170 research outputs found

    Predicting mental imagery based BCI performance from personality, cognitive profile and neurophysiological patterns

    Get PDF
    Mental-Imagery based Brain-Computer Interfaces (MI-BCIs) allow their users to send commands to a computer using their brain-activity alone (typically measured by ElectroEncephaloGraphy— EEG), which is processed while they perform specific mental tasks. While very promising, MI-BCIs remain barely used outside laboratories because of the difficulty encountered by users to control them. Indeed, although some users obtain good control performances after training, a substantial proportion remains unable to reliably control an MI-BCI. This huge variability in user-performance led the community to look for predictors of MI-BCI control ability. However, these predictors were only explored for motor-imagery based BCIs, and mostly for a single training session per subject. In this study, 18 participants were instructed to learn to control an EEG-based MI-BCI by performing 3 MI-tasks, 2 of which were non-motor tasks, across 6 training sessions, on 6 different days. Relationships between the participants’ BCI control performances and their personality, cognitive profile and neurophysiological markers were explored. While no relevant relationships with neurophysiological markers were found, strong correlations between MI-BCI performances and mental-rotation scores (reflecting spatial abilities) were revealed. Also, a predictive model of MI-BCI performance based on psychometric questionnaire scores was proposed. A leave-one-subject-out cross validation process revealed the stability and reliability of this model: it enabled to predict participants’ performance with a mean error of less than 3 points. This study determined how users’ profiles impact their MI-BCI control ability and thus clears the way for designing novel MI-BCI training protocols, adapted to the profile of each user

    Co-adaptive myoelectric control for upper limb prostheses

    Full text link
    [ES] Mucha gente en el mundo se ve afectada por la pérdida de una extremidad (las predicciones estiman que en 2050 habrá más de 3 millones de personas afectadas únicamente en los Estados Unidos de América). A pesar de la continua mejora en las técnicas de amputación y la prostética, vivir sin una extremidad sigue limitando las actividades de los afectados en su vida diaria, provocando una disminución en su calidad de vida. En este trabajo nos centramos en los casos de amputaciones de extremidades superiores, entendiendo por ello la pérdida de cualquier parte del brazo o antebrazo. Esta tesis trata sobre el control mioeléctrico (potenciales eléctricos superficiales generados por la contracción de los músculos) de prótesis de extremidades superiores. Los estudios en este campo han crecido exponencialmente en las últimas décadas intentando reducir el hueco entre la parte investigadora más dinámica y propensa a los cambios e innovación (por ejemplo, usando técnicas como la inteligencia artificial) y la industria prostética, con una gran inercia y poco propensa a introducir cambios en sus controladores y dispositivos. El principal objetivo de esta tesis es desarrollar un nuevo controlador implementable basado en filtros adaptativos que supere los principales problemas del estado del arte. Desde el punto de vista teórico, podríamos considerar dos contribuciones principales. Primero, proponemos un nuevo sistema para modelar la relación entre los patrones de la señales mioélectricas y los movimientos deseados; este nuevo modelo tiene en cuenta a la hora de estimar la posición actual el valor de los estados pasados generando una nueva sinergia entre máquina y ser humano. En segundo lugar, introducimos un nuevo paradigma de entrenamiento más eficiente y personalizado autónomamente, el cual puede aplicarse no sólo a nuestro nuevo controlador, sino a otros regresores disponibles en la literatura. Como consecuencia de este nuevo protocolo, la estructura humano-máquina difiere con respecto del actual estado del arte en dos características: el proceso de aprendizaje del controlador y la estrategia para la generación de las señales de entrada. Como consecuencia directa de todo esto, el diseño de la fase experimental resulta mucho más complejo que con los controladores tradicionales. La dependencia de la posición actual de la prótesis con respecto a estados pasados fuerza a la realización de todos los experimentos de validación del nuevo controlador en tiempo real, algo costoso en recursos tanto humanos como de tiempo. Por lo tanto, una gran parte de esta tesis está dedicada al trabajo de campo necesario para validar el nuevo modelo y estrategia de entrenamiento. Como el objetivo final es proveer un nuevo controlador implementable, la última parte de la tesis está destinada a testear los métodos propuestos en casos reales, tanto en entornos simulados para validar su robustez ante rutinas diarias, como su uso en dispositivos prostéticos comerciales. Como conclusión, este trabajo propone un nuevo paradigma de control mioélectrico para prótesis que puede ser implementado en una prótesis real. Una vez se ha demostrado la viabilidad del sistema, la tesis propone futuras líneas de investigación, mostrando algunos resultados iniciales.[CA] Molta gent en el món es veu afectada per la pèrdua d'una extremitat (les prediccions estimen que en 2050 hi haurà més de 3 milions de persones afectades únicament als Estats Units d'Amèrica). Malgrat la contínua millora en les tècniques d'amputació i la prostètica, viure sense una extremitat continua limitant les activitats dels afectats en la seua vida diària, provocant una disminució en la seua qualitat de vida. En aquest treball ens centrem en els casos d'amputacions d'extremitats superiors, entenent per això la pèrdua de qualsevol part del braç o avantbraç. Aquesta tesi tracta sobre el control mioelèctric (potencials elèctrics superficials generats per la contracció dels músculs) de pròtesis d'extremitats superiors. Els estudis en aquest camp han crescut exponencialment en les últimes dècades intentant reduir el buit entre la part investigadora més dinàmica i propensa als canvis i innovació (per exemple, usant tècniques com la intel·ligència artificial) i la indústria prostètica, amb una gran inèrcia i poc propensa a introduir canvis en els seus controladors i dispositius. Aquesta tesi contribueix a la investigació des de diversos punts de vista. El principal objectiu és desenvolupar un nou controlador basat en filtres adaptatius que supere els principals problemes de l'estat de l'art. Des del punt de vista teòric, podríem considerar dues contribucions principals. Primer, proposem un nou sistema per a modelar la relació entre els patrons de la senyals mioelèctrics i els moviments desitjats; aquest nou model té en compte a l'hora d'estimar la posició actual el valor dels estats passats generant una nova sinergia entre màquina i ésser humà. En segon lloc, introduïm un nou paradigma d'entrenament més eficient i personalitzat autònomament, el qual pot aplicar-se no sols al nostre nou controlador, sinó a uns altres regresors disponibles en la literatura. Com a conseqüència d'aquest nou protocol, l'estructura humà-màquina difereix respecte a l'actual estat de l'art en dues característiques: el procés d'aprenentatge del controlador i l'estratègia per a la generació dels senyals d'entrada. Com a conseqüència directa de tot això, el disseny de la fase experimental resulta molt més complex que amb els controladors tradicionals. La dependència de la posició actual de la pròtesi respecte a estats passats força a la realització de tots els experiments de validació del nou controlador en temps real, una cosa costosa en recursos tant humans com de temps. Per tant, una gran part d'aquesta tesi està dedicada al treball de camp necessari per a validar el nou model i estratègia d'entrenament. Com l'objectiu final és proveir un nou controlador implementable, l'última part de la tesi està destinada a testar els mètodes proposats en casos reals, tant en entorns simulats per a validar la seua robustesa davant rutines diàries, com el seu ús en dispositius prostètics comercials. Com a conclusió, aquest treball proposa un nou paradigma de control mioelèctric per a pròtesi que pot ser implementat en una pròtesi real. Una vegada s'ha demostrat la viabilitat del sistema, la tesi proposa futures línies d'investigació, mostrant alguns resultats inicials.[EN] Many people in the world suffer from the loss of a limb (predictions estimate more than 3 million people by 2050 only in the USA). In spite of the continuous improvement in the amputation rehabilitation and prosthetic restoration, living without a limb keeps limiting the daily life activities leading to a lower quality of life. In this work, we focus in the upper limb amputation case, i.e., the removal of any part of the arm or forearm. This thesis is about upper limb prosthesis control using electromyographic signals (the superficial electric potentials generated during muscle contractions). Studies in this field have grown exponentially in the past decades trying to reduce the gap between a fast growing prosthetic research field, with the introduction of machine learning, and a slower prosthetic industry and limited manufacturing innovation. This thesis contributes to the field from different perspectives. The main goal is to provide and implementable new controller based on adaptive filtering that overcomes the most common state of the art concerns. From the theoretical point of view, there are two main contributions. First, we propose a new system to model the relationship between electromyographic signals and the desired prosthesis movements; this new model takes into account previous states for the estimation of the current position generating a new human-machine synergy. Second, we introduce a new and more efficient autonomously personalized training paradigm, which can benefit not only to our new proposed controller but also other state of the art regressors. As a consequence of this new protocol, the human-machine structure differs with respect to current state of the art in two features: the controller learning process and the input signal generation strategy. As a direct aftereffect of all of this, the experimental phase design results more complex than with traditional controllers. The current state dependency on past states forces the experimentation to be in real time, a very high demanding task in human and time resources. Therefore, a major part of this thesis is the associated fieldwork needed to validate the new model and training strategy. Since the final goal is to provide an implementable new controller, the last part of the thesis is devoted to test the proposed methods in real cases, not only analyzing the robustness and reliability of the controller in real life situations but in real prosthetic devices. As a conclusion, this work provides a new paradigm for the myoelectric prosthetic control that can be implemented in a real device. Once the thesis has proven the system's viability, future work should continue with the development of a physical device where all these ideas are deployed and used by final patients in a daily basis.The work of Carles Igual Bañó to carry out this research and elaborate this dissertation has been supported by the Ministerio de Educación, Cultura y Deporte under the FPU Grant FPU15/02870. One visiting research fellowships (EST18/00544) was also funded by the Ministerio de Educación, Cultura y Deporte of Spain.Igual Bañó, C. (2021). Co-adaptive myoelectric control for upper limb prostheses [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/168192TESI

    Augmented Reality in Physical Therapy: Systematic Review and Meta-analysis

    Get PDF
    Background: Augmented reality (AR) is a rapidly expanding technology; it comprises the generation of new images from digital information in the real physical environment of a person, which simulates an environment where the artificial and real are mixed. The use of AR in physiotherapy has shown benefits in certain areas of patient health. However, these benefits have not been studied as a whole. Objective: This study aims to ascertain the current scientific evidence on AR therapy as a complement to physiotherapy and to determine the areas in which it has been used the most and which variables and methods have been most effective. Methods: A systematic review registered in PROSPERO (International Prospective Register of Systematic Reviews) was conducted following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta - Analyses) recommendations. The search was conducted from July to August 2021 in the PubMed, PEDro, Web of Science, Scopus, and Cochrane Library scientific databases using the keywords augmented reality, physiotherapy, physical therapy, exercise therapy, rehabilitation, physical medicine, fitness, and occupational therapy. The methodological quality was evaluated using the PEDro scale and the Scottish Intercollegiate Guidelines Network scale to determine the degree of recommendation The Cochrane Collaboration tool was used to evaluate the risk of bias. Results: In total, 11 articles were included in the systematic review. Of the 11 articles, 4 (36%) contributed information to the meta-analysis. Overall, 64% (7/11) obtained a good level of evidence, and most had a B degree of recommendation of evidence. A total of 308 participants were analyzed. Favorable results were found for the Berg Balance Scale (standardized mean change 0.473, 95% CI -0.0877 to 1.0338; z=1.65; P=.10) and the Timed Up and Go test (standardized mean change -1.211, 95% CI -3.2005 to 0.7768; z=1.194; P=.23). Conclusions: AR, in combination with conventional therapy, has been used for the treatment of balance and fall prevention in geriatrics, lower and upper limb functionality in stroke, pain in phantom pain syndrome, and turning in place in patients with Parkinson disease with freezing of gait. AR is effective for the improvement of balance; however, given the small size of the samples and the high heterogeneity of the studies, the results were not conclusive. Future studies using larger sample sizes and with greater homogeneity in terms of the devices used and the frequency and intensity of the interventions are needed

    Biomechatronics: Harmonizing Mechatronic Systems with Human Beings

    Get PDF
    This eBook provides a comprehensive treatise on modern biomechatronic systems centred around human applications. A particular emphasis is given to exoskeleton designs for assistance and training with advanced interfaces in human-machine interaction. Some of these designs are validated with experimental results which the reader will find very informative as building-blocks for designing such systems. This eBook will be ideally suited to those researching in biomechatronic area with bio-feedback applications or those who are involved in high-end research on manmachine interfaces. This may also serve as a textbook for biomechatronic design at post-graduate level

    Design and analysis of a haptic device design for large and fast movements

    Get PDF
    Haptic devices tend to be kept small as it is easier to achieve a large change of stiffness with a low associated apparent mass. If large movements are required there is a usually a reduction in the quality of the haptic sensations which can be displayed. The typical measure of haptic device performance is impedance-width (z-width) but this does not account for actuator saturation, usable workspace or the ability to do rapid movements. This paper presents the analysis and evaluation of a haptic device design, utilizing a variant of redundant kinematics, sometimes referred to as a macro-micro configuration, intended to allow large and fast movements without loss of impedance-width. A brief mathematical analysis of the design constraints is given and a prototype system is described where the effects of different elements of the control scheme can be examined to better understand the potential benefits and trade-offs in the design. Finally, the performance of the system is evaluated using a Fitts’ Law test and found to compare favourably with similar evaluations of smaller workspace devices

    Intentional binding enhances hybrid BCI control

    Full text link
    Mental imagery-based brain-computer interfaces (BCIs) allow to interact with the external environment by naturally bypassing the musculoskeletal system. Making BCIs efficient and accurate is paramount to improve the reliability of real-life and clinical applications, from open-loop device control to closed-loop neurorehabilitation. By promoting sense of agency and embodiment, realistic setups including multimodal channels of communication, such as eye-gaze, and robotic prostheses aim to improve BCI performance. However, how the mental imagery command should be integrated in those hybrid systems so as to ensure the best interaction is still poorly understood. To address this question, we performed a hybrid EEG-based BCI experiment involving healthy volunteers enrolled in a reach-and-grasp action operated by a robotic arm. Main results showed that the hand grasping motor imagery timing significantly affects the BCI accuracy as well as the spatiotemporal brain dynamics. Higher control accuracy was obtained when motor imagery is performed just after the robot reaching, as compared to before or during the movement. The proximity with the subsequent robot grasping favored intentional binding, led to stronger motor-related brain activity, and primed the ability of sensorimotor areas to integrate information from regions implicated in higher-order cognitive functions. Taken together, these findings provided fresh evidence about the effects of intentional binding on human behavior and cortical network dynamics that can be exploited to design a new generation of efficient brain-machine interfaces.Comment: 18 pages, 5 figures, 7 supplementary material

    The effect of prefabricated wrist-hand orthoses on grip strength

    Get PDF
    Prefabricated wrist-hand orthoses (WHOs) are commonly prescribed to manage the functional deficit and compromised grip strength as a result of rheumatoid changes. It is thought that an orthosis which improves wrist extension, reduces synovitis and increases the mechanical advantage of the flexor muscles will improve hand function. Previous studies report an initial reduction in grip strength with WHO use which may increase following prolonged use. Using normal subjects, and thus in the absence of pain as a limiting factor, the impact of ten WHOs on grip strength was measured using a Jamar dynamometer. Tests were performed with and without WHOs by right-handed, female subjects, aged 20-50 years over a ten week period. During each test, a wrist goniometer and a forearm torsiometer were used to measure wrist joint position when maximum grip strength was achieved. The majority of participants achieved maximum grip strength with no orthosis at 30° extension. All the orthoses reduced initial grip strength but surprisingly the restriction of wrist extension did not appear to contribute in a significant way to this. Reduction in grip must therefore also be attributable to WHO design characteristics or the quality of fit. The authors recognize the need for research into the long term effect of WHOs on grip strength. However if grip is initially adversely affected, patients may be unlikely to persevere with treatment thereby negating all therapeutic benefits. In studies investigating patient opinions on WHO use, it was a stable wrist rather than a stronger grip reported to have facilitated task performance. This may explain why orthoses that interfere with maximum grip strength can improve functional task performance. Therefore while it is important to measure grip strength, it is only one factor to be considered when evaluating the efficacy of WHOs

    Optimizing Common Spatial Pattern for a Motor Imagerybased BCI by Eigenvector Filteration

    Get PDF
    One of the fundamental criterion for the successful application of a brain-computer interface (BCI) system is to extract significant features that confine invariant characteristics specific to each brain state. Distinct features play an important role in enabling a computer to associate different electroencephalogram (EEG) signals to different brain states. To ease the workload on the feature extractor and enhance separability between different brain states, the data is often transformed or filtered to maximize separability before feature extraction. The common spatial patterns (CSP) approach can achieve this by linearly projecting the multichannel EEG data into a surrogate data space by the weighted summation of the appropriate channels. However, choosing the optimal spatial filters is very significant in the projection of the data and this has a direct impact on classification. This paper presents an optimized pattern selection method from the CSP filter for improved classification accuracy. Based on the hypothesis that values closer to zero in the CSP filter introduce noise rather than useful information, the CSP filter is modified by analyzing the CSP filter and removing/filtering the degradative or insignificant values from the filter. This hypothesis is tested by comparing the BCI results of eight subjects using the conventional CSP filters and the optimized CSP filter. In majority of the cases the latter produces better performance in terms of the overall classification accuracy

    Optimizing Common Spatial Pattern for a Motor Imagerybased BCI by Eigenvector Filteration

    Get PDF
    One of the fundamental criterion for the successful application of a brain-computer interface (BCI) system is to extract significant features that confine invariant characteristics specific to each brain state. Distinct features play an important role in enabling a computer to associate different electroencephalogram (EEG) signals to different brain states. To ease the workload on the feature extractor and enhance separability between different brain states, the data is often transformed or filtered to maximize separability before feature extraction. The common spatial patterns (CSP) approach can achieve this by linearly projecting the multichannel EEG data into a surrogate data space by the weighted summation of the appropriate channels. However, choosing the optimal spatial filters is very significant in the projection of the data and this has a direct impact on classification. This paper presents an optimized pattern selection method from the CSP filter for improved classification accuracy. Based on the hypothesis that values closer to zero in the CSP filter introduce noise rather than useful information, the CSP filter is modified by analyzing the CSP filter and removing/filtering the degradative or insignificant values from the filter. This hypothesis is tested by comparing the BCI results of eight subjects using the conventional CSP filters and the optimized CSP filter. In majority of the cases the latter produces better performance in terms of the overall classification accuracy

    A Service Robot for Navigation Assistance and Physical Rehabilitation of Seniors

    Get PDF
    The population of the advanced countries is ageing, with the direct consequence that an increasing number of people will have to live with sensitive, cognitive and physical disabilities. People with impaired physical ability are not confident to move alone, especially in crowded environment and for long journeys, highly reducing the quality of their life. We propose a new generation of robotic walking assistants whose mechanical and electronic components are conceived to optimize the collaboration between the robot and its users. We will apply these general ideas to investigate the interaction between older adults and a robotic walker, named FriWalk, exploiting it either as a navigational or as a rehabilitation aid. For the use of the FriWalk as a navigation assistance, the system guides the user securing high levels of safety, a perfect compliance with the social rules and non-intrusive interaction between human and machine. To this purpose, we developed several guidance systems ranging from completely passive strategies to active solutions exploiting either the rear or the front motors mounted on the robot. The common strategy at the basis of all the algorithms is that the responsibility of the locomotion belongs always to the user, both to increase the mobility of elder users and to enhance their perception of control over the robot. This way the robot intervenes only whenever it is strictly necessary not to mitigate the user safety. Moreover, the robotic walker has been endowed with a tablet and graphical user interface (GUI) which provides the user with the visual indications about the path to follow. Since the FriWalk was developed to suit the needs of users with different deficits, we conducted extensive human-robot interaction (HRI) experiments with elders, complemented with direct interviews of the participants. As concerns the use of the FriWalk as a rehabilitation aid, force sensing to estimate the torques applied by the user and change the user perceived inertia can be exploited by doctors to let the user feel the device heavier or lighter. Moreover, thanks to a new generation of sensors, the device can be exploited in a clinical context to track the performance of the users' rehabilitation exercises, in order to assist nurses and doctors during the hospitalization of older adults
    corecore