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Protein Structured Reservoir Computing
for Spike-based Pattern Recognition
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Abstract—Nowadays we witness a miniaturisation trend in the
semiconductor industry backed up by groundbreaking discover-
ies and designs in nanoscale characterisation and fabrication.
To facilitate the trend and produce ever smaller, faster and
cheaper computing devices, the size of nanoelectronic devices
is now reaching the scale of atoms or molecules — a technical
goal undoubtedly demanding for novel devices. Following the
trend, we explore an unconventional route of implementing
reservoir computing on a single protein molecule and intro-
duce neuromorphic connectivity with a small-world networking
property. We have chosen Izhikevich spiking neurons as ele-
mentary processors, corresponding to the atoms of verotoxin
protein, and its molecule as a ‘hardware’ architecture of the
communication networks connecting the processors. We apply on
a single readout layer, various training methods in a supervised
fashion to investigate whether the molecular structured Reservoir
Computing (RC) system is capable to deal with machine learning
benchmarks. We start with the Remote Supervised Method,
based on Spike-Timing-Dependent-Plasticity, and carry on with
linear regression and scaled conjugate gradient back-propagation
training methods. The RC network is evaluated as a proof-
of-concept on the handwritten digit images from the standard
MNIST and the extended MNIST datasets and demonstrates
acceptable classification accuracies in comparison with other
similar approaches.

Index Terms—Molecular networks, Reservoir Computing, Liq-
uid State Machine, Izhikevich Model, Remote Supervised Learn-
ing, Pattern Recognition.

I. INTRODUCTION

THE end of Moore’s law indicates inability of CMOS
technology to easily overcome the nanoscale dimensions

[1] due to quantum phenomena and, hence, the scaling of
conventional transistors beyond gate lengths of 3 nm becomes
almost unfeasible [2], [3]. Evolutionary prospects explored in
computer science and information technology by imitating the
functionality of mechanisms by which biological organisms
process information might help us to deal with the scaling
problem [4]–[6]. The steadily growing disciplines that mainly
contribute to the future of technology are Nanotechnology and
Machine Learning. In particular, nanotechnology deals mostly
with beyond Moore’s law issues proposing tentative solutions,
while the field of neuromorphic computing augments the
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classical computing principles by information processing in
neural networks [7]–[10].

Spiking Neural Networks (SNN) have been advanced in
a sense of being currently comparable in neuromorphic be-
haviour to biological neural networks [11]. A relatively re-
cent alternative approach called Reservoir Computing (RC)
can be implemented on generic evolved or found Recur-
rent Neural Networks [12] and give rise to unconventional
applications [13]–[15] using nanoscale electronics such as
nanoparticle materials [15] or even memristors [16]. More
specifically, RC systems are based on the principles of high-
dimensional dynamical systems whose behaviour is interpreted
as computation and are particularly suited for time varying
and multidimensional signal classifications [17]. RC systems
are designed in such a way that could transform a set of spike
trains or sensory inputs into a spatiotemporal representation
where structural feed-backs give rise to temporal memory
states in the dynamics of the RC [18]. That collective RC
state can be recognised by the readout layer of neurons which
can learn to extract (in real time) its current state and past
inputs. The key principle of RC systems is that its internal
connectivity is kept fixed and the training process occurs only
in the readout layer. This strategic design, by maintaining
their internal circuitry, overcomes previous implementations of
SNNs, due to the SNNs’ lack of simple and efficient machine
learning algorithms, and offers a practical training process.

In order to utilise this kind of recursive systems, RC-
based approaches traditionally are implemented by generating
complex dynamical networks with typically randomised inter-
nal network topologies that are capable of creating various
spatiotemporal states by which reservoirs store information
from past inputs and produce responses which results from
the reservoirs “memory” and present inputs [19].

In this work, we consider the RC system as an Liquid State
Machine (LSM) which is a type of reservoir computer that
make use of spiking neural networks and proposed by Maass
in 2002 [20]. LSMs gained their attention due to their neuro-
inspired architectures. Regular random structures of LSMs
come with an accuracy trade-off. Plethora of studies suggests
mechanisms with the ability to reconfigure the randomly cre-
ated topology for achieving better accuracy [21]. This strategy
is generally adopted in the literature, where specific LSM
architectures are proposed for particular applications aiming
to improve the corresponding accuracy. Various mechanisms
have been continuously proposed by performing a network
parameters optimization to achieve certain appealing features
concerning the final network architecture. Such a similar
approach is envisaged in the proposed work. Here, we propose
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an alternative approach of utilising bio-inspired networks and
more specifically molecular assemblies so as to avoid the
randomly generated networks that are made with a complex
procedures, which sometimes take a long time to be executed
and produce acceptable network properties. In this manner,
this work attempts to use a real single molecular structure to
create the internal connectivity of the RC system paving in
a sense the way for alternative usage of real molecules for
unconventional computing.

Molecules are nanomaterials fabricated by nature which
have several desirable features as molecular networks de-
scribing their sub-nanometer scale, their hierarchical structure
and smallworld character by their sparse star connectivity.
They can also be considered as self-organising networks
due to their property of molecular plasticity [22], as long
as their structure is able to be reshaped and to be folded
depending on the applied conditions in real-time [22], [23]
as well as the ability to handle molecular dynamics through
chemical and spectroscopy mechanisms makes molecules one
of the most promising novel substrates for physical Reservoir
computing [24]. Their small-world character is based on their
degree distribution which seems to follow the Poissonian
distribution [25], [26], i.e. macro-molecular assemblies have
a much smaller number of hubs than the most of self-
organised networks. The explanation for this deviation from
the scale-free degree distribution lies in the limited restriction
to simultaneous binding, while atoms may give up their bonds
and bind to different local atoms during protein-folding and
increasing the small-worldliness while the protein structure
becomes progressively compact [23].

This allows us to introduce in this study two kinds of con-
nectivity, the hard and the soft one which are determined by the
macro-molecular bonding structure and the local 3D structure
accordingly. In this way, we overcome the zero-clustering of
the star connectivity consisting of the bonding structure and
we provide an enhanced small world effect by scaling up the
clustering mean coefficient due to local 3D interactions. Soft
connectivity is described by a distance factor which allows the
atom to interact with its local surroundings in 3D Euclidean
space and it takes values in the scale of Angstrom (Å). The
major reason for engaging with soft connectivity is the fact
that some attributes of small-world networks are shared on
cortical networks [27] which are significantly more clustered
but have approximately the same characteristic path length
in comparison with random networks [28] which are widely
used in Reservoir computing in order to produce its internal
recurrent topology as mentioned before [19], [24].

We demonstrate the structure of cell-binding B oligomer of
Verotoxin1 molecule (VT-1) produced using X-ray diffraction
intensities, with resolution 2.05Å, obtained from E.coli [29]
and shown in Fig. 1. We used this molecular conformation as
its been also demonstrated as an example with an excitable
automata model [30] to preserve portability with our previous
results in terms of Boolean gates realisation via interacting
patterns of excitation, which can be illustrated as higher-
dimensional transformations.

We propose a novel approach by utilising already existing
bio-inspired topologies, in particular molecular conforma-

Fig. 1. Verotoxin molecule under CPK colouring, colour convention for
distinguishing individual atoms, determined in [29].

tions, as opposed to randomly generated recurrent artificial
topologies and we perform Reservoir Computing on a single
molecule introducing the soft connectivity configuration that
enables neuromorphic connectivity as it has a significant
number of recurrent loops and presents a variety of spatio-
temporal states. Non-linear dynamics and high-dimensionality
is realised by introducing the Izhikevich neuromorphic model
for the spiking neurons considered as elementary neuron-
processors and corresponds to the atoms of VT-1 molecule,
while their neuromorphic communication relies on the archi-
tecture based on both its hard molecular connectivity that
is described by its chemical bonds and soft molecular con-
nectivity described by its spatial local arrangement of atoms
in euclidean space. We propose an unconventional reservoir
computing approach by using this molecular conformation
and utilizing its high-dimensional dynamics through the eval-
uation of a proposed STDP-based (Spike-timing-dependent-
plasticity) pattern recognition training algorithm in a super-
vised fashion on a single output layer of spiking neurons,
which is found mainly in echo state networks and not in
liquid state machines we use here, in order to investigate its
neuromorphic computing potential of dealing with well-known
machine learning benchmarks such as solving the MNIST
problem.

We describe our approach during the RC setup as well as
the calibration of the fine-tuned model parameters, which took
place during the training phase, along with the evaluation
phase of RC in terms of the MNIST problem, where we
addressed both the standard and the extended MNIST datasets.
Finally, we discuss our remarks and contributions as we
compare it to other similar Reservoir Computing approaches
and we give some suggestions for future works.

II. MODEL

A. Molecular Structure

VT-1 is a pentamer protein of sixty-nine amino acids for
each monomer and is thoroughly studied through its conver-
sion to a non-directed graph whose vertices correspond to
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the atoms of the molecule and edges correspond to chemical
bonds. In this study, the molecular hard connectivity repre-
sented by the graph’s topology which has a set of 2,992 nodes
and a set of 2,831 edges, respectively. Figure 1 illustrates the
molecular hard connectivity of the VT-1 macro-molecule, and
the Fig. 3 indicates the sparseness of the hard connectivity
(red diagonal area) as long as the degree distribution is limited
while the maximum degree observed is four for a few atoms
as shown in Fig. 2 (blue distribution).

Fig. 2. VT-1 molecular degree distribution for hard and soft connectivity
under the distance factor of 10Å. Hard neighbours of an atom represents
the atoms which are connected to the atom through chemical bond while soft
neighbours illustrates the atoms that are under a specific cut-off distance factor
determined by the 3D structure of verotoxin [30].

Fig. 3. Sparsity pattern visualisation of the VT-1 Molecular Adjacency matrix
for hard and soft connectivity accordingly. The strictly band-diagonal structure
of the matrix is a result of the locality of internal connections.

Various studies regarding RC systems have showed that
Orthogonal Recurrent connectivities achieve better results for
larger networks, similar to the proposed architecture, in com-
parison with other regular random connectivities [31], [32]. In
order to utilize this feature we introduce the soft connectivity
of the molecular structure. Let δ be an average distance
between two hard-neighbours, for F-actin δ = 1.43 units.

Fig. 4. Local clustering coefficient distribution of the VT-1 molecule when
we create soft connectivity with distance factor 10Å.

Let w(s) be nodes of actin molecule that are at distance not
exceed ρ, in Euclidean space, from node s. We call them soft
neighbours because their neighbourhood is determined by 3D
structure of the molecule. This configuration gives us some
attractive features like the increased fractal-like connectivity
density along with orthogonality as shown in Fig. 3 (blue
area) as well as the orange right-shifted degree distribution that
becomes increasingly evident as Poissonian-like distribution as
the Fig. 2 indicates.

Looking carefully at the adjacency matrix, five orthogonal
clusters are created within the topology, where in each cluster
there is increased connectivity and there are also connections
between the nearby clusters. Beyond this observation, is should
be noticed that there is a region, shown at the bottom of Fig. 3,
which is connected across the network, representing the role
of hubs and enabling the small-world effect [28]. This feature
has been claimed as biological feasible [33]–[35] through the
intuition that a small-world network integrates information
from many regions. These types of networks are resilient to
inherent faultsdamages of the reservoir connectivity [33], [36],
which conveys a clear message that future implementations
of molecular devices could be robust to defects for various
neuromorphic applications.

Along with that, the most intriguing properties of soft
connectivity are associated with the clustering coefficient and
the average path length of the network. In the case of hard
connectivity, it is well-known that proteins are a single chain
of amino acids which corresponds to star connectivity due to
their bonding structure and have zero-clustering. In contrast,
when we include soft connectivity, we notice that we have
high clustering as shown in Fig. 4, which represents the local
clustering coefficient distribution, and in particular, the average
clustering coefficient of the network is C = 0.60 while the
average path length becomes L = 4.93 when the distance
factor is 10Å. As the distance factor is increased to 20Å, we
notice that the average clustering coefficient increases slightly
to C = 0.69 and the average path length decrease to L = 1.88.
In this way, we utilise the VT-1 molecular structure integrating
on each atom a neuromorphic behaviour. Compared with the
SNN approach, which is a general paradigm used in modelling
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biological neural networks for machine learning purposes,
RC are a not-so-general-paradigm; in the latter, the goal is
to understand how ensemble neurons process information.
Nevertheless, in both cases, many different neuron models can
be considered, in which the information is encoded in temporal
distance between the consecutive action potentials.

B. Neuron Model

In literature, various neuromorphic behaviours are modelled
at different levels of abstraction, ranging from the most bio-
logically realistic Hodgkin-Huxley (HH) model to the simplest
and most computationally efficient Leaky Integrate-and-Fire
(LIF) model. In our case, we use the Izhikevich neuron
model [37], [38] since it offers a good compromise between a
biological accuracy and the computational efficiency, as well
as it manages to produce several kinds of spike and burst
patterns observed in biological neurons by the proper choice
of only four variables [39].

The Izhikevich model is described by the following two-
dimensional system of differential equations

v̇(t) = 0.04v2(t) + 5v(t) + 140− u(t) + I(t) (1)
u̇(t) = a(bv(t)− u(t)) (2)

Ii(t) =

fired∑
j

Iosij + Iini (t) (3)

with after spike resetting

if v(t) ≥ 30mV

{
v(t)→ c

u(t)→ u(t) + d
(4)

where v is the membrane potential, u is a recovery variable that
contains the dynamics of ions-channels, I represents current
stimulation of the neuron and a, b, c and d are dimensionless
parameters. Regarding the reset phase, if the membrane po-
tential reaches the firing threshold, then the neuron generates
a spike which affects only the adjacent neurons. The variable
t refers to the simulation time that is distinguished in 1ms.
The variable si,j denotes the synaptic weight, between the
post-synaptic neuron i and the pre-synaptic neuron j, that
varies within the range of (0,1) and creates a specific spike
which is multiplied by the Io current amplitude to give the
appropriate interconnection current value of the order of pA.
This equation represents the sum up of the synapses of the
presynaptic neurons that fired together with the addition of an
external excitation current Iini (t) to neuron i.

C. Network Architecture

1) Input Encoding: The RC approach can be divided into
three parts, the input interface Win, the RC network W and
the readout interface Wout as depicted in Fig. 5. The input
interface concerns the transformation of the input stimula-
tion to time-varying input spike trains that excite the RC
system. At an early stage, the RC was directly stimulated
with the properly-scaled input pixels’ intensity in the form
of current inputs. Initially, 784 (28 × 28) random RC nodes

Fig. 5. Protein Structured Reservoir Computing Model.

were directly stimulated. However, due to limited accuracy,
various combinations of direct input stimulation to RC system
were performed. Starting with the all around combination in
which the image is stimulated sequentially about four times
on the network. Even so, spatio-temporal transformation of
the input does not take place, i.e. the output was highly
correlated with the input, which resulted in better but still
no comparable performances. As a result, this input spike
generation is realised through transforming the input image
pixels’ to spike trains by the input layer of 28×28 uncoupled
Izhikevich-based neurons. The images’ pixel values are pre-
processed and converted from [0, 255] range to [0, 1] range
of input currents. This is considered as the stimulation of the
input layer which are turned to Izhikevich-based spike-trains,
with proportional firing rates to the pixel’s intensity. After that,
each RC neuron receives a single randomly selected spike-train
from a single neuron of the input layer. Figure 6a illustrates
the neuromorphic activity of the 28×28 input layer in terms
of the membrane potential reflecting on a input image for an
interval of five time-steps of 1 ms each and Fig. 6b shows the
response of the molecular-based RC network in terms of the
membrane accordingly. We notice that action potentials of the
input layer affect significantly the neuromorphic activity on
the RC layer at the next time-step.

2) Reservoir: RC system consists of a 3D structured locally
connected network of spiking neurons and is usually randomly
created using biologically inspired parameters. In this study,
we use the molecular connectivity as the RC network and the
responses from all neurons are projected to the next output
layer, where the actual training is performed through super-
vised learning algorithms to recognize instantaneous spike-
based spatio-temporal patterns within the RC.

In the view of avoiding chaotic dynamics, we introduce
two kinds of neurons with different type of spiking behaviour,
the excitatory and inhibitory neurons [40] with a 4:1 ratio
of excitatory to inhibitory neurons as in the mammalian
cortex [41]. To achieve this, we employ a regular behaviour
with the parameters shown in Tab. I for excitatory and in-
hibitory neurons. From the VT-1 molecule we select oxygen
and hydrogen atoms as inhibitory neurons which are about
26% among all atoms and they are distributed throughout
the network, while the rest atoms are selected as excitatory
neurons.

3) Learning Mechanism: We adopted spike-timing-
dependent plasticity (STDP) which indicates the correlation
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TABLE I
PARAMETERS OF THE NEUROMORPHIC MODEL OF IZHIKEVICH USED FOR

THE MOLECULAR-BASED RC SYSTEM BEHAVIOUR FOR EACH NEURON

Izhikevich Excitatory Inhibitory
Parameters Neurons Neurons

a 0.02 0.02 to 0.10
b 0.20 0.20 to 0.25
c -65 to -50 -65
d 2 to 8 2

of the firing of the pre-synaptic neuron nink (i) and post-
synaptic neuron noj(i). This plasticity mechanism suggests
that since the pre-synaptic neuron always fires just before
the post-synaptic neuron the firings are correlated and the
synaptic weight between them should be increased; otherwise,
if a pre-synaptic neuron fires just after the post-synaptic
neuron the synaptic weight should be decreased. The weight
adjustment depends on the firing times of the pre- and
post-synaptic neurons accordingly [42]. One of the most
widely used STDP-based training algorithms, which adapts
synaptic weights according to the mechanisms of STDP and
anti-STDP is the Remote Supervision Method (ReSuMe) [43],
[44].

Two key features of ReSuMe learning are employed: the
Remote Supervision and the Learning Window. The remote
supervision concerns a remote “teacher” neuron for each
output neuron, or more precisely the use of remote firing
times. Regarding this, the synaptic weights depend, not only
on the correlation between the firing times of neurons nink (i)
and noj(i), but also on the correlation of firing times of
neuron nink (i) and remote neuron ndj (i) The function called
the learning window, determines the correlation between the
firings and thus the synaptic weight adjustment.

The ReSuMe learning is executed by the following cost
function derivative:

dwki(t)

dt
= η

[
Sd(t)− So(t)

] [
1 +

∫ ∞
0

W (s)Sin(t− s)ds
]

(5)
where Sd(t), Sin(t) and So(t) are the precise desired pre-
and post-synaptic spike trains, respectively, the constant η
represents the non-Hebbian contribution to the weight changes
and the learning rate, while function W (s) of a time delay
s = t − tfiredin between the correlated spikes is known as a
learning window. The shapes of W (s) applied in ReSuMe
are similar to the ones used in STDP models and can be
represented by the following equation. In this way, over time
ReSuMe Learning aims to get the desired and the output spike
trains even closer to each other, i.e. to have a simultaneous
firings.

W (s) =

{
+A+ · e−s/τ+ if s ≥ 0
−A− · es/τ− if s < 0

(6)

with amplitudes A+, A− ≥ 0 and time constants τ+, τ− >
0 of the positive and negative parts of the learning window,
respectively [45].

4) Training and Optimization: In our case, we aim to
reduce the training complexity and in particular to cause the
firing of neurons in the shortest possible time interval. Thus,
we could provide a rich neuromorphic activity to proceed to
readout layer training accordingly in a short period of time.

The RC system except the recurrent structure also consists
of a single output classifier layer with spiking neurons which
have also been integrated by the neuromorphic model of
Izhikevich. Since the RC is driven by the handwritten digits
from the MNIST-based datasets, ten spiking readout neurons
(labelled 0-9) represents the classified digit value of the input
image, schematically illustrated in Fig. 8. This dataset consists
of thousands of handwritten images which have 28×28 pixels
in grayscale.

Fig. 8 presents the RC framework, in which each input
image is converted to spike-trains through the input layer and
presented to RC network for a specific time interval, the so-
called learning duration T . The raster diagram represents the
exact spike timings of the input layer, the RC network and the
output layer response for each image after the training phase
with a learning duration of T=10 ms. In terms of improving
the network overall accuracy and preventing over-fitting on the
training dataset, smaller values of T are more efficient, which
often results in fewer iterations to learn the RC dynamics
produced from each image. We reduce the training complexity
and cause the firing of neurons in the shortest possible time
interval to provide a rich neuromorphic activity on the output
readout layer and train it in a short period of simulation
time. The network overall accuracy is optimised with ReSuMe
learning under a learning duration of T=6ms.

In order to evaluate the spike-based responses obtained from
the RC network, aiming to present the perspectives of our
approach, well-known classifiers are employed to utilize the
molecular-based encoded information. Multiple linear regres-
sion algorithm is used as classifier on the readout layer. By
utilizing the spike-based information encoded through the RC
system, we encode the raster diagram as a RC state vector X ,
which represents the overall spiking activity of the network
and is applied to classifier. Regarding the SCG training the
classifier consists of a multi-layer perceptron, while multiple
linear regression classifier includes a layer of ten neurons that
use the sigmoid activation function described by the following
equations:

αθ(x) = f
(
θT · x

)
(7)

f(x) =
1

1 + e−x
(8)

where f(x) is the sigmoid function and θT is the readout
weights that are trained through linear regression. In this
manner, the cost function is described as

J(θ) =
1

2n

n∑
i=1

(
yd − αθ

(
x(i)
))2

(9)

where n is the number of images, yd is the desired output and
the αθ

(
x(i)
)

is the observed output.
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Fig. 6. Spatio-temporal representation of the neuromorphic activity in terms of membrane potential (mV) (a) from the 28×28 Input Layer grid through
external stimulation of a random 28×28 image from the standard MNIST dataset down-scaled on the range of (0, 1) and (b) from the VT-1 molecular-based
RC response over 5 time-steps, 1 ms each, from the Input Layer action potentials.

The readout layer is trained using gradient descent, as
described below, in order to minimise the cost function.

∂J(θ)

∂θj
=

1

n

n∑
i=1

(
yd − αθ

(
x(i)
))

x(i) (10)

III. RESULTS

We demonstrate the utility of the molecular-based RC
architecture in unsupervised image classification by using
the ReSuMe learning framework. We evaluated the proposed
RC system with different RC connectivities for the stan-
dard MNIST and the extended MNIST datasets containing
60K/10K and 240K/40K of training/testing handwritten
images, respectively. The connectivities, concerning the input
layer to RC connectivity, the internal RC connectivity and
the RC to Output layer connectivity, are initialized with
random synaptic weights following the uniform distribution
within the range [0, 1]. Regarding the connections between the
RC and the output layer, they are restricted during training
within the range [−1, 1] to avoid bursting behaviors of the
classifier neurons. To ensure the existence of the classi-
fier’s response (output spikes), we apply the Softmax acti-
vation function on the output neurons’ membrane potentials
(So(t)=softmax(vo(t))). The ReSuMe learning method and
the evaluation are applied right at the end of the learning
duration and the training hyper-parameters are also optimised
and set as follows: the learning duration T=6ms, the learning
rate η=10−5, the STDP amplitudes A+=A−=1 and the STDP
time constants τ+=τ−=5ms. The dynamics of the Izhikevich
model is evaluated by numerical integration with a time-step
of ∆(t)=0.5ms.

We evaluated three different RC dynamics caused by the
proposed RC system without the internal connectivity, with

TABLE II
OVERALL ACCURACY FOR DIFFERENT RC APPROACHES.

RC Approach Accuracy

Standard MNIST Extended MNIST

No Connectivity 86.5% 87.8%
Hard Connectivity 86.9% 88.2%
Soft Connectivity 92.5% 93.7%

the hard connectivity and the soft connectivity, explained in
the previous section II, to verify whether the molecular-based
structure implies an overall accuracy enhancement. Except
this, we performed for different soft distances, and for both
MNIST-based datasets, 120 benchmark simulations, ten bench-
marks for each soft distance considering the random initial
parameters, to optimize the overall performance. The average
RC error rate (%) as a function of the soft distance is presented
in Fig. 9. The accuracy for both datasets of the evaluated
baseline RC system without any internal connectivity along
with the accuracy of the proposed hard and the best soft
internal connectivities are reported in Tab. II. It is evident that
by adopting a soft connectivity the dynamics of the LSM are
affected, which eventually results in accuracy enhancement.
Nevertheless, it should also noticed that after some point,
a further increase of the soft distance leads to a loss of
orthogonal connectivity, resulting in a decrease in the average
accuracy achieved. The best accuracies we have managed to
achieve for the MNIST classification task through the STDP-
based ReSuMe learning framework is 92.5% for the standard
MNIST dataset (soft distance of 9Å), and 93.7% for the
extended MNIST dataset (soft distance of 10Å), which are
clearly superior to that of the baseline accuracies (86.5% and
87.8%, accordingly). Fig. 9 shows that there is a soft distance
range in which the fractal-like orthogonal connectivity of the
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Fig. 7. Average confusion matrix of the testing results presenting the obtained classification responses vs. the desired responses over ten presentations of
the 10.000 standard MNIST test dataset. High values on the diagonal indicates correct estimation while at any other point indicates confusion between two
digits. (a) STDP approach; (b) Simple Regression approach; (c) Scaled conjugate gradient back-propagation approach using Neural network training toolbox
of Matlab 2018b.
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Fig. 8. Spatio-temporal spike-based pattern representation of the proposed Molecular-based LSM. We present the raster diagrams regarding the spike-trains
obtained by the input layer, the spike-trains of the Molecular-based LSM, as well as the time-dependent spikes of the output layer. Resume learning is
performed under a learning duration T=10 ms for each digit and the classifier neurons are trained to spike right at the last ms of the learning duration.

molecular structure emerge, as shown in Fig. 3, and lower
average error rates are obtained.

A comparison of related SNNs and LSM-based architectures
used for the MNIST classification is shown in Tab. III. A
network architecture similar to ours is presented in [48], which
consists of four properly-scaled random ensembles that are
made up of 1000 neurons each and manages to reach an almost
identical accuracy by using the SGD training method regarding
the standard MNIST dataset. However, the proposed molecular
architecture yields better error-rates (percentage) trends than
in [48] work. Beyond that, our work also utilizes about 27%
less trainable weights/synapses in the readout layer. While
a full-scale training optimization, regarding different training
approaches or stimulation handling techniques, of the proposed
molecular-based LSM is yet to be demonstrated in our fu-
ture work, the baseline accuracy achieved with very limited
trainable weights might indicate the promising potential of the
proposed topology.

Despite the previous LSM-based approaches, there is also
the SNN-based work [46] that addresses the MNIST classifi-
cation problem through a full-scale network training. Unlike
the proposed LSM work, where training is performed on the
readout layer, [46] perform training in the entire network of
spiking neurons. Consequently, this work, by employing a
single classifier, is considerably restricted to the number of
trainable synaptic weights. Nevertheless, it should also con-
sidered that when similar SNN systems target for a hardware
based implementation, such approaches request additional
resources to control the overall process and at the same time
require additional memory so as the newly calculated network
weights can be stored.

In Fig. 7 average confusion matrices are shown under the
Resume learning, the multiple linear regression and the SCG
training accordingly. The results obtained present that the RC
dynamics can be utilized through the RC state vector. This RC
state consists of the overall spiking activity of each neuron.
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TABLE III
CLASSIFICATION ACCURACY OF DIFFERENT RELATED SNNS AND LSM-BASED ARCHITECTURES ON MNIST-BASED TEST SETS.

Architecture Network neurons Network synapses Accuracy(%)
Standard MNIST Extended MNIST

Two-layered SNN [46] 2× 6, 400 45,977,600 95.00 -
Four-liquid SpiLinC [47] 4× 3, 200 4,866,048 90.90 -

Multiple-Liquid Multiple-Readouts RC [48] 4× 1, 000 400,000 95.20 89.00
Molecular-based Liquid (this paper) 1× 2, 922 346,608 92.50 93.70
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Fig. 9. The average (over ten benchmarks) network error rate (%) and
the average clustering coefficient of the network as a function of the soft
distance, which assembles different connectivities. For each benchmark,
different random initial conditions are used for each neuron along with
different shuffle during the training phase.

In this manner, by applying the multiple linear regression and
the SCG training through the MATLAB’s toolbox, a testing
accuracy of 96.83% and 98.66% are achieved accordingly.

IV. CONCLUSIONS AND DISCUSSION

We evaluated a computing potential of a neuromorphic net-
work with architecture based on Verotoxin molecule by using
a RC computing approach that hybridises computing on a
single molecule and classification using neuromorphic models.
We demonstrated an unconventional approach by assuming
that each atom of a molecule is a neuron which produces
action potentials by the Izhikevich neuron model and affects
both its neigbouring neurons and the output layer. The output
layer is trained by various training methods starting with the
STDP-based ReSuMe training method, carrying on with the
multiple linear regression and at last with the scaled conjugate
gradient (SCG) back-propagation to examine whether such a
molecular-based protein topology can contribute in addressing
neuromorphic challenges under the reservoir computing ap-
proach. Despite the fact that we performed the training on a
single readout layer, we managed to evaluate our proposed

network on the recognition of handwritten digits by the
MNIST-based datasets, namely the standard MNIST dataset
and the extended MNIST dataset, and got a sufficient degree
of accuracy demonstrating more efficient performances than
other similar LSM approaches with a single readout layer.

Our motivation initially emerges from the mechanisms that
underlie the oscillatory behaviour of atoms in molecular struc-
ture to interact with their adjacent atoms. This phenomenon
has inspired us and lead us to interpret atoms as biological
neurons, which operate in the frequency domain. Thus, a
molecular-based nanoelectronic device that would work on an
atomic-scale through oscillations and could perform in neuro-
morphic applications [49], [50], such as reservoir computing,
has been envisaged. Although, for the time being, there is
no such straightforward solution for easy implementation of
such atomic-scale nanoelectronic devices owing to possible
fabrication issues and corresponding difficulties, mainly at-
tributed to the top-down approach of lithography process, and
a fully secure bottom-up approach of creating complex molec-
ular structures required to have even more steady molecular
composition and limited defects [51], we propose here, as a
first step, a promising protein structured reservoir computing
approach that could eventually implement reservoir computing
in the oscillation of actual protein molecules. This oscillation
can be practically realised for each molecular-coupled atom
considered as an electron-spring system which can be modeled
by harmonic oscillator models, like the classical Lorentz
oscillator model. With the right conditions (electric fields,
optical stimulation), we can directly affect atoms and cause
excitations. An excitation in a molecule takes place when
an electron in a ground state absorbs a photon and moves
up to high yet unstable energy level, which later returns to
its ground state. When returning to the ground state, the
electron releases photon which travels with speed 3 × 1018

Å per second. Assuming at each step of modelling excitation
wave-front travels ρ = 3Å, one step of the model evolution
corresponds to one attosecond, of real time. Considering atoms
as neurons with two basic states, – ‘excited’ and ‘de-excited’,
a transition from ‘excited’ to ‘de-excited’ state corresponds
to emission of spikes analogous to emission of photons as
already discussed in literature [52]–[54]. The outputs of the
protein computing unit can be measured using controlled light
waves and pulse trains [55]–[58], or in case of using less exotic
devices, train of 103 impulses of the same data inputs can be
sent to the molecule and output recorded via accumulating,
e.g. capacitive, devices. Therefore, we first intend to examine
whether such a molecular-based protein topology for reser-
voir computing can contribute in addressing neuromorphic
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challenges, also demonstrating efficient performance, such as
the recognition of handwritten digits by the MNIST dataset.
Furthermore, we have presented that reservoir computing can
take place with Izhikevich spiking neurons on the proposed
molecular network topology.

The MNIST classification problem on RC frameworks, ev-
ery choice made concerning the control of Reservoir dynamics,
the use of different kind of interconnected ensembles as well
as the training approach of the readout layer has significant
impact in the overall accuracy of the system. We have managed
to adapt this particular molecular structure, as performed in
every other work related to reservoir computing, so as to
achieve comparable or even better accuracies to other similar
works. A molecular-based architecture is designed to achieve
comparable performances to other random and properly scaled
connectivities. Nonetheless, its accuracy can be further en-
hanced by applying optimization techniques used by similar
LSM implementations [59]–[64]. RC optimization techniques
regarding the proposed topology can be illustrated with the
control of the training procedure by using different learning
methods, the investigation of different types of neurons to
control the RC dynamics and the study of stimulation by
utilizing various input interfaces or different stimulation times
as frequently performed for such tasks.

The small-world effect with the high-clustering attribute
of molecular connections classifies them as promising neu-
romorphic topologies for bio-inspired networks to implement
high-dimensional transformations in neuromorphic computing
architectures such as RC frameworks. Regarding the bio-
inspired molecular ability to alter under different conditions
they’re imposed, could lead us to exploit their modification
mechanisms or even to utilise the prospect of folding which
could occur in real-time and investigate further the utilisation
of such single-molecule systems.
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