63 research outputs found

    Osteocyte transcriptome mapping identifies a molecular landscape controlling skeletal homeostasis and susceptibility to skeletal disease.

    Get PDF
    Osteocytes are master regulators of the skeleton. We mapped the transcriptome of osteocytes from different skeletal sites, across age and sexes in mice to reveal genes and molecular programs that control this complex cellular-network. We define an osteocyte transcriptome signature of 1239 genes that distinguishes osteocytes from other cells. 77% have no previously known role in the skeleton and are enriched for genes regulating neuronal network formation, suggesting this programme is important in osteocyte communication. We evaluated 19 skeletal parameters in 733 knockout mouse lines and reveal 26 osteocyte transcriptome signature genes that control bone structure and function. We showed osteocyte transcriptome signature genes are enriched for human orthologs that cause monogenic skeletal disorders (P = 2.4 × 10-22) and are associated with the polygenic diseases osteoporosis (P = 1.8 × 10-13) and osteoarthritis (P = 1.6 × 10-7). Thus, we reveal the molecular landscape that regulates osteocyte network formation and function and establish the importance of osteocytes in human skeletal disease

    Pathophysiology of Skeletal Disease

    Get PDF
    These studies have resulted in substantial advances in the field of osteoporosis and osteoarthritis research. Crucial contributions to pivotal osteoporosis GWAS identified 518 bone mineral density and 13 fracture loci that now account for over 20% of the population variance in bone density. We identified over 300 novel eBMD loci and validated numerous genes, including (i) transferrin receptor-2 as a novel regulator of bone mass acting via BMP/p38MAPK/Wnt signalling, (ii) over 100 genes that determine bone mass, quality and strength comprising enzymes, ion and amino acid transporters, cell cycle regulators, transcription factors and modulators of non-canonical Wnt signalling, and (iii) age-specific and sexually dimorphic genetic effects on bone mineral density. Recent discoveries include (i) identification of a new cell type with a unique transcriptome, termed the “osteomorph”. Bone resorbing multinucleated osteoclasts undergo cycles of cell fission and fusion, recycling via osteomorphs in the bone marrow to regulate osteoclast motility and dynamic bone remodelling in vivo, (ii) elucidation of a transcriptome map of genes expressed in osteocytes, the master regulatory cells in bone. Osteocyte signature genes correlate closely with loci identified in human GWAS and in the nosology of monogenic skeletal disorders, establishing the cellular pathogenesis of various skeletal diseases, and (iii) development of novel imaging methods in osteoarthritis disease models and generation of the first multi ‘omic molecular QTL map of human disease to accelerate causative gene discovery in osteoarthritis. This multidisciplinary and international approach is transformative and has resulted in a comprehensive atlas of human and murine genetic influences on bone and joint disease that offer novel insights into the pathophysiology of osteoporosis and osteoarthritis with exciting opportunities for biomarker discovery and drug development. This body of work has resulted in invitations to contribute seminal chapters in major international textbooks, including (i) Genetics of Bone Biology and Skeletal Disease (2018) and (ii) Osteoporosis (2020), and Plenary Lectures to the (i) 21st World Congress on Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (IOFESCEO WCO), (ii) ASBMR Bone Turnover Markers Annual Meeting, and (iii) 9th Congress of the Romanian Society of Osteoporosis and Musculoskeletal Diseases (all in 2021). My work was recognised by the European Calcified Tissue Society Steven Boonen Clinical Research Award (2018), and I was elected Fellow of the Academy of Medical Sciences (2019), Member of Academia Europaea (2021) and Fellow of the Association of Physicians of Great Britain & Ireland (2021).Open Acces

    High Bone Mass Disorders: New Insights from Connecting the Clinic and the Bench

    Get PDF
    Monogenic high bone mass (HBM) disorders are characterized by an increased amount of bone in general, or at specific sites in the skeleton. Here, we describe 59 HBM disorders with 50 known disease-causing genes from the literature, and we provide an overview of the signaling pathways and mechanisms involved in the pathogenesis of these disorders. Based on this, we classify the known HBM genes into HBM (sub)groups according to uniform Gene Ontology (GO) terminology. This classification system may aid in hypothesis generation, for both wet lab experimental design and clinical genetic screening strategies. We discuss how functional genomics can shape discovery of novel HBM genes and/or mechanisms in the future, through implementation of omics assessments in existing and future model systems. Finally, we address strategies to improve gene identification in unsolved HBM cases and highlight the importance for cross-laboratory collaborations encompassing multidisciplinary efforts to transfer knowledge generated at the bench to the clinic.Acknowledgements: This publication is initiated upon work from the European Cooperation for Science and Technology (COST) Action GEMSTONE, supported by COST. COST is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation (www.cost.eu). We therefore thank current and former members of the COST GEMSTONE Working Group 3 (https://cost-gemstone.eu/working-groups/wg3-monogenic-conditions-human-ko-models/) for discussions and support during manuscript preparation. All figures in this manuscript were created with BioRender.com

    High Bone Mass Disorders : New Insights From Connecting the Clinic and the Bench

    Get PDF
    Monogenic high bone mass (HBM) disorders are characterized by an increased amount of bone in general, or at specific sites in the skeleton. Here, we describe 59 HBM disorders with 50 known disease-causing genes from the literature, and we provide an overview of the signaling pathways and mechanisms involved in the pathogenesis of these disorders. Based on this, we classify the known HBM genes into HBM (sub)groups according to uniform Gene Ontology (GO) terminology. This classification system may aid in hypothesis generation, for both wet lab experimental design and clinical genetic screening strategies. We discuss how functional genomics can shape discovery of novel HBM genes and/or mechanisms in the future, through implementation of omics assessments in existing and future model systems. Finally, we address strategies to improve gene identification in unsolved HBM cases and highlight the importance for cross-laboratory collaborations encompassing multidisciplinary efforts to transfer knowledge generated at the bench to the clinic. (c) 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).Peer reviewe

    Opportunities and Challenges in Functional Genomics Research in Osteoporosis:Report From a Workshop Held by the Causes Working Group of the Osteoporosis and Bone Research Academy of the Royal Osteoporosis Society on October 5th 2020

    Get PDF
    The discovery that sclerostin is the defective protein underlying the rare heritable bone mass disorder, sclerosteosis, ultimately led to development of anti-sclerostin antibodies as a new treatment for osteoporosis. In the era of large scale GWAS, many additional genetic signals associated with bone mass and related traits have since been reported. However, how best to interrogate these signals in order to identify the underlying gene responsible for these genetic associations, a prerequisite for identifying drug targets for further treatments, remains a challenge. The resources available for supporting functional genomics research continues to expand, exemplified by “multi-omics” database resources, with improved availability of datasets derived from bone tissues. These databases provide information about potential molecular mediators such as mRNA expression, protein expression, and DNA methylation levels, which can be interrogated to map genetic signals to specific genes based on identification of causal pathways between the genetic signal and the phenotype being studied. Functional evaluation of potential causative genes has been facilitated by characterization of the “osteocyte signature”, by broad phenotyping of knockout mice with deletions of over 7,000 genes, in which more detailed skeletal phenotyping is currently being undertaken, and by development of zebrafish as a highly efficient additional in vivo model for functional studies of the skeleton. Looking to the future, this expanding repertoire of tools offers the hope of accurately defining the major genetic signals which contribute to osteoporosis. This may in turn lead to the identification of additional therapeutic targets, and ultimately new treatments for osteoporosis

    Opportunities and Challenges in Functional Genomics Research in Osteoporosis: Report From a Workshop Held by the Causes Working Group of the Osteoporosis and Bone Research Academy of the Royal Osteoporosis Society on October 5th 2020.

    Get PDF
    The discovery that sclerostin is the defective protein underlying the rare heritable bone mass disorder, sclerosteosis, ultimately led to development of anti-sclerostin antibodies as a new treatment for osteoporosis. In the era of large scale GWAS, many additional genetic signals associated with bone mass and related traits have since been reported. However, how best to interrogate these signals in order to identify the underlying gene responsible for these genetic associations, a prerequisite for identifying drug targets for further treatments, remains a challenge. The resources available for supporting functional genomics research continues to expand, exemplified by "multi-omics" database resources, with improved availability of datasets derived from bone tissues. These databases provide information about potential molecular mediators such as mRNA expression, protein expression, and DNA methylation levels, which can be interrogated to map genetic signals to specific genes based on identification of causal pathways between the genetic signal and the phenotype being studied. Functional evaluation of potential causative genes has been facilitated by characterization of the "osteocyte signature", by broad phenotyping of knockout mice with deletions of over 7,000 genes, in which more detailed skeletal phenotyping is currently being undertaken, and by development of zebrafish as a highly efficient additional in vivo model for functional studies of the skeleton. Looking to the future, this expanding repertoire of tools offers the hope of accurately defining the major genetic signals which contribute to osteoporosis. This may in turn lead to the identification of additional therapeutic targets, and ultimately new treatments for osteoporosis

    Single cell cortical bone transcriptomics define novel osteolineage gene sets altered in chronic kidney disease

    Get PDF
    IntroductionDue to a lack of spatial-temporal resolution at the single cell level, the etiologies of the bone dysfunction caused by diseases such as normal aging, osteoporosis, and the metabolic bone disease associated with chronic kidney disease (CKD) remain largely unknown.MethodsTo this end, flow cytometry and scRNAseq were performed on long bone cells from Sost-cre/Ai9+ mice, and pure osteolineage transcriptomes were identified, including novel osteocyte-specific gene sets.ResultsClustering analysis isolated osteoblast precursors that expressed Tnc, Mmp13, and Spp1, and a mature osteoblast population defined by Smpd3, Col1a1, and Col11a1. Osteocytes were demarcated by Cd109, Ptprz1, Ramp1, Bambi, Adamts14, Spns2, Bmp2, WasI, and Phex. We validated our in vivo scRNAseq using integrative in vitro promoter occupancy via ATACseq coupled with transcriptomic analyses of a conditional, temporally differentiated MSC cell line. Further, trajectory analyses predicted osteoblast-to-osteocyte transitions via defined pathways associated with a distinct metabolic shift as determined by single-cell flux estimation analysis (scFEA). Using the adenine mouse model of CKD, at a time point prior to major skeletal alterations, we found that gene expression within all stages of the osteolineage was disturbed.ConclusionIn sum, distinct populations of osteoblasts/osteocytes were defined at the single cell level. Using this roadmap of gene assembly, we demonstrated unrealized molecular defects across multiple bone cell populations in a mouse model of CKD, and our collective results suggest a potentially earlier and more broad bone pathology in this disease than previously recognized

    Identification of known and novel long non-coding RNAs potentially responsible for the effects of BMD GWAS loci

    Get PDF
    Osteoporosis, characterized by low bone mineral density (BMD), is the most common complex disease affecting bone and constitutes a major societal health problem. Genome-wide association studies (GWASs) have identified over 1100 associations influencing BMD. It has been shown that perturbations to long non-coding RNAs (lncRNAs) influence BMD and the activities of bone cells; however, the extent to which lncRNAs are involved in the genetic regulation of BMD is unknown. Here, we combined the analysis of allelic imbalance (AI) in human acetabular bone fragments with a transcriptome-wide association study (TWAS) and expression quantitative trait loci (eQTL) colocalization analysis using data from the Genotype-Tissue Expression (GTEx) project to identify lncRNAs potentially responsible for GWAS associations. We identified 27 lncRNAs in bone that are located in proximity to a BMD GWAS association and harbor SNPs demonstrating AI. Using GTEx data we identified an additional 31 lncRNAs whose expression was associated (FDR correction0.1). The 58 lncRNAs are located in 43 BMD associations. To further support a causal role for the identified lncRNAs, we show that 23 of the 58 lncRNAs are differentially expressed as a function of osteoblast differentiation. Our approach identifies lncRNAs that are potentially responsible for BMD GWAS associations and suggest that lncRNAs play a role in the genetics of osteoporosis.First author draf
    corecore