) = 0, b(1) = 1.

increase in the subblock length L, for a given B. This is because an increase

in L leads to greater choice for input symbols within a subblock. Note that the

smaller the value of L, the greater the uniformity in energy distribution within a

codeword. The reduction in capacity due to choice of smaller L is the price we

pay for providing smoother energy content.

The plot for L = ∞ is evaluated using (5.28); this follows from (5.9), (5.26)

and (5.29). Thus the curve corresponding to L = ∞ is same as the CCCC(B)

curve. This curve is a non-increasing concave function of B for 0 ≤ B ≤ bmax.

This claim can be proved using the approach in [14]. It is non-increasing since

the feasibility set ΓLB will only become smaller on increasing B. The concavity

of CCCC(B) follows from the concavity of I(X;Y ) as a function of probability

distribution of X and the fact that for 0 < α < 1, the conditions EP1 [b(X)] ≥ B1

and EP2 [b(X)] ≥ B2 imply that

EαP1+(1−α)P2 [b(X)] ≥ αB1 + (1− α)B2. (5.42)
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Figure 5.4: Plot of CSCC capacity versus receiver energy buffer size, Emax, with
B = 0.5, b(0) = 0, b(1) = 1 for BSC with crossover probability p0 = {0.01, 0.1}.

The non-increasing concave nature of the capacity-power function was used in [131]

to show the suboptimality of a time-sharing approach to energy and information

transfer.

The CSCC capacity is plotted in Fig. 5.4 for a BSC as a function of the

receiver energy buffer size, Emax, with B = 0.5. The subblock length L is chosen

as a function of Emax to satisfy (5.19). Since L increases with increasing values

of Emax, the CSCC capacity is an increasing function of Emax. For p0 = 0.1, the

CSCC capacity is limited by the relatively high value of the crossover probability,

rather than the subblock length, with capacity remaining almost constant as Emax

is increased beyond 10. On the other hand, for p0 = 0.01, the CSCC capacity is

limited by the subblock length (since ‘noise’ is weak). From (5.19) we observe

that the subblock length tends to infinity as Emax tends to infinity, and hence the

CSCC capacity corresponding to Emax →∞ is equal to CCCC(B).

Fig. 5.5 plots the rate penalty incurred by using CSCC instead of CCC, for a

BSC with crossover probability p0, L = 16, and Pr(0) = Pr(1) = 0.5. As discussed
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Figure 5.5: Plot of CCCC(P )−CL
CSCC(P ) as a function of BSC crossover probability

p0 for L = 16 and Pr(0) = Pr(1) = 0.5.

in Sec. 5.3.1, the upper bound on the rate penalty given by r(L, P ) is shown to

be close to the exact value when p0 ≈ 0. Note that r(L, P ) is independent of the

underlying channel. A tighter bound on the rate penalty given by h(p0?γ)−h(p0?

α) is also plotted (see Theorem 5). These bounds are useful in estimating the rate

penalty for large values of L when the computational complexity of CL
CSCC(P )

becomes high. The bounds on rate penalty may also be used to bound the exact

value of CL
CSCC(P ) for large L.

Fig. 5.6 compares achievable rates using local subblock decoding (LSD) with

rates using joint subblock decoding for a BSC with crossover probability p0 = 0.11

when each subblock has equal number of zeros and ones (that is, P (0) = P (1) =

0.5). In case of CSCC with LSD, each subblock may itself be viewed as a codeword

and so the achievable rate is approximated by (5.41) with n = L. The achievable

rates with LSD are obtained using (5.41) and seen to fall significantly as the

desired probability of error, ε, tends to zero. The red curve plots lower bound

on CL
CSCC(P ) obtained using (5.33). Note that CL

CSCC(P ) represents the rate
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Figure 5.6: Rates for a BSC with crossover probability p = 0.11.

with joint subblock decoding for which the probability of error can be brought

arbitrarily close to zero by increasing the number of subblocks in a codeword and

then jointly decoding the subblocks.

Notice that the rate loss decreases as
√

1/L with LSD whereas the rate loss

with joint decoding decreases as log(L)/L. Ensuring the ability to use energy in

real-time imposes less of a penalty than the ability to use information in real-time.

5.6 Discussion

We proposed the use of CSCC codes for providing regular energy content in a

patterned energy signal which is used for simultaneous transfer of energy and in-

formation. The subblock-composition in CSCC was chosen to maximize the rate

of information transfer while ensuring that the fraction of input symbols carrying

high energy within every subblock duration are sufficiently large. For character-

izing the exact CSCC capacity, we employed a super-letter approach (with each

subblock being viewed as a single super-letter in an induced vector-channel) and
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showed that CSCC capacity computational complexity can be alleviated by ex-

ploiting certain symmetry properties.

Compared to constant composition codes (CCCs), the use of CSCCs incurs a

rate loss due to the constraint restricting the subblocks to have the same com-

position. We showed that the CSCC error exponent is related to the CCC error

exponent by the same rate loss term. We also presented numerical results for

different scenarios and showed that ensuring the ability to use energy in real-time

imposes less of a penalty than the ability to use information in real-time.
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Subblock Energy-Constrained

Codes

Consider an energy-harvesting receiver that uses the same received signal both for

decoding information and for harvesting energy, which is employed to power its

circuitry. In the scenario where the receiver has limited battery size, a signal with

bursty energy content may cause power outage at the receiver since the battery

will drain during intervals with low signal energy. In Chapter 5 we studied con-

stant subblock-composition codes (CSCCs) where all subblocks in every codeword

have the same fixed composition, and this subblock-composition is chosen to max-

imize the rate of information transfer while meeting the energy requirement. In

this chapter, we show that CSCC capacity can be improved by allowing different

subblocks to have different composition while still meeting the subblock energy

constraint.

We consider discrete memoryless channels (DMCs) and study subblock energy-

constrained codes (SECCs) which by definition are codes which carry sufficient

energy in every subblock duration. Compared to constant subblock-composition

codes (CSCCs) analyzed in the previous chapter, the SECCs allow different sub-
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TRANSMITTER CHANNEL

Figure 6.1: Simultaneous energy and information transfer from a transmitter to
an energy-harvesting receiver

blocks to have different composition and thus achieve higher rates of information

transfer while still meeting the real-time energy requirement.

Our contributions in this chapter are as follows. We provide a sufficient

condition on the subblock length to avoid power outage at the receiver for all

possible SECC sequences (Sec. 6.2.1). We characterize the exact SECC capac-

ity (Sec. 6.2.2), and also provide different bounds on the SECC capacity (Sec. 6.2.3).

Further, we characterize and bound the random coding error exponent for SECCs

in Sec. 6.2.4, and present numerical results in Sec. 6.3.

6.1 System Model

Consider communication from a transmitter to a receiver which uses the received

signal both for decoding information as well as for harvesting energy (Fig. 6.1).

We model the effective channel from the output of a modulator at the transmitter

to the (quantized) input to an information decoder at the receiver as a discrete

memoryless channel (DMC), with input alphabet X , output alphabet Y , and a

stochastic matrix W = {W (y|x) : x ∈ X , y ∈ Y} where W (y|x) is the probability

that the output is y when the channel input is x.

For simultaneous energy and information transfer, we consider a receiver ar-

chitecture where the received signal power is split between the energy harvesting

path and the information processing path with a static power-splitting ratio. We
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let b(x) denote the energy harvested when x ∈ X is transmitted, b : X → [0,∞).

The map b is assumed to be time-invariant, and reflects the scenario where the

statistical nature of the effective communication channel is due to the noise in the

receiver circuitry, which does not affect the harvested energy.

To meet the real-time energy requirement at the receiver, we partition the

transmitted codeword into equal-sized subblocks and require that transmitted

symbols be chosen so the expected harvested energy in each subblock exceeds

a given threshold. We assume that the subblock length, denoted L, is fixed while

the codeword length, denoted n, can be made arbitrarily large by increasing the

number of subblocks within each codeword. If a transmitted codeword is denoted

(X1, X2, . . . , Xn), then the constraint on sufficient energy within each subblock is:

1

L

L∑
i=1

b
(
X(j−1)L+i

)
≥ B, j = 1, 2, . . . , k , (6.1)

where j is the subblock index, B is the required energy per symbol at the receiver,

and k is the number of subblocks in a codeword. We assume that bmin < B < bmax,

where bmin = minx∈X b(x), and bmax = maxx∈X b(x).

6.2 Subblock Energy-Constrained Codes

When Nj(x) denotes the number of occurrences of symbol x in subblock j within

a codeword, the subblock energy constraint (6.1) can equivalently be expressed as

∑
x∈X

b(x)
Nj(x)

L
≥ B, j = 1, 2, . . . , k. (6.2)

A subblock energy-constrained code (SECC) is defined as one in which all code-

words are partitioned into length-L subblocks and the composition of each sub-

block is chosen to satisfy (6.2). Note that if xL1 denotes a given subblock of
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length L, then the composition of xL1 is the distribution PxL1 on X defined by

PxL1 (x) , N(x)
L
, x ∈ X , where N(x) is the number of occurrences of symbol x in

subblock xL1 .

Let PL denote the set of all compositions for input sequences of length L. Since

all subblocks in SECC satisfy (6.2), the composition of each subblock belongs to

the set

ΓLB , {P ∈ PL :
∑
x∈X

b(x)P (x) ≥ B}. (6.3)

We will let J denote the number of distinct compositions in ΓLB, and these com-

positions will be denoted as Pj, 1 ≤ j ≤ J , and so ΓLB = {P1, . . . , PJ}.

6.2.1 Choosing the subblock length

We impose subblock energy constraint (6.1) because a codeword satisfying only the

codeword energy constraint may still cause power outage at the receiver if the en-

ergy content in the codeword is bursty, since a receiver battery with small capacity

may drain during periods of low signal energy. The receiver energy update equa-

tion after i channel uses is given by E(i + 1) = min (Emax, [E(i) + b(Xi)−B]+),

where E(i) denotes the energy level at the receiver after the completion of i − 1

channel uses, Emax denotes the receiver energy storage capacity, and [z]+ ,

max(z, 0). We say an outage occurs during the ith channel use if E(i)+b(Xi) < B,

while an overflow occurs if E(i) + b(Xi)−B > Emax. The following theorem gives

a sufficient condition on the subblock length to avoid power outage at the re-

ceiver for all possible SECC codeword sequences, where we employ the notation:

X/ = {x ∈ X | b(x) < B}, X. = {x ∈ X | b(x) ≥ B}.

Theorem 9. For each Pj ∈ ΓLB, 1 ≤ j ≤ J , let Sj =
∑

x∈X/
Pj(x) (B − b(x)) and

Smax = maxj∈{1,...,J} Sj. Then a sufficient set of condition to avoid outage for all
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possible SECC codeword sequences is

L ≤ Emax
2Smax

, E(1) ≥ LSmax , (6.4)

where E(1) is the initial level of the receive energy buffer.

Proof: Please refer to Appendix C.1.

The initial energy level may be ensured by transmitting a preamble, consisting

of high energy symbols, before the transmission of codewords. This preamble has

bounded length and hence does not affect the channel capacity.

6.2.2 SECC capacity

The set of sequences in X L with composition P is denoted by T LP and is called the

type class or composition class of P . When SECC constrained codes are employed

on DMC W : X → Y , we may view the L uses of the channel as a single use of

the induced vector channel having input alphabet

A =
⋃
P∈ΓL

B

T LP =
⋃

1≤j≤J

T LPj
, (6.5)

and output alphabet YL. Since the underlying scalar channel W is a DMC, the

vector channel is also a DMC with transition probability for a pair of input and

output vectors given by

WL(yL1 |xL1 ) =
L∏
i=1

W (yi|xi), xL1 ∈ A, yL1 ∈ YL. (6.6)

Let the codeword length, n, be of the form n = kL, where k is an integer denoting

the number of subblocks in each codeword. We wish to quantify performance

limits when the subblock length L is fixed and k →∞. For SECC, each kL-length
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codeword may be viewed as an element of Ak, and the received word belongs to

the set
(
YL
)k

. A kL-length SECC block code for a channel
(
WL

)k
: Ak →

(
YL
)k

is a pair of mappings (f, φ) where f maps a finite message set M into Ak, and φ

maps YkL into M. The probability of erroneous transmission of message m ∈M

is em , 1−
∑

ykL1 :φ(ykL1 )=mW
kL(ykL1 |f(m)), the maximum probability of error of the

code (f, φ) is e , maxm∈M em, while the rate of this code is 1
kL

log |M|. We call

a kL-length SECC block code with maximum probability of error upper bounded

by ε as a (kL, ε)-SECC code.

Definition 1. For a fixed subblock length L, and for 0 ≤ ε < 1, a non-negative

number R is an ε-SECC achievable rate for the channel W kL : Ak → YkL if for

every δ > 0 and every sufficiently large k there exist (kL, ε)-SECC codes with

rate exceeding R − δ. A number R is an SECC achievable rate if it is ε-SECC

achievable for all 0 < ε < 1, and the supremum of SECC achievable rates is the

SECC capacity of channel W .

The induced vector channel WL (6.6) is a DMC with input alphabet A and

output alphabet YL, and hence its capacity is maxP
XL

1
:XL

1 ∈A I(XL
1 ;Y L

1 ), where the

maximization is over the distribution of XL
1 ∈ A. Since kL uses of W correspond

to k uses of WL, the SECC capacity, denoted CL
SECC(B), is 1/L times the capacity

of this vector channel, and so

CL
SECC(B) = max

P
XL

1
:XL

1 ∈A

I(XL
1 ;Y L

1 )

L
, (6.7)

where the maximization is over the distribution of subblocks over A, where the

set A is related to B via ΓLB (see (6.5)).

Remark : Note that CL
SECC(B) is non-increasing in B because the set ΓLB only

becomes smaller on increasing B. Further, if L̃ = mL, where m is a positive

integer, then PL ⊂ PL̃ and so ΓLB ⊂ ΓL̃B, which implies CL
SECC(B) ≤ CL̃

SECC(B)
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because CL̃
SECC(B) is obtained by optimizing the input distribution over a richer

alphabet.

Finding a capacity-achieving input distribution in (6.7) is not always straight-

forward, and one may have to resort to the Blahut-Arimoto algorithm [16], [17].

There even exist symmetric DMCs for which the corresponding induced vector

channel is not symmetric, where a uniform distribution over A does not achieve

capacity [143].

However, for any given channel, there always exists a SECC capacity-achieving

input distribution P ∗
XL

1
satisfying P ∗

XL
1

(xL1 ) = P ∗
XL

1
(x̃L1 ), whenever xL1 and x̃L1 belong

to the same composition class.

Theorem 10. Let xL1 and x̃L1 be any two vectors in A having the same composition.

Then for a given channel W , there exists a SECC capacity-achieving (6.7) input

distribution P ∗
XL

1
satisfying P ∗

XL
1

(xL1 ) = P ∗
XL

1
(x̃L1 ).

Proof: Please refer to Appendix C.2.

6.2.3 Bounds on SECC capacity

The elements of the random vector XL
1 , in general, are not independent because

XL
1 belongs to the constrained set A. The elements of XL

1 are, however, identically

distributed.

Lemma 2. Let P ∗
XL

1
be a SECC capacity-achieving input distribution of Theo-

rem 10, and define

cj ,
∑

xL1 ∈T L
Pj

P ∗XL
1

(xL1 ), Pj ∈ ΓLB, j ∈ {1, . . . , J}. (6.8)
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Then each element Xi in XL
1 has identical distribution P̃ with

P̃ (x) =
J∑
j=1

cjPj(x), x ∈ X . (6.9)

Proof: For a given j, when all the vectors in T LPj
have equal probabilities,

then a combinatorial argument [143] shows that for 1 ≤ i ≤ L, we have Pr(Xi =

x|XL
1 ∈ T LPj

) = Pj(x). Thus (6.9) follows since cj = Pr(XL
1 ∈ T LPj

), and

Pr(Xi = x) =
J∑
j=1

Pr(XL
1 ∈ T LP )Pr(Xi = x|XL

1 ∈ T LP ).

The unconditional distribution P̃ (6.9) for each letter in a SECC codeword can

be used to bound the SECC capacity.

Theorem 11. I(P̃ ,W )− r̃ ≤ CL
SECC(B) ≤ I(P̃ ,W ), with

I(P̃ ,W ) , HP̃ (X)−HP̃×W (X|Y ) = H(P̃ )−HP̃×W (X|Y )

r̃ , H(P̃ )−
J∑
j=1

cj
log |T LPj

|
L

− 1

L

J∑
j=1

cj log
1

cj
. (6.10)

Proof: Please refer to Appendix C.3.

Next, we bound the SECC capacity using expressions which are independent

of P ∗
XL

1
.

The constant subblock-composition codes (CSCCs) [144] are a subclass of

SECCs where all subblocks in every codeword have the same fixed composition.

If the fixed composition is denoted P , then all the subblocks in CSCC belong to

T LP , and this composition meets the subblock energy constraint (6.2). The CSCC

capacity, denoted CL
CSCC(B), can be expressed as [144]

CL
CSCC(B) = max

P∈ΓL
B

I
(
U
(
T LP
)
,WL

)
L

, (6.11)

where U
(
T LP
)

denotes a uniform distribution over T LP . Now, instead of imposing
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the energy constraint per subblock (6.1), if we impose the energy constraint per

codeword 1
L

∑n
i=1 b(Xi) ≥ B, then the capacity, denoted CCCC(B), is [14]

CCCC(B) = max
PX :EPX

[b(X)]≥B
I(X;Y ). (6.12)

Theorem 12. CL
CSCC(B) ≤ CL

SECC(B) ≤ CCCC(B).

Proof: In contrast with CSCCs where all subblocks have the same fixed

composition, a general SECC has the flexibility of choosing different subblocks

with different compositions. The lower bound on the SECC capacity hence follows

because CL
SECC(B) is obtained via optimizing the subblock distribution over a

richer input alphabet.

The upper bound on the SECC capacity follows since the energy constraint

per subblock is stricter than the energy constraint per codeword.

Using limL→∞C
L
CSCC(B) = CCCC(B) [144], and the above theorem, it follows

that limL→∞C
L
SECC(B) = CCCC(B).

6.2.4 SECC error exponent

It is well known [134], Thm. 10.2 that for every R > δ > 0 there exists an n-

length constant composition code of rate at least R − δ such that all codewords

have composition P̃ and the maximum probability of error is upper bounded by

exp[−n(Er(R, P̃ ,W ) − δ)] for every DMC W , whenever n is sufficiently large.

Here Er(R, P̃ ,W ), characterizing the exponential rate of decay of the probability

of error with the blocklength, is called the random coding exponent function of

channel W with input distribution P̃ , and is defined as [134]

Er(R, P̃ ,W ) , min
V

(
D(V ||W |P̃ ) + [I(P̃ , V )−R]+

)
, (6.13)

149



Chapter 6. Subblock Energy-Constrained Codes

V ranging over all channels V : X → Y .

As discussed in Sec. 6.2.2, the L uses of channel W with SECC may be viewed

as a single use of the vector channel WL (6.6). Thus, each n-length SECC code-

word may be viewed as a sequence of n/L super-letters to be transmitted on vector

channel WL. Since rate R for the scalar channel corresponds to rate LR for the

vector channel, there exists a SECC code for which the maximum probability of

error on WL, with codewords comprising of n/L super-letters, is bounded as [134]

Pe ≤ exp[−n
L

(
Er(LR,P

∗
XL

1
,WL)− Lδ

)
], (6.14)

= exp[−n

(
Er(LR,P

∗
XL

1
,WL)

L
− δ

)
], (6.15)

where P ∗
XL

1
is a SECC capacity-achieving distribution of Thm. 10, and Er(LR,P

∗
XL

1
,WL)/L

is the random coding error exponent for SECCs with rate R over channel W . The

following theorem bounds the error exponent Er(LR,P
∗
XL

1
,WL)/L in terms of

Er(R, P̃ ,W ) and r̃ (6.10).

Theorem 13.
Er(LR,P

∗
XL

1
,WL)

L
≥ Er(R + r̃, P̃ ,W ).

Proof: Please refer to Appendix C.4.

6.3 Numerical Results and Discussion

In this section, we provide examples highlighting the tradeoff between delivery

of sufficient energy to the receiver and achieving high information transfer rates.

These results are used to draw meaningful insights into choice of subblock length

and subblock composition as a function of required energy per symbol at the

receiver.

Fig. 6.2 compares the capacity of CSCC and SECC for a noiseless binary

channel with b(0) = 0, b(1) = 1 and subblock length L = 8. Note that the
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Figure 6.2: Comparison of capacity of different schemes for a noiseless binary
channel with b(0) = 0, b(1) = 1.

capacity curve for CCC may be viewed as the CSCC capacity curve corresponding

to L = ∞. Fig. 6.2 highlights the potential of improving the CSCC capacity by

using SECCs and allowing different subblocks to have different compositions while

still meeting the subblock energy constraint (6.1). Note that the SECC capacity

for a noiseless channel is achieved by a uniform distribution of input vectors and

is given by (log |A|) /L, where A is given by (6.5).

Fig. 6.3 compares capacity of different schemes for L = 8 and B = 0.6, as a

function of BSC crossover probability p0. It shows that for p0 < 0.05, the capac-

ity with uniform distribution over the set of length L vectors which satisfy the

subblock energy constraint (6.1), is higher compared to CSCC capacity. However,

CL
UA

(B) < CL
CSCC(B) for relative higher values of p0. This observation emphasizes

the fact that merely adding more types is not sufficient to increase capacity com-

pared to CSCC; we need to choose an appropriate distribution over the enlarged

alphabet as well. In Fig. 6.3, we used the Blahut-Arimoto algorithm [16], [17] to

compute the exact SECC capacity, CL
SECC(B).
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Figure 6.3: Comparison of capacity of different schemes for L = 8, B = 0.6, as a
function of BSC crossover probability p0 and b(0) = 0, b(1) = 1.

6.4 Discussion

In this chapter, we proposed the use of SECCs for real-time simultaneous energy

and information transfer, and gave a sufficient condition on the subblock length

to avoid receiver power outage. We characterized the SECC capacity and the

SECC random coding error exponent, and also presented bounds for these val-

ues. Compared to the constant subblock composition codes (CSCCs) discussed

in Chapter 5, we showed that the SECCs achieve higher information rates due to

the flexibility of allowing different compositions for different subblocks.

We denoted by b(x), the amount of energy harvested when symbol x is trans-

mitted, and assumed that b is time-invariant, a reasonable assumption for short-

range line-of-sight wireless power transfer. As an extension, one may consider

a time-varying b corresponding to wireless communication with fading.
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Codes Satisfying Sliding Window

Energy Constraint

We consider the problem of binary code design for simultaneous energy and in-

formation transfer where the receiver completely relies on the received signal for

fulfilling its real-time power requirements. When on-off keying is employed (where

“1” (resp. “0”) is represented by the presence (resp. absence) of a carrier), a ma-

jority transmission of “1” indicates a greater opportunity for the receiver to use

the signal to fulfill its power requirements.

In order to provide real-time energy transfer to the receiver, a subblock-constrained

approach was adopted in Chapters 5 and 6. In this approach, each codeword was

divided into subblocks and each subblock was constrained to carry sufficient en-

ergy. Another approach to providing real-time energy transfer is to ensure that

each codeword carries sufficient energy within a moving time window.

In this chapter, we study binary codes in which each codeword is constrained

to have at least d ones in a sliding window of W = d + 1 consecutive bits. This

constraint is equivalent to having at least d ones between successive zeros, which

in turn defines a Type-1 (d,∞) run-length limited (RLL) code. Note that, in
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general, a Type-1 (d, k) RLL code is one in which the number of ones between

successive zeros in each codeword is at least d and at most k.

We give a probabilistic proof that the noiseless capacity of a (d,∞) RLL code

can be achieved by using a d+1 state Markovian chain. The state transition prob-

abilities for this Markov chain are explicitly provided and any sequence obtained

from these state transitions satisfies the given codeword constraint. We also give

analytical expressions for achievable rates when these constrained codes are used

on the (i) binary symmetric channel (BSC), (ii) Z-channel and (iii) binary erasure

channel (BEC). Although a few of these results are well known for run-length

codes used for data storage, they do not seem to appear in literature in the form

presented here.

Type-0 (d, k) RLL codes (where the number of zeros between successive ones

are at least d and at most k) have been used for magnetic and optical recording

and researchers usually refer to Type-0 (d, k) RLL codes simply as (d, k) codes

[78], [79], [145], [146]. However, unless specified otherwise in this chapter, by (d, k)

codes and (d,∞) codes we shall mean Type-1 (d, k) RLL codes and Type-1 (d,∞)

RLL codes, respectively.

Note that apart from the physical interpretation of constraints, there is no com-

binatorial difference between Type-0 and Type-1 RLL codes when they are used

on symmetric channels. However differences arise when these codes are employed

on asymmetric channels, like the Z-channel.

A (d,∞) code can be represented by transitions between d+ 1 states as shown

by the finite-state machine in Fig. 7.1 [147], [146]. We remark that a (d, k) code

can be represented by a state machine with k + 1 states, but it is not desirable

to view a (d,∞) code as a special case of (d, k) code with k = ∞ since the state

space becomes infinite.

The use of (d, k) codes for simultaneous energy and information transfer has

154



Chapter 7. Codes Satisfying Sliding Window Energy Constraint

0

1 2 d-1 d
11 11

1

0

(a)

1 2 d-1 d
11 11

1-p

p

(b)

0

0

0

Figure 7.1: State transition diagram of a (d,∞) code. (a) State transitions labeled
by output bit, (b) State transitions labeled by transition probabilities.

been proposed in [81], [82]. In [81], the tag-to-reader channel in RFID systems is

modeled as a discretized Gaussian shift channel and the frame error rate of finite

blocklength (d, k) codes is compared through simulations. In [82], the communi-

cation is assumed over a Z-channel and the receiver is assumed to be equipped

with a finite energy buffer. The performance of different (d, k) codes is compared

through numerical optimization over state transition probabilities. In comparison,

in this chapter we derive analytical expressions for state transition probabilities

which lead to maximization of information rates using (d,∞) codes over BSC,

BEC, Z-channel.

We analyze the noiseless capacity in Section 7.1 while achievable rates for

noisy channels are investigated in Section 7.2. Numerical results and conclusions

are presented in Sections 7.3 and 7.4, respectively.
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7.1 (d,∞) Code Capacity

If MN denotes the maximum number of distinct binary sequences of length N

satisfying the (d,∞) constraint, then the (d,∞) code capacity is given by

C0 = lim
N→∞

log2MN

N
. (7.1)

This was first studied by Shannon [1] and the code capacity is given by the loga-

rithm of the largest root of the following characteristic equation (see [79] and [148])

zd+1 − zd − 1 = 0. (7.2)

It is interesting to note that solutions to the above equation, for different

values of d, are related to certain constants, called Meru constants, obtained from

recurrence relations studied by the ancient mathematician Pingala in his work on

rhythm and meter in Sanskrit poetry [149]. In particular, the first, second, and

fourth Meru constants can be shown to be equal to the largest root of (7.2) for

d = 1, d = 2, and d = 3, respectively.

Let Sn denote the state of the Markov machine in Fig. 7.1 at time n where

Sn ∈ {0, 1, . . . , d}. A transition from state Sn−1 to state Sn produces bit Xn.

From Fig. 7.1(a) it follows that Xn = 0 when the machine transitions from state

d to state 0 and Xn = 1 for all other state transitions. From Fig. 7.1(b) we note

that the transition probability from state d to state 0 is denoted by p0 and the

transition probability from state d to itself is equal to 1− p0.

This Markov machine is irreducible and aperiodic. Thus, it has a stationary

probability distribution which we denote by {πj}dj=0 where πj is the steady state

probability of the Markov chain being in state j. For this Markov chain, the
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entropy rate (or information rate) is

R = H(S2|S1) = πdH(p0), (7.3)

where H(p0) = 1 + p0 log2 p0 + (1− p0) log2(1− p0).

The value ofR is uniquely given by the choice of d and the transition probability

p0. We will now prove that the sequences generated using the finite state machine

given by Fig. 7.1 achieve the binary (d,∞) code capacity through an appropriate

choice of the transition probability p0. That is, for a given d, the following relation

is satisfied

C0 = max
p0

R. (7.4)

The asymptotic equipartition property (AEP) holds for Markov sources and the

number of typical sequences of length n is approximately given by 2nH(S2|S1) where

H(S2|S1) is the entropy rate (or information rate) of the Markov source [20]. In

general, if a constrained code is represented by a finite Markov model then, using

the AEP, it can be proved that there exist state transition probabilities such that

the entropy rate of the Markov source matches the constrained code capacity [146].

A similar result is also obtained in [145] by enumerating the distinct sequences

that a Markov source can generate using its associated connection matrix .

Here, we give a simple proof of (7.4) when (d,∞) constrained codes are rep-

resented by Markov model in Fig. 7.1. A useful outcome of our proof is that

closed-form expressions for the optimized transition probabilities are explicitly

presented. This seems not to have appeared in the literature before.

Theorem 14. The maximum information rate of the Markov source governed

by the state machine given in Fig. 7.1 is equal to the (d,∞) code capacity given

by the logarithm of the largest real root of the following characteristic equation

zd+1−zd−1 = 0. This capacity is achieved by choosing p0 as the largest real value
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for which p0 = (1− p0)d+1.

Proof: The steady state probability distribution satisfies

[π0 π1 · · · πd] = [π0 π1 · · · πd]A, (7.5)

where A denotes the transition probability matrix for the finite state machine in

Fig. 7.1. The (i, j) entry of A is the transition probability from state i to state j

and A is given by

A =



0 1 0 0 · · · 0

0 0 1 0 · · · 0

...
. . . . . . . . . . . . . . .

...
. . . . . . . . . . . . . . .

0 0 0 0
. . . 1

p0 0 0 0
. . . 1− p0


(7.6)

The diagonal of A is all zeros except the bottom corner, which is 1− p0. Solving

(7.5), we get

π0 = π1 = · · · = πd−1 = p0 πd. (7.7)

Since the steady state probabilities sum to one, we have

πd =
1

1 + p0d
and π0 = · · · = πd−1 =

p0

1 + p0d
. (7.8)

Using (7.3) and (7.8), the information rate is given by

R =
H(p0)

1 + p0d
. (7.9)

To solve for p0 which maximizes R, we equate the derivative of R with respect to
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p0 to zero

∂R

∂p0

=
(1 + p0d) log2

(
1−p0
p0

)
− dH(p0)

(1 + p0d)2
= 0. (7.10)

The above equation yields

p0 = (1− p0)d+1. (7.11)

Substituting (7.11) in (7.9), we get

R = log2(1− p0)−1. (7.12)

From (7.11), we see that (1−p0) satisfies the equation zd+1 = 1− z. Equivalently,

(1− p0)−1 satisfies the equation

1− z−1 − z−(d+1) = 0 ⇔ zd+1 − zd − 1

zd+1
= 0. (7.13)

Thus, the maximum information rate is given by the logarithm of the largest real

root of the equation zd+1 − zd − 1 = 0.

7.2 Achievable rate using (d,∞) code on memo-

ryless channels

Consider a memoryless channel with input sequence XN (satisfying the (d,∞)

constraint) and output sequence YN = (Y1, . . . , YN). The channel capacity in this

scenario is equal to [78], [79]

C = lim
N→∞

sup
P (XN )

I(XN ; YN)

N
(7.14)

= lim
N→∞

sup
P (SN )

I(SN ; YN)

N
, (7.15)
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where, in the first equality the supremum is taken over all probabilities P (XN)

for the input sequence. In the second equality, the supremum is taken over all

probabilities P (SN) for the sequence of states. The second equality follows since

given the initial state, the sequences XN and SN are in one-to-one correspondence,

and the initial states does not affect the average mutual information [79].

Although the channel capacity using (d,∞) codes given by (7.15) is difficult

to obtain for noisy channels, a useful lower bound on the capacity for a stationary

Markovian source over memoryless channels is given as [78]

C ≥ CLB = sup
P (S1,S2)

I(S2;Y2|S1). (7.16)

In general for a constrained code, an analytical expression for CLB is not

available and thus its computation is performed either through numerical opti-

mization [78] or through approximation [79]. In this work we obtain analytical

expressions for CLB when the finite state machine in Fig. 7.1 generates the (d,∞)

code for the following channels:

1. Binary Symmetric Channel

2. Z-Channel

3. Binary Erasure Channel

7.2.1 Binary Symmetric Channel (BSC)

A BSC is a binary-input binary-output memoryless channel with an associated

“crossover” probability, Pr(1|0) = Pr(0|1), which we denote by q. The crossover

probability represents the probability of bit error by a hard-decision information

decoder at the receiver due to channel noise.
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It may be tempting to interpret the transition of information bit 1 to informa-

tion bit 0 due to channel noise as an energy loss, but the energy harvester at the

receiver harvests energy radiated by the transmitter independent of the informa-

tion decoder. Thus imposing the (d,∞) code constraint at the transmitter helps

to meet the energy requirement at the receiver even on noisy channels.

The following proposition evaluates the achievable rate given by (7.16) for a

BSC using (d,∞) constrained codes.

Proposition 8. The lower bound for capacity on BSC with crossover probability q

when the Markovian state machine in Fig. 7.1 is used to generate the (d,∞) code

is given by

CLB =
H(p0 + q − 2pq)−H(q)

1 + p0d
, (7.17)

where p0 satisfies the equation

(1− p0 − q + 2pq)1+d−2q−dq = qdq(1− q)d−dq(p0 + q − 2p0q)
1−2q−dq. (7.18)

Proof: The average conditional mutual information in this case is

I(S2;Y2|S1) = H(S2|S1) +H(Y2|S1)−H(S2, Y2|S1) (7.19)

= πd (H(p0 + q − 2p0q)−H(q)) (7.20)

=
H(p0 + q − 2p0q)−H(q)

1 + p0d
, (7.21)

where the last equality above follows from (7.8).

To solve for p0 which maximizes I(S2;Y2|S1), we equate its derivative with
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respect to p0 to zero

∂I

∂p0

=
(1 + p0d)(1− 2q) log2

(
1−r
r

)
− d (H(r)−H(q))

(1 + p0d)2
= 0, (7.22)

where r = p0 + q − 2p0q. Using the relation

H(r) = r log2

(
1− r
r

)
− log2(1− r), (7.23)

equation (7.22) can be simplified to obtain (7.18). Finally, (7.17) follows from

(7.16) and (7.21).

Remark 1. Following observations can be made on the application of Prop. 8 for

the special case of q = 0 and d = 0.

• When the BSC crossover probability q = 0, (7.17) and (7.18) reduce to (7.9)

and (7.11), respectively. In this case, CLB corresponds to the (d,∞) code

capacity C0. For this reason, C0 is also called the noiseless capacity under

the (d,∞) RLL code constraint.

• When d = 0, the code becomes unconstrained and the probability of number

of zeros in a codeword is represented by p0. In this case, (7.18) reduces to

p0 = 0.5 and (7.17) corresponds to the unconstrained BSC capacity 1−H(q).

7.2.2 Z-Channel

The Z-channel is memoryless with input alphabet X = {0, 1}, output alphabet

Y = {0, 1} and satisfies Pr(0|0) = 1. We denote the probability Pr(0|1) by q.

The following proposition gives an explicit expression for the achievable rate

CLB, given by (7.16), for the Z-channel.

Proposition 9. When the Markovian state machine in Fig. 7.1 is used to generate
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the (d,∞) code for a Z-channel with q = Pr(0|1), the achievable rate CLB is given

by

CLB = − log2(1− p0)− q log2

(
1 +

p0

q(1− p0)

)
, (7.24)

where p0 satisfies the equation

(1− p0)(d+1)(1−q) = (q(1− p0) + p0)1−(d+1)q q(d+1)q. (7.25)

Proof: The average conditional mutual information in this case is

I(S2;Y2|S1) =
H ((1− p0)(1− q))− (1− p0)H(1− q)

1 + p0d
. (7.26)

To solve for p0 which maximizes I(S2;Y2|S1), we equate its derivative with respect

to p0 to zero and simplify to get (7.25). We get (7.24) by substituting the constraint

(7.25) in (7.26).

Remark 2. Following observations can be made on the application of Prop. 9 to

the special case of q = 0 and d = 0.

• When q = 0, (7.24) and (7.25) reduce to (7.12) and (7.11), respectively, and

CLB becomes equal to C0.

• When d = 0, the code becomes unconstrained and the probability of number

of zeros in a codeword is represented by p0. In this case, (7.25) reduces to

p0 = 1− 1

(1− q) (1 + 2H(q)/(1−q))
, (7.27)

which is equal to the probability for the occurrence of 0 for achieving the

unconstrained capacity on a Z-channel.
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7.2.3 Binary Erasure Channel

In this subsection we consider the BEC, a memoryless channel with input alphabet

X = {0, 1}, output alphabet Y = {0, ε, 1} and transition probabilities

Pr(ε|0) = q ; Pr(0|0) = 1− q,

Pr(ε|1) = q ; Pr(1|1) = 1− q,

where q is called the erasure probability.

The following proposition evaluates the achievable rate for the BEC using

(d,∞) constrained codes.

Proposition 10. When the Markovian state machine in Fig. 7.1 is used to gen-

erate the (d,∞) code for a BEC with erasure probability q, the achievable rate CLB

is given by

CLB = (1− q)C0, (7.28)

where C0 is the noiseless code capacity for a (d,∞) code.

Proof: The average conditional mutual information in this case can be

shown to satisfy

I(S2;Y2|S1) =
(1− q)H(p0)

1 + p0d
. (7.29)

To solve for p0 which maximizes I(S2;Y2|S1), we equate its derivative with respect

to p0 to zero and simplify to get (7.11). Substituting (7.11) in (7.29),

CLB = −(1− q) log2(1− p0) = (1− p0)C0. (7.30)

Remark 3. Following observations can be made from Prop. 10 and its proof.
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Figure 7.2: C0 as a function of d for (d,∞) codes.

• The optimized value of p0 in this case which maximizes the average condi-

tional mutual information is independent of q. For a given d, this p0 is equal

to the corresponding value for the noiseless case.

• The lower bound CLB is tight for the case q = 0 and is equal to the noiseless

code capacity C0.

7.3 Numerical Example

The noiseless (d,∞) code capacity C0 is plotted in Fig. 7.2 as a function of d.

The dotted curves correspond to evaluation of the entropy rate, given by (7.9), for

fixed values of the state transition probability p0. The optimized value of p0 which

achieves C0 is obtained by solving p0 = (1− p0)d+1 and is tabulated in Table 7.1.

A higher value of d implies increased transmission of ones in every codeword and

hence greater opportunity for the receiver to use the received signal to fulfill its

energy requirements.

Fig. 7.3 plots CLB, the lower bound on the achievable rate using (d,∞) code,
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d 0 1 2 5 10

C0 1 0.6942 0.5515 0.3620 0.2440

p0 0.5 0.3820 0.3177 0.2219 0.1556

Table 7.1: Table of C0 and optimized p0 as a function of d
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Figure 7.3: CLB as a function of the BSC crossover probability

versus the BSC crossover probability q. For q = 0, the lower bound is tight and

is equal to the noiseless code capacity C0. The lower bound is also tight for the

case d = 0, in which case it is equal to the unconstrained BSC capacity. The

optimized value of p0 which satisfies the constraint given by (7.18) and maximizes

the average conditional mutual information I(S2;Y2|S1) for BSC is plotted in

Fig. 7.4. We observe that the optimized value of p0 varies both with d and with

BSC crossover probability q.

The lower bound on the achievable rate using (d,∞) code on the Z-channel is

plotted in Fig. 7.5. This lower bound is tight for d = 0 in which case it is equal to

the unconstrained Z-channel capacity. The optimized value of p0 which satisfies

(7.25) and maximizes I(S2;Y2|S1) is shown in Fig. 7.6. The curve corresponding

to d = 0 in Fig. 7.6 depicts the value of probability of occurrence of zeros for
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Figure 7.4: Optimized p0 for BSC
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Figure 7.5: CLB for Z-channel
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Figure 7.6: Optimized p0 for Z-channel

achieving the unconstrained capacity for a Z-channel.

The lower bound on the achievable rate using (d,∞) code on BEC is plotted

in Fig. 7.5. The optimized value of p0 in this case satisfies the constraint (7.11)

and is independent of the probability of erasure. These optimized values of p0 are

same as in the noiseless case and are tabulated in Table 7.1 as a function of d.

7.4 Discussion

We analyzed achievable rates using Type-1 (d,∞) run-length limited codes for

noiseless and noisy channels. The impact of increasing d on the achievable in-

formation rate was presented through optimization of a single parameter. The

relation which this parameter, denoting the state transition probability, satisfies

in order to maximize information rate was given explicitly for different channel

models.

The use of (d,∞) codes was motivated by the codeword constraint of having

at least d ones in a moving window of size W = d+ 1 bits. The case when binary
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Figure 7.7: CLB for BEC

codewords are constrained to have at least d ones in a window of size W > d+ 1

opens interesting problems on quantifying achievable rates for different channels.

These problems may be generalized to the study of constrained codewords over

alphabets of size greater than two.

In this chapter, the sliding window constraint was imposed as a means to

enable real-time energy transfer for the application of simultaneous energy and

information transfer. The sliding window constraint provide an alternate code-

word constraint compared to the subblock-based codeword constraints analyzed

in Chapters 5 and 6.
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Chapter 8

Reflections & Future Research

8.1 Reflections

In this thesis, we analyzed the performance limits for three different energy-

constrained communication systems. The main contributions of this thesis and

the corresponding insights are summarized below.

• In Chapter 3, we investigated the reduction in the average packet delay and

the average energy usage, relative to an uncoded system, through joint use of

forward error correction (FEC) codes and automatic repeat request (ARQ).

For a polling based multiaccess system, we established that it is sufficient

to reduce the average service time (AST) using FEC in order to achieve

lower average packet delay. When the switching time from one polled node

to another is negligible, we proved that the percentage reduction in average

packet delay is at least as much as the percentage reduction in AST obtained

using channel coding. We showed that the percentage reduction in AST due

to coding translates into an equal percentage reduction in average transmit

energy when the energy per coded bit is fixed. We analyzed the tradeoff

between reduction in packet retransmissions and increase in transmission

171



Chapter 8. Reflections & Future Research

time due to addition of redundancy, and quantified the achievable reduction

in AST using the best possible FEC codes. It was shown that instead of

trying to make the packet error probability (PEP) close to zero via FEC

codes, we should aim to bring it close to 10−2 using as high a coding rate

as possible. In particular, we showed that a coding scheme with PEP 10−2

and coding rate 0.9 results in lower AST compared to a code with PEP 10−6

and coding rate 0.89. Additionally, we showed that the average packet delay

can be further reduced in certain cases by opportunistically combining and

encoding several packets jointly.

• Next, in Chapter 4, we considered an energy harvesting transmitter which

uses the harvested energy for transmission of data packets. We formulated

a two stage virtual queueing system which decouples the wait stages for the

energy arrival process and the service process. This decoupling of the wait

stages was used to obtain closed-form expressions for the average packet de-

lay and the probability of data packet loss due to buffer overflow for different

energy arrival statistics. After obtaining these expressions for single-source

energy harvesting, we extended the results to the important case of multi-

source energy harvesting. We showed that the derived expressions are useful

in making a judicious choose of system design parameters under given qual-

ity of service (QoS) constraints. The derived expressions were shown to be

exact when the service time is negligible. Even for relative high values of

the average service time, the robustness of these expressions was shown via

Monte Carlo simulations.

• As a third energy-constrained communication system, we considered an en-

ergy harvesting receiver which uses the received signal to simultaneously

harvest energy as well as to decode the information embedded in the sig-
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nal. Here, we investigated achievable rates under three different classes of

constrained codes for enabling real-time energy transfer. The first class of

constrained codes, called the constant subblock-composition codes, were an-

alyzed in Chapter 5 and required that each subblock within every codeword

has the same composition. The second class of constrained codes, called the

subblock energy-constrained codes, were proposed and examined in Chap-

ter 6. The subblock energy-constrained codes allowed different subblocks

to have different composition while ensuring sufficient energy within each

subblock. In Chapter 7, we analyzed the third class of constrained codes

which ensured that sufficient energy is carried within a sliding time window.

For each of these three classes of constrained codes, we provided capacity

bounds and analyzed the tradeoff between delivery of sufficient energy and

achieving high information transfer rates.

8.2 Directions for Future Research

In this section, we discuss several future work directions towards extending the

results presented in this thesis. A list of possible extensions, worthy of further

investigation, are presented below.

1. The closed-form expression for the average packet delay at an energy harvest-

ing transmitter was derived in Chapter 4 for a benign transmission channel

where retransmissions were not required. However, in practice, the received

packets may be decoded incorrectly due to factors such as noise, fading, and

interference. In this scenario, an exciting future work direction is to derive

the average packet delay at an energy harvesting transmitter in the pres-

ence of packet retransmissions for ensuring error-free information transfer.

Further, following the approach adopted in Chapter 3, it will be interesting
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to quantify the possible reduction in delay via joint use of FEC codes and

ARQ at the energy harvesting transmitter.

2. The average packet delay was derived in Chapter 4 under the assumption

that the data packet size is fixed and that the transmission of each data

packet requires a constant amount of energy. Future work may consider

the case where different data packets may have different sizes, and hence

different energy requirements. This scenario corresponds to the analysis of

a multi-class queueing system with a common queue, where packets of the

same size belong to the same traffic class.

3. Constant subblock composition codes and subblock energy-constrained codes

were introduced and analyzed in Chapter 5 and Chapter 6, respectively, for

enabling real-time energy transfer. The capacity of these subblock con-

strained codes was derived under the assumption that the number of sub-

blocks in a codeword could be arbitrarily large. However, large codeword

lengths entail large transmission and decoding delay. Thus, in order to bound

the overall delay, it will be interesting to provide capacity bounds for these

subblock constrained codes when the number of subblocks in a codeword are

kept fixed.

4. The subblock constrained codes (analyzed in Chapters 5 and 6) and the slid-

ing window constrained codes (analyzed in Chapter 7) were proposed as a

means for enabling real-time energy to a receiver with a small energy buffer

size. An interesting future work direction for simultaneous energy and infor-

mation transfer is a unified study of constrained codes which avoid energy

outage at a receiver with a given small energy buffer. A related direction is

the capacity comparison for the subblock constrained codes and the sliding

window constrained codes for a given set of receiver energy requirements.
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Appendix A

Proofs Related to Chapter 3

A.1 Proof of Theorem 1

Let T̃w and T̂w denote the average waiting time for the two respective coded

systems, and define

Ỹ = NλT̃ 2
s + (N +NλT̃s)Tv + σ2

vNλ,

Z̃ = 2(1−NλT̃s −NλTv),

Ŷ = NλT̂ 2
s + (N +NλT̂s)Tv + σ2

vNλ,

Ẑ = 2(1−NλT̂s −NλTv),

K =
σ2
v

2Tv
.

Then T̃w = K + (Ỹ /Z̃) and T̂w = K + (Ŷ /Ẑ). Hence,

T̃s < T̂s, T̃ 2
s < T̂ 2

s =⇒ Ỹ < Ŷ , Z̃ > Ẑ =⇒ T̃w < T̂w. (A.1)

Finally, the claim in (3.7) is proved by using (A.1) and the fact that T̃D = T̃s+ T̃w

and T̂D = T̂s + T̂w. �
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A.2 Proof of Proposition 1

When Tv → 0 and σ2
v → 0, then from (3.5), it follows that

Tw =
NλT 2

s

2(1−NλTs)
(A.2)

=
Nλ

(
Ts
)2

(1 + p)

2(1−NλTs)
. (A.3)

Now,

T̃w

Tw
=

(
T̃s

)2

(1 + p̃)(
Ts
)2

(1 + p)
× (1−NλTs)

(1−NλT̃s)

<

(
T̃s

)2

(1 + p̃)(
Ts
)2

(1 + p)
, (since T̃s < Ts). (A.4)

Further, from (3.11) we have T̃s < Ts =⇒ p̃ < p, and hence

T̃w

Tw
<

(
T̃s

)2

(
Ts
)2 <

T̃s

Ts
. (A.5)

Finally, we have

T̃D

TD
=
T̃s + T̃w

Ts + Tw
<
T̃s

Ts
. (A.6)

where the last inequality follows using the fact that if A,B,C,D are positive real

numbers and C
D
< A

B
then A+C

B+D
< A

B
. �

A.3 Proof of Proposition 2

Let pk and pmk denote the PEP for the uncoded system when the packet lengths

are k and mk, respectively. The uncoded packet of length mk may be viewed
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as a packet consisting of m subblocks, each of length k. The probability that

the uncoded packet of length mk is decoded correctly is equal to the probability

that each of the m uncoded subblocks are decoded correctly. Thus, (1 − pmk) =

(1− pk)m.

For a fixed k, let C?n,k be the code which results in minimum value of ν(Cn,k)

over all block codes having 2k codewords. Thus we have ν?(k) = ν
(
C?n,k
)
. Then

we can encode a packet of length mk as follows: (i) divide the input packet into m

sub-blocks each of length k, (ii) encode each subblock using the code C?n,k, and (iii)

obtain the complete codeword of length mn by concatenating the coded subblocks

(each of length n) and denote the derived code by Cmn,mk.

Let p̃k and p̃mk denote the PEP using codes C?n,k and Cmn,mk, respectively. The

probability of correctly decoding a packet encoded using Cmn,mk is equal to the

probability that each of the coded sub-block is decoded correctly. Thus, (1−p̃mk) =

(1− p̃k)m. Hence if we let Rc = k/n ≤ 1, then for this code we have

ν(Cmn,mk) =
mn(1− pmk)
mk(1− p̃mk)

=
n(1− pk)m

k(1− p̃k)m

= Rm−1
c

(
n(1− pk)
k(1− p̃k)

)m
= Rm−1

c

(
ν
(
C?n,k
))m

= Rm−1
c (ν?(k))m . (A.7)

The assertion in (3.19) follows because Rc ≤ 1 and by definition of ν?(mk) we

have ν?(mk) ≤ ν(Cmn,mk). �
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A.4 Proof of Proposition 5

Consider a scenario where a node has m packets waiting for transmission at time

t = 0. Let Dm denote the mean delay for these m waiting packet, relative to

t = 0, when each packet is encoded and transmitted independently. Let Dm,super

denote the mean delay for these m waiting packet, relative to t = 0, when these

packets are combined into a super-packet and encoded jointly. Now the condition

Dm,super < Dm implies that the mean delay corresponding to m waiting packets

is lower with opportunistic joint encoding. This condition, in turn, implies that

the delay per packet, averaged over all data packets, will only be lower when

opportunistic joint encoding is employed. We now show that the condition given

by (3.41) is equivalent to Dm,super < Dm, and hence implies that opportunistic

combining results in lower average packet delay.

When each packet is encoded and transmitted individually, the minimum

achievable AST is equal to T/(R1(1−p1)). Since the second data packet is waiting

while the first one is being transmitted, the average delay for the second packet

(relative to t = 0) is equal to

T

R1(1− p1)
+

T

R1(1− p1)
=

2T

R1(1− p1)
. (A.8)

Similarly, the average delay for the ith packet, for 1 ≤ i ≤ m, is given by

(i− 1)T

R1(1− p1)
+

T

R1(1− p1)
=

iT

R1(1− p1)
. (A.9)

Hence Dm can be expressed as

Dm =
1

m

m∑
i=1

iT

R1(1− p1)
=

(m+ 1)T

2R1(1− p1)
. (A.10)
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On the other hand, the super-packet formed by combining the m waiting pack-

ets has length equal to

mk − (m− 1)kO = (m− 1)kI + k, (A.11)

as only one set of header and CRC bits are required for the super-packet. Further,

since θ = kI/k, the transmission time for (m− 1)kI + k bits is equal to

((m− 1)θ + 1)T. (A.12)

In this case, when the super-packet is encoded jointly and transmitted, the average

delay relative to t = 0 is same for each of the m packets and is given by

Dm,super =
((m− 1)θ + 1)T

Rm(1− pm)
. (A.13)

From (A.10) and (A.13) it follows that

Dm,super < Dm ⇐⇒
((m− 1)θ + 1)T

Rm(1− pm)
<

(m+ 1)T

2R1(1− p1)

⇐⇒ Rm(1− pm)

R1(1− p1)
>

2(m− 1)θ + 2

m+ 1
.

�
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Appendix B

Proofs Related to Chapter 5

B.1 Proof of Theorem 2

We will prove Theorem 2 by first proving some simple lemmas and employing

Gallager’s definition of a symmetric channel [103].

If π denotes any permutation on L letters with

π(xL1 ) = π(x1, x2, . . . , xL) , (xπ(1), xπ(2), . . . , xπ(L)), (B.1)

then for a DMC, we have

WL
(
π(yL1 )|π(xL1 )

)
=

L∏
i=1

W
(
yπ(i)|xπ(i)

)
=

L∏
i=1

W (yi|xi) = WL
(
yL1 |xL1

)
. (B.2)

Let the composition of the output vector yL1 ∈ YL be Q and let T LQ be the set

of all output vectors of length L having composition Q. We now prove a useful

lemma.

203



Chapter B. Proofs Related to Chapter 5

Lemma 3. The following sets are equal

{π(xL1 )|xL1 ∈ T LP } = T LP (B.3)

{WL
(
π(yL1 )|xL1

)
: xL1 ∈ T LP } = {WL

(
yL1 |xL1

)
: xL1 ∈ T LP } (B.4)

{WL
(
yL1 |π(xL1 )

)
: yL1 ∈ T LQ } = {WL

(
yL1 |xL1

)
: yL1 ∈ T LQ } (B.5)

Proof: A permutation preserves the composition of a sequence. Thus, π

may be viewed as a map π : T LP → T LP . This map is injective by definition of

a permutation. Since the set T LP is finite, this map is also surjective and hence

(B.3) follows. From (B.2) we have WL
(
π(yL1 )|xL1

)
= WL

(
yL1 |π−1(xL1 )

)
. Now (B.4)

follow from (B.3). Similar to (B.3), we can show {π(yL1 )|yL1 ∈ T LQ } = T LQ and use

(B.2) to prove (B.5).

We recall Gallager’s definition [103] of a symmetric DMC.

Definition 2. A DMC is symmetric if the set of outputs can be partitioned into

subsets in such a way that for each subset the matrix of transition probabilities

(using inputs as rows and outputs of the subsets as columns) has the property that

each row is a permutation of each other row and each column (if more than 1) is

a permutation of each other column.

We will show that when CSCC is employed on a DMC, the induced vector-

channel is symmetric. Note that the underlying (scalar) channel can be any arbi-

trary DMC (not necessarily symmetric).

Lemma 4. When CSCC with subblock length L is employed on any DMC, the

induced vector-channel (obtained from L uses of the DMC) is symmetric.

Proof: The lemma will be proved if we can partition the outputs into subsets
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such that for each subset the matrix of transition probabilities has the property

that each row (column) is a permutation of each other row (column).

We now show that if we partition the outputs into subsets such that each subset

contains all the outputs of a given composition, then the symmetry conditions will

be satisfied.

If yL1 ∈ T LQ and ỹL1 ∈ T LQ for a given composition Q, then since yL1 and ỹL1

have the same composition, we have ỹL1 = π(yL1 ) for some permutation π. Let T LP

be the input alphabet for the induced vector channel using CSCC with subblock-

composition P . Then using (B.4), we note that the columns of the vector-channel

transition matrix corresponding to output subset T LQ are permutations of each

other. Similarly, using (B.5) we can prove that the corresponding rows are per-

mutations of each other.

Theorem 15 ( [103], p. 94). For a symmetric discrete memoryless channel, ca-

pacity is achieved by using the inputs with equal probability.

Finally, Theorem 2 follows directly from Lemma 4 and Theorem 15. �

B.2 Proof of Proposition 6

Since

PXY (Xi = x, Yi = y) = Pr(Xi = x)W (y|x), (B.6)

the claim will be proved if we show

Pr(Xi = x) = N(x)/L = P (x) , 1 ≤ i ≤ L. (B.7)

As XL
1 is uniformly distributed over T LP , the Pr(Xi = x) is equal to the ratio of

the number of input vectors with x at index i to the total number of vectors in
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T LP . Since

|T LP | =
L!∏

x∈X

N(x)!
, (B.8)

and the number of sequences in T LP with x at index i is

(L− 1)!

(N(x)− 1)!
∏
x̃ 6=x

N(x̃)!
, (B.9)

the ratio of (B.9) to (B.8) is equal to Pr(Xi = x) = N(x)/L. �

B.3 Proof of Theorem 3

When L satisfies (5.19), then Emax ≥ 2G. Since E(1) ≥ G, the energy level at

the start of every subblock is at least G (by recursive application of Lemma 1(c))

and sufficiency follows from Lemma 1(b).

Now let L1 =
∑

x∈X/
LP (x), and define

P1(x) =


P (x)∑

x∈X/ P (x)
, if x ∈ X/

0, if x ∈ X.
, P2(x) =


0, if x ∈ X/

P (x)∑
x∈X. P (x)

, if x ∈ X.

S1 = {xL1 |x
L1
1 ∈ T L1

P1
, xLL1+1 ∈ T

L−L1
P2

} , S2 = {xL1 |x
L−L1
1 ∈ T L−L1

P2
, xLL−L1+1 ∈ T

L1
P1
}.

Clearly S1 ⊂ T LP , S2 ⊂ T LP , where S1 (resp. S2) denotes the set of subblocks

of length L with first (resp. last) L1 input symbols belonging to X/. Note that

E(1) ≥ G is necessary to avoid outage because if E(1) < G, then outage results

when the first subblock in a codeword belongs to S1. To prove that (5.19) is

necessary, we will show that when

L >
Emax∑

x∈X/
2P (x) (B − b(x))

, (B.10)
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then CSCC codewords exist which will result in energy outage at the receiver.

Here we have

G =
∑
x∈X/

LP (x) (B − b(x)) >
Emax

2
. (B.11)

Let the first subblock in a given codeword belong to S2. Since the last L1 symbols

(within the first subblock) belong to X/, we have E(L+1) = |E(L−L1 +1)−G|+.

If there is no outage during the reception of the first subblock,

E(L+ 1) = E(L− L1 + 1)−G ≤ Emax −G < Emax/2, (B.12)

where the last inequality follows from (B.11). Now let the second subblock belong

to S1. There is no energy outage during the reception of first L1 symbols within

the second subblock if and only if E(L+1) ≥ G. However, from (B.12) and (B.11)

it follows that E(L + 1) < Emax/2 < G, and hence outage cannot be avoided in

the second subblock. �

B.4 Proof of Theorem 5

The strict inequality 0 < CCCC(P ) − CL
CSCC(P ) follows for BSC with crossover

probability 0 < p0 < 0.5 because

CL
CSCC(P ) =

1

L

[
H(Y L

1 )−H(Y L
1 |XL

1 )
]

(B.13)

=
1

L

[
L∑
i=1

H(Yi|Y i−1
1 )−

L∑
i=1

H(Yi|Xi)

]
(B.14)

(a)
<

1

L

[
L∑
i=1

H(Yi)−
L∑
i=1

H(Yi|Xi)

]
(B.15)

= CCCC(P ), (B.16)
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where Y i−1
1 = Y1 . . . Yi−1, the strict inequality (a) follows since Yi is related to Y i−1

1

via X i−1
1 and Xi. The last equality above follows from Prop. 6 and (5.20).

For subblock-composition P with 0 < γ = min(P (0), P (1)) ≤ 0.5, the output

entropy on a BSC is H(Y ) = h(p0 ? γ) and hence

CCCC(P ) = h(p0 ? γ)− h(p0). (B.17)

For CSCC, from (5.21) and definition of α, it follows that

1

L
H(XL

1 ) = H(P )− r(L, P ) (B.18)

= h(γ)− r(L, P ) = h(α). (B.19)

Now using (B.19) and applying Mrs. Gerber’s Lemma [135],

1

L
H(Y L

1 ) ≥ h(p0 ? α), (B.20)

and hence

CL
CSCC(P ) =

1

L

[
H(Y L

1 )−
L∑
i=1

H(Yi|Xi)

]
(B.21)

≥ h(p0 ? α)− h(p0). (B.22)

Using (B.17) and (B.22) we have

CCCC(P )− CL
CSCC(P ) ≤ h(p0 ? γ)− h(p0 ? α) (B.23)

We only have to show that h(p0 ? γ)− h(p0 ? α) < r(L, P ) for completing the

proof. Towards this we first observe that when 0 < x ≤ 0.5 and 0 < p0 < 0.5,
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then p0 ? x ≥ x. Next we note that the derivative of h(x) satisfies

h′(x) = log
1− x
x

, (B.24)

and hence h′(x) is a monotonically decreasing function of x for 0 < x ≤ 0.5.

Since h(α) = h(γ)− r(L, P ), we have

h(p0 ? γ)− h(p0 ? α) < r(L, P ) ⇐⇒

h(p0 ? γ)− h(γ) < h(p0 ? α)− h(α). (B.25)

If we define f(x) = h(p0 ? x)− h(x) for 0 ≤ x ≤ 0.5, then we have

f ′(x) = (1− 2p0)h′(p0 ? x)− h′(x). (B.26)

Hence f ′(x) < 0 for 0 < x ≤ 0.5 since h′(x) is monotonically decreasing in x and

p0 ? x ≥ x. This in turn implies that f(x) is a strictly monotonically decreasing

function of x. It follows that f(γ) < f(α) (since α < γ) and (B.25) is satisfied. �

B.5 Proof of Theorem 6

For a BEC with erasure probability ε, and γ = P (0),

CCCC(P ) = (1− ε)h(γ). (B.27)

If α is chosen such that h(α) = h(γ) − r(L, P ), then from (5.21) it follows that

H(XL
1 )/L = h(α). Now applying an extension of MGL for binary input symmetric
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channels [136], we get H(Y L
1 )/L ≥ (1− ε)h(α) + h(ε). Thus,

CL
CSCC(P ) =

1

L

[
H(Y L

1 )−
L∑
i=1

H(Yi|Xi)

]
≥ (1− ε)h(α), (B.28)

and (5.35) follows from (B.27), (B.28), and definition of α. �

B.6 Proof of Theorem 7

For a Z-channel with γ = Pr(X = 1), p0 = Pr(1→ 0),

CCCC(P ) = h (γ(1− p0))− γh(p0). (B.29)

If 0 ≤ α ≤ 0.5 is chosen such that h(α) = h(γ) − r(L, P ), then from (5.21) it

follows that H(XL
1 )/L = h(α). Now applying the extension of MGL for memory-

less asymmetric binary-input, binary-output channels [137], we get H(Y L
1 )/L ≥

h (α(1− p0)). Thus,

CL
CSCC(P ) = h (α(1− p0))− γh(p0), (B.30)

and (5.36) follows from (B.29) and (B.30). �

B.7 Proof of Theorem 8

As discussed in Sec. 5.2.2, L uses of the channel for CSCC using subblock-

composition P , subblock length L, and codeword length n on DMC W , may

be viewed as a single use of a vector channel having input alphabet T LP , output

alphabet YL, length-L product channel WL, and codeword length equal to n/L
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super-letters. By Theorem 2, the input distribution is

PL(xL1 ) =


1
|T L

P |
, if xL1 ∈ T LP

0, otherwise

(B.31)

Since rate R for the scalar channel corresponds to rate LR for the vector channel,

the random coding bound on the maximum probability of error for the induced

vector channel is [134]

Pe ≤ exp[−n
L

(
Er(LR,P

L,WL)− Lδ
)
], (B.32)

where the exponent Er(LR,P
L,WL) is given by

Er(LR,P
L,WL) = min

V L
D(V L||WL|PL) + [I(PL, V L)− LR]+, (B.33)

V L ranging over all channels V L : T LP → YL. The first term on the right side

of (B.33) is

D(V L||WL|PL) =
∑
xL1 ,y

L
1

PL(xL1 )V L(yL1 |xL1 ) log
V L(yL1 |xL1 )

WL(yL1 |xL1 )
(B.34)

= −HPL×V L(Y L
1 |XL

1 ) + EPL×V L

[
log

1

WL(Y L
1 |XL

1 )

]
(B.35)

(a)

≥
L∑
i=1

(
−HP×Vi(Y |X) + EP×Vi

[
log

1

W (Yi|Xi)

])
(B.36)

=
L∑
i=1

D(Vi||W |P ), (B.37)

where Vi is the marginal distribution of V L corresponding to the ith symbol, and

(a) follows from (B.7), the memoryless property of W , and the fact conditioning
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only reduces the entropy. The term I(PL, V L) in (B.33) is

I(PL, V L) = HPL(XL
1 )−HPL×V L(XL

1 |Y L
1 ) (B.38)

(b)

≥ LHP (X)− Lr(L, P )−
L∑
i=1

HP×Vi(Xi|Yi) (B.39)

=
L∑
i=1

(HP (Xi)−HP×Vi(Xi|Yi)− r(L, P )) (B.40)

=
L∑
i=1

(I(P, Vi)− r(L, P )) , (B.41)

where (b) follows using (5.21), (B.7), and the fact conditioning only reduces en-

tropy. Now combining (B.33), (B.37), and (B.41), we get

Er(LR,P
L,WL) ≥ min

V L

L∑
i=1

(
D(Vi||W |P ) + [I(P, Vi)− r(L, P )−R]+

)
(B.42)

≥
L∑
i=1

min
Vi

(
D(Vi||W |P ) + [I(P, Vi)− r(L, P )−R]+

)
(B.43)

= LEr(R + r(L, P ), P,W ), (B.44)

where the last equality follows from the definition of the random coding expo-

nent (5.38). The theorem is proved by applying (B.44) in (B.32). �
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Proofs Related to Chapter 6

C.1 Proof of Theorem 9

Let Xi denote the transmitted symbol in the ith channel use, I = {1, 2, . . . , L},

and I< = {i ∈ I|Xi ∈ X/}. The level in the energy buffer decreases during

the ith channel use if and only if i ∈ I<, and the corresponding decrease in

energy level is B − b(Xi). Let the composition of the first subblock be Pj ∈ ΓLB.

Then the sum of energy decrements over the reception of the first subblock is∑
i∈I< (B − b(Xi)) = LSj, and there will be no outage during the reception of the

first subblock because E(1) ≥ LSmax.

Next we show that E(L + 1) ≥ LSmax, and the theorem will be proved by

recursive application of the above argument. We note that if there is no energy

overflow during the reception of the first subblock, then E(L+1) ≥ E(1) ≥ LSmax

as Pj ∈ ΓLB. In case there is overflow in the ith channel use for any i ∈ I, then

E(i+ 1) = Emax ≥ 2LSmax and hence E(L+ 1) ≥ Emax − LSj ≥ LSmax. �
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C.2 Proof of Theorem 10

When xL1 and x̃L1 have the same composition, then the rowsWL(·|xL1 ) andWL(·|x̃L1 ),

of the induced vector channel WL, are permutations of each other. The proof is

then complete by observing that if the Blahut-Arimoto algorithm [16] (for the

finding the capacity-achieving input distribution for the DMC WL (6.6) having

input alphabet A and output alphabet YL), is initialized with a uniform distri-

bution over A, then the probabilities corresponding to xL1 and x̃L1 remain equal

after every iteration of the algorithm. (A brief overview of the Blahut-Arimoto

algorithm is presented in Sec. 2.2.2). �

C.3 Proof of Theorem 11

When P ∗
XL

1
is a capacity-achieving distribution of Thm. 10, we have, from (6.8)

and the grouping axiom [150], p. 8,

HP ∗
XL

1

(XL
1 ) =

J∑
j=1

cj log |T LPj
|+

J∑
j=1

−cj log cj. (C.1)

(i)
= LH(P̃ )− Lr̃, (C.2)

where (i) follows from (6.10). Now,

CL
SECC(B)

(a)
=

(
HP ∗

XL
1

(XL
1 )−HP ∗

XL
1

×WL(XL
1 |Y L

1 )

)
/L

(b)

≥

(
LH(P̃ )− Lr̃ −

L∑
i=1

HP̃×W (Xi|Yi)

)
/L

= I(P̃ ,W )− r̃,
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where (a) follows from (6.7), and (b) follows from (C.2) and the fact conditioning

only reduces entropy.

Towards proving the SECC capacity upper bound, note that since constant

composition codes achieve capacity on a DMC [134], the SECC capacity is achieved

by codewords having empirical distribution P ∗
XL

1
with respect to alphabetA. These

codewords, when viewed as a sequence of symbols from X have empirical distri-

bution P̃ . Thus, CL
SECC(B) ≤ I(P̃ ,W ) since achievable rates using codewords

having constant composition P̃ is upper bounded by I(P̃ ,W ). �

C.4 Proof of Theorem 13

Er(LR,P
∗
XL

1
,WL) can be expressed as [134]

min
V L

(
D(V L||WL|P ∗XL

1
) + [I(P ∗XL

1
, V L)− LR]+

)
, (C.3)

V L ranging over all channels V L : A → YL. The term D(V L||WL|P ∗
XL

1
) in (C.3),

by definition, is

=
∑
xL1 ∈A

P ∗XL
1

(xL1 )
∑
yL1 ∈YL

V L(yL1 |xL1 ) log
V L(yL1 |xL1 )

WL(yL1 |xL1 )

= −HP ∗
XL

1

×V L(Y L
1 |XL

1 ) + EP ∗
XL

1

×V L

[
log

1

WL(Y L
1 |XL

1 )

]
(a)

≥
L∑
i=1

(
−HP̃×Vi(Y |X) + EP̃×Vi

[
log

1

W (Yi|Xi)

])

=
L∑
i=1

D(Vi||W |P̃ ), (C.4)

where Vi is the marginal distribution of V L corresponding to the ith symbol, and

(a) follows from (6.6), (6.9), and the fact conditioning only reduces the entropy.
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The term I(P ∗
XL

1
, V L) in (C.3) satisfies

I(P ∗XL
1
, V L) = HP ∗

XL
1

(XL
1 )−HP ∗

XL
1

×V L(XL
1 |Y L

1 )

(b)

≥ LHP̃ (X)− Lr̃ −
L∑
i=1

HP̃×Vi(Xi|Yi)

=
L∑
i=1

I(P̃ , Vi)− Lr̃, (C.5)

where (b) follows using (C.2) and the fact conditioning only reduces entropy. Let

V̂ L denote that V L which achieves the minimum in (C.3). Then V̂ L has the

following form [143], [152]

V̂ L(yL1 |xL1 ) =
WL(yL1 |xL1 )1−sQY L

1
(yL1 )s∑

ỹL1 ∈YL WL(ỹL1 |xL1 )1−sQY L
1

(ỹL1 )s
, (C.6)

where QY L
1

satisfies the set of simultaneous equations

QY L
1

(yL1 ) =
∑
xL1 ∈A

P ∗
XL

1
(xL1 )WL(yL1 |xL1 )1−sQY L

1
(yL1 )s∑

ỹL1 ∈YL WL(ỹL1 |xL1 )1−sQY L
1

(ỹL1 )s
, (C.7)

and s ∈ [0, 1] is chosen as a function of rate R. Now, if π is an arbitrary

permutation on L letters, then WL(π(yL1 )|π(xL1 )) = WL(yL1 |xL1 ) (see (6.6)) and

P ∗
XL

1
(π(xL1 )) = P ∗

XL
1

(xL1 ) (see Thm. 10). Thus, from (C.7) it follows thatQY L
1

(π(yL1 )) =

QY L
1

(yL1 ) and hence V̂ L(π(yL1 )|π(xL1 )) = V̂ L(yL1 |xL1 ). In particular, V̂ L(π(yL1 )|π(xL1 )) =

V̂ L(yL1 |xL1 ) when π corresponds to a transposition which interchanges the symbols

at the first and the ith index, and hence V̂i, the marginal distribution of V̂ L cor-

responding to the ith symbol, has distribution identical to V̂1, where 1 < i ≤ L, .
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Because V̂ L achieves the minimum in (C.3), we have

Er(LR,P
∗
XL

1
,WL) = D(V̂ L||WL|P ∗XL

1
) + [I(P ∗XL

1
, V̂ L)− LR]+

(c)

≥ LD(V̂1||W |P̃ ) + [L I(P̃ , V̂1)− Lr̃ − LR]+

= L
(
D(V̂1||W |P̃ ) + [I(P̃ , V̂1)− (r̃ +R)]+

)
≥ L min

V

(
D(V ||W |P̃ ) + [I(P̃ , V )− (r̃ +R)]+

)
= LEr(R + r̃, P̃ ,W ),

where (c) follows from (C.4), (C.5), and the fact V̂i, 1 ≤ i ≤ L are identically

distributed. �
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