8 research outputs found

    Threshold Switching and Self-Oscillation in Niobium Oxide

    Get PDF
    Volatile threshold switching, or current controlled negative differential resistance (CC-NDR), has been observed in a range of transition metal oxides. Threshold switching devices exhibit a large non-linear change in electrical conductivity, switching from an insulating to a metallic state under external stimuli. Compact, scalable and low power threshold switching devices are of significant interest for use in existing and emerging technologies, including as a selector element in high-density memory arrays and as solid-state oscillators for hardware-based neuromorphic computing. This thesis explores the threshold switching in amorphous NbOx and the properties of individual and coupled oscillators based on this response. The study begins with an investigation of threshold switching in Pt/NbOx/TiN devices as a function device area, NbOx film thickness and temperature, which provides important insight into the structure of the self-assembled switching region. The devices exhibit combined threshold-memory behaviour after an initial voltage-controlled forming process, but exhibit symmetric threshold switching when the RESET and SET currents are kept below a critical value. In this mode, the threshold and hold voltages are shown to be independent of the device area and film thickness, and the threshold power, while independent of device area, is shown to decrease with increasing film thickness. These results are shown to be consistent with a structure in which the threshold switching volume is confined, both laterally and vertically, to the region between the residual memory filament and the electrode, and where the memory filament has a core-shell structure comprising a metallic core and a semiconducting shell. The veracity of this structure is demonstrated by comparing experimental results with the predictions of a resistor network model, and detailed finite element simulations. The next study focuses on electrical self-oscillation of an NbOx threshold switching device incorporated into a Pearson-Anson circuit configuration. Measurements confirm stable operation of the oscillator at source voltages as low as 1.06 V, and demonstrate frequency control in the range from 2.5 to 20.5 MHz with maximum frequency tuning range of 18 MHz/V. The oscillator exhibit three distinct oscillation regimes: sporadic spiking, stable oscillation and damped oscillation. The oscillation frequency, peak-to-peak amplitude and frequency are shown to be temperature and voltage dependent with stable oscillation achieved for temperatures up to ∼380 K. A physics-based threshold switching model with inclusion of device and circuit parameters is shown to explain the oscillation waveform and characteristic. The final study explores the oscillation dynamics of capacitively coupled Nb/Nb2O5 relaxation oscillators. The coupled system exhibits rich collective behaviour, from weak coupling to synchronisation, depending on the negative differential resistance response of the individual devices, the operating voltage and the coupling capacitance. These coupled oscillators are shown to exhibit stable frequency and phase locking states at source voltages as low as 2.2 V with MHz frequency tunable range. The numerical simulation of the coupled system highlights the role of source voltage, and circuit and device capacitance in controlling the coupling modes and dynamics

    Protein structured reservoir computing for spike-based pattern recognition

    Get PDF
    Nowadays we witness a miniaturisation trend in the semiconductor industry backed up by groundbreaking discoveries and designs in nanoscale characterisation and fabrication. To facilitate the trend and produce ever smaller, faster and cheaper computing devices, the size of nanoelectronic devices is now reaching the scale of atoms or molecules - a technical goal undoubtedly demanding for novel devices. Following the trend, we explore an unconventional route of implementing a reservoir computing on a single protein molecule and introduce neuromorphic connectivity with a small-world networking property. We have chosen Izhikevich spiking neurons as elementary processors, corresponding to the atoms of verotoxin protein, and its molecule as a ‘hardware’ architecture of the communication networks connecting the processors. We apply on a single readout, layer various training methods in a supervised fashion to investigate whether the molecular structured Reservoir Computing (RC) system is capable to deal with machine learning benchmarks. We start with the Remote Supervised Method, based on Spike-Timing-Dependent-Plasticity, and carry on with linear regression and scaled conjugate gradient back-propagation training methods. The RC network is evaluated as a proof-of-concept on the handwritten digit images from the standard MNIST and the extended MNIST datasets and demonstrates acceptable classification accuracies in comparison with other similar approaches

    Fabrication of Vanadium Dioxide Thin Films and their Structural, Optical and Electrical Characterization for Optoelectronic Applications

    Get PDF
    Vanadium dioxide (VO2) is a transition metal oxide that is well known for its metal-to-insulator phase transition (MIT). One of the most common forms of VO2 that has been generally studied is the thin film form. VO2 thin films are considered a strong candidate in various new-generation optical, electronic, and optoelectronic (photonic) applications. From the technology perspective, the fabrication of single-crystal VO2 thin films appears to be challenging. Up to now, research on the preparation of VO2 thin films has focused on employing different material fabrication techniques to produce high-quality VO2 thin films. The stoichiometry and quality of VO2 thin films strongly depend on the fabrication process. There is still a need to study the production of near-single-crystal, high-quality VO2 thin films and their structural, optical and electrical characterization. Secondly, the metal-to-insulator phase transition phenomenon in VO2 is a topical research field. The percolation theory has introduced some rigor in explaining the phase transition. This dissertation focuses on two aspects of research on VO2 thin films. The first aspect focuses on studying the effect of specific deposition parameters such as substrate biasing and substrate temperature on the quality of VO2 thin films. Also, the synthesis of high-quality VO2 thin films prepared on single-crystal silicon, quartz and sapphire substrates is investigated. The films are examined using various analysis techniques including Raman spectroscopy, scanning electron microscopy (SEM), x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy-dispersive x-ray spectroscopy (EDS). The optical constants, namely the refractive index (n) and the extinction coefficient (K), and the optical bandgap (Eg) of the films are extracted using the Swanepoel and Manifacier techniques. The second aspect of this dissertation covers the application of percolation theory on the phase transition in VO2 thin films. Accordingly, the topology of conducting clusters during the IMT and MIT is investigated by means of optical and electrical switching in a high-quality VO2 thin film. Additionally, self-heating-induced electrical and optical switching in VO2 thin films prepared on sapphire substrates under constant applied current pulses has been studied. The difference in the two switching dynamics is explained by a simple model based on the percolation theory
    corecore