697 research outputs found

    Oyster RNA-seq data support the development of Malacoherpesviridae genomics

    Get PDF
    The family of double-stranded DNA (dsDNA) Malacoherpesviridae includes viruses able to infect marine mollusks and detrimental for worldwide aquaculture production. Due to fast-occurring mortality and a lack of permissive cell lines, the available data on the few known Malacoherpesviridae provide only partial support for the study of molecular virus features, life cycle, and evolutionary history. Following thorough data mining of bivalve and gastropod RNA-seq experiments, we used more than five million Malacoherpesviridae reads to improve the annotation of viral genomes and to characterize viral InDels, nucleotide stretches, and SNPs. Both genome and protein domain analyses confirmed the evolutionary diversification and gene uniqueness of known Malacoherpesviridae. However, the presence of Malacoherpesviridae-like sequences integrated within genomes of phylogenetically distant invertebrates indicates broad diffusion of these viruses and indicates the need for confirmatory investigations. The manifest co-occurrence of OsHV-1 genotype variants in single RNA-seq samples of Crassostrea gigas provide further support for the Malacoherpesviridae diversification. In addition to simple sequence motifs inter-punctuating viral ORFs, recombination-inducing sequences were found to be enriched in the OsHV-1 and AbHV1-AUS genomes. Finally, the highly correlated expression of most viral ORFs in multiple oyster samples is consistent with the burst of viral proteins during the lytic phase

    First comparison of French and Australian OsHV-1 µvars by bath exposure

    Get PDF
    Economically devastating mortality events of farmed and wild shellfish due to infectious disease have been reported globally. Currently, one of the most significant disease threats to Pacific oyster Crassostrea gigas culture is the ostreid herpesvirus 1 (OsHV-1), in particular the emerging OsHV-1 microvariant genotypes. OsHV-1 microvariants (OsHV-1 μvars) are spreading globally, and concern is high among growers in areas unaffected by OsHV-1. No study to date has compared the relative virulence among variants. We provide the first challenge study comparing survival of naïve juvenile Pacific oysters exposed to OsHV-1 μvars from Australia (AUS μvar) and France (FRA μvar). Oysters challenged with OsHV-1 μvars had low survival (2.5% exposed toAUS μvar and 10% to FRA μvar), and high viral copy number as compared to control oysters(100% survival and no virus detected). As our study was conducted in a quarantine facility located~320 km from the ocean, we also compared the virulence of OsHV-1 μvars using artificial seawater made from either facility tap water (3782 μmol kg−1seawater total alkalinity) or purchased distilled water (2003 μmol kg−1). Although no differences in survival or viral copy number were detected in oysters exposed to seawater made using tap or distilled water, more OsHV-1 was detected in tanks containing the lower-alkalinity seawater, indicating that water quality may be important for virus transmission, as it may influence the duration of viral viability outside of the hos

    Ostreid herpesvirus 1 detection and relationship with Crassostrea gigas spat mortality in France between 1998 and 2006

    Get PDF
    Since its molecular characterisation, Ostreid herpesvirus 1 (OsHV-1) has been regularly detected in Crassostrea gigas in France. Although its pathogenicity was demonstrated on larval stages, its involvement during mortality outbreaks at the juvenile stage was highly suspected but not evidenced. To investigate mortality outbreaks, the French National Network for Surveillance and Monitoring of Mollusc Health (REPAMO) carried out two surveys in juvenile C. gigas. The first survey lasted from 1998 to 2006 and was an epidemiological inquiry occurring when oyster farmers reported mortality outbreaks. The second survey, a longitudinal one, was set up in 1998 to complete the network observations on OsHV-1. Data analysis showed a specific pattern of mortality outbreaks associated with OsHV-1 detection. Ostreid herpesvirus 1 detection mainly appeared during the summer, suggesting the influence of the seawater temperature on its occurrence. It mostly presented a patchy distribution in the field in contrast to the nursery. Significant relationship between OsHV-1 detection and spat mortality was found, preferentially in sheltered and closed environments. The longitudinal survey confirmed most of the network observations. Although subsequent works particularly epidemiological surveys would be useful to confirm the causal link between the detection of OsHV-1 and the mortality outbreaks in juvenile C. gigas, the role of OsHV-1 in oyster mortality is progressing

    Experimental infection of Pacific oyster Crassostrea gigas spat by ostreid herpesvirus 1: demonstration of oyster spat susceptibility

    Get PDF
    In 2008 and 2009, acute mortalities occurred in France among Pacific cupped oyster, Crassostrea gigas, spat. Different hypothesis including the implication of environmental factors, toxic algae and/or pathogens have been explored. Diagnostic tests indicated that OsHV-1 including a particular genotype, termed OsHV-1 μVar, was detected in most of samples and especially in moribund oysters with the highlighting of virus particles looking like herpes viruses by TEM examination. In this study, an experimental protocol to reproduce OsHV-1 infection in laboratory conditions was developed. This protocol was based on the intramuscular injection of filtered (0.22 μm) tissue homogenates prepared from naturally OsHV-1 infected spat collected on French coasts during mortality outbreaks in 2008. Results of the experimental trials showed that mortalities were induced after injection. Moreover, filtered tissue homogenates induced mortalities whereas the same tissue homogenates exposed to an ultraviolet (UV) treatment did not induce any mortality suggesting that oyster spat mortalities require the presence of a UV sensitive agent. Furthermore, analysis of injected oyster spat revealed the detection of high amounts of OsHV-1 DNA by real-time quantitative PCR. Finally, TEM analysis demonstrated the presence of herpes virus particles. The developed protocol allowed to maintain sources of infective virus which can be useful for the development of further studies concerning the transmission and the development of OsHV-1 infection

    Experimental infections of Pacific oyster Crassostrea gigas using the Australian OsHV-1 µVar strain

    Get PDF
    In Australia the spread of the Ostreid herpesvirus OsHV-1 microvariant (OsHV-1 µVar) threatens the Pacific oyster industry. There was an urgent need to develop an experimental infection model in order to study the pathogenesis of the virus in controlled laboratory conditions. The present study constitutes the first attempt to use archived frozen oysters as a source of inoculum, based on the Australian OsHV-1 µVar strain. Experiments were conducted to test (i) the virus infectivity, (ii) the dose-response relationship for OsHV-1, and (iii) the best storage conditions to keep infective viral inoculum. Intramuscular injection of a viral inoculum consistently led to an onset of mortality 48h post injection and a final cumulative mortality exceeding 90%, in association with high viral loads (1 x 105 – 3 x 107 copies of virus mg-1) in dead individuals. For the first time an infective inoculum was produced from frozen oysters (tissues stored at -80°C for 6 months). Storage of purified viral inoculum at +4°C for 3 months provided similar results to use of fresh inoculum whereas storage at -20°C, -80°C and room temperature was detrimental to infectivity. A dose-response relationship for OsHV-1 was identified but further research is recommended to determine the most appropriate viral concentration for development of infection models that would be used for different purposes. Overall, this work highlights the best practices and potential issues that may occur in the development of a reproducible and transferable infection model for studying the pathogenicity of the Australian OsHV-1 strain in C. gigas under experimental conditions. Keywords: Ostreid herpesvirus 1; Crassostrea gigas; experimental infection model; dose-response; inoculum preparation; storage condition

    Genomic Diversity of the Ostreid Herpesvirus Type 1 Across Time and Location and Among Host Species

    Get PDF
    The mechanisms underlying virus emergence are rarely well understood, making the appearance of outbreaks largely unpredictable. This is particularly true for pathogens with low per-site mutation rates, such as DNA viruses, that do not exhibit a large amount of evolutionary change among genetic sequences sampled at different time points. However, whole-genome sequencing can reveal the accumulation of novel genetic variation between samples, promising to render most, if not all, microbial pathogens measurably evolving and suitable for analytical techniques derived from population genetic theory. Here, we aim to assess the measurability of evolution on epidemiological time scales of the Ostreid herpesvirus 1 (OsHV-1), a double stranded DNA virus of which a new variant, OsHV-1 μVar, emerged in France in 2008, spreading across Europe and causing dramatic economic and ecological damage. We performed phylogenetic analyses of heterochronous (n = 21) OsHV-1 genomes sampled worldwide. Results show sufficient temporal signal in the viral sequences to proceed with phylogenetic molecular clock analyses and they indicate that the genetic diversity seen in these OsHV-1 isolates has arisen within the past three decades. OsHV-1 samples from France and New Zealand did not cluster together suggesting a spatial structuration of the viral populations. The genome-wide study of simple and complex polymorphisms shows that specific genomic regions are deleted in several isolates or accumulate a high number of substitutions. These contrasting and non-random patterns of polymorphism suggest that some genomic regions are affected by strong selective pressures. Interestingly, we also found variant genotypes within all infected individuals. Altogether, these results provide baseline evidence that whole genome sequencing could be used to study population dynamic processes of OsHV-1, and more broadly herpesviruses

    Spatial distribution of mortality in Pacific oysters Crassostrea gigas: reflection on mechanisms of OsHV-1 transmission

    Get PDF
    The ostreid herpesvirus (OsHV-1) has the potential to devastate Crassostrea gigas culture in Australia as it has done in many other countries, highlighting the need for a better understanding of disease expression and transmission. The aim of this study was to assess the spatial distribution of OsHV-1 associated mortalities in one of only two infected areas in Australia, Woolooware Bay (Botany Bay New South Wales). In October 2011, healthy sentinel Pacific oysters were placed in three different locations at three different tidal levels and OsHV-1 associated mortalities were closely monitored over 7 months. The outbreak started in November 2011 and the disease remained active until April 2012. Three major mortality events were detected. Rather than being a propagating epizootic, it appeared that most oysters were infected from the same environmental source. The distribution of OsHV-1 associated mortalities was spatially clustered, highly variable and clearly dependent on the age of oysters and their position in the water column. Non-random distribution of mortalities at macro scale (sites several km apart) and micro scale (within rearing trays), and vertical clustering patterns in the water column are discussed in relation to mechanisms of transmission in water. We hypothesise that OsHV-1 may be carried through water by particles, possibly plankton. Key words: Crassostrea gigas, Ostreid herpesvirus 1, summer mortalities, spatial distribution, plankton, disease transmissionFunded by the Fisheries Research and Development Corporation, the University of Sydney and the Sydney Metropolitan Catchment Management Authorit

    Detection of isothermally amplified ostreid herpesvirus 1 DNA in Pacific oyster (Crassostrea gigas) using a miniaturised electrochemical biosensor

    Get PDF
    Given the threat that ostreid herpesvirus 1 (OsHV-1) poses to shellfish aquaculture, the need for rapid, user-friendly and cost-effective methods to detect this marine pathogen and minimise its impact is evident. In this work, an electrochemical biosensor for the detection of OsHV-1 based on isothermal recombinase polymerase amplification (RPA) was developed. The system was first tested and optimised on maleimide microtitre plates as a proof-of-concept, before being implemented on miniaturised gold electrodes. Amperometric detection of the isothermally amplified product was achieved through a sandwich hybridisation assay with an immobilised thiolated capture probe and a horseradish peroxidase (HRP)-labelled reporter probe. Calibration curves were constructed using PCR-amplified OsHV-1 DNA, achieving a limit of detection of 207 OsHV-1 target copies. The biosensor was applied to the analysis of 16 oyster samples from an infectivity experiment, and results were compared with those obtained by qPCR analysis, showing a strong degree of correlation (r = 0.988). The simplicity, rapidity, cost-effectiveness and potential for in-situ testing with the developed biosensor provide a valuable tool for the detection of OsHV-1 in aquaculture facilities, improving their management.info:eu-repo/semantics/acceptedVersio

    Occurrence of OsHV-1 in Crassostrea gigas cultured in Ireland during an exceptionally warm summer. Selection of less susceptible oysters

    Get PDF
    The occurrence of OsHV-1, a herpes virus causing mass mortality in the Pacific oyster Crassostrea gigas was investigated with the aim to select individuals with different susceptibility to the infection. Naïve spat transferred to infected areas and juveniles currently being grown at those sites were analyzed using molecular and histology approaches. The survey period distinguishes itself by very warm temperatures reaching up to 3.5°C above the average. The virus was not detected in the virus free area although a spread of the disease could be expected due to high temperatures. Overall mortality, prevalence of infection and viral load was higher in spat confirming the higher susceptibility in early life stages. OsHV-1 and oyster mortality were detected in naïve spat after 15 days of cohabitation with infected animals. Although, infection was associated with mortality in spat, the high seawater temperatures could also be the direct cause of mortality at the warmest site. One stock of juveniles suffered an event of abnormal mortality that was significantly associated with OsHV-1 infection. Those animals were infected with a previously undescribed microvariant whereas the other stocks were infected with OsHV-1 μVar. Cell lesions due to the infection were observed by histology and true infections were corroborated by in situ hybridization. Survivors from the natural outbreak were exposed to OsHV-1 μVar by intramuscular injection and were compared to naïve animals. The survival rate in previously exposed animals was significantly higher than in naïve oysters. Results derived from this study allowed the selection of animals that might possess interesting characteristics for future analysis on OsHV-1 resistance

    FicD genes in invertebrates: A tale of transposons, pathogenic and integrated viruses

    Get PDF
    : Many gene families are shared across the tree of life between distantly related species because of horizontal gene transfers (HGTs). However, the frequency of HGTs varies strongly between gene families and biotic realms suggesting differential selection pressures and functional bias. One gene family with a wide distribution are FIC-domain containing enzymes (FicDs). FicDs catalyze AMPylation, a post-translational protein modification consisting in the addition of adenosine monophosphate to accessible residues of target proteins. Beside the well-known conservation of FicDs in deuterostomes, we report the presence of a conserved FicD gene ortholog in a large number of protostomes and microbial eukaryotes. We also reported additional FicD gene copies in the genomes of some rotifers, parasitic worms and bivalves. A few dsDNA viruses of these invertebrates, including White spot syndrome virus, Cherax quadricarinatus iridovirus, Ostreid herpesvirus-1 and the beetle nudivirus, carry copies of FicDs, with phylogenetic analysis suggesting a common origin of these FicD copies and the duplicated FicDs of their invertebrate hosts. HGTs and gene duplications possibly mediated by endogenous viruses or genetic mobile elements seem to have contributed to the transfer of AMPylation ability from bacteria and eukaryotes to pathogenic viruses, where this pathway could have been hijacked to promote viral infection
    corecore