1,023 research outputs found

    Orthogonal Graph Drawing with Inflexible Edges

    Full text link
    We consider the problem of creating plane orthogonal drawings of 4-planar graphs (planar graphs with maximum degree 4) with constraints on the number of bends per edge. More precisely, we have a flexibility function assigning to each edge ee a natural number flex(e)\mathrm{flex}(e), its flexibility. The problem FlexDraw asks whether there exists an orthogonal drawing such that each edge ee has at most flex(e)\mathrm{flex}(e) bends. It is known that FlexDraw is NP-hard if flex(e)=0\mathrm{flex}(e) = 0 for every edge ee. On the other hand, FlexDraw can be solved efficiently if flex(e)≥1\mathrm{flex}(e) \ge 1 and is trivial if flex(e)≥2\mathrm{flex}(e) \ge 2 for every edge ee. To close the gap between the NP-hardness for flex(e)=0\mathrm{flex}(e) = 0 and the efficient algorithm for flex(e)≥1\mathrm{flex}(e) \ge 1, we investigate the computational complexity of FlexDraw in case only few edges are inflexible (i.e., have flexibility~00). We show that for any ε>0\varepsilon > 0 FlexDraw is NP-complete for instances with O(nε)O(n^\varepsilon) inflexible edges with pairwise distance Ω(n1−ε)\Omega(n^{1-\varepsilon}) (including the case where they induce a matching). On the other hand, we give an FPT-algorithm with running time O(2k⋅n⋅Tflow(n))O(2^k\cdot n \cdot T_{\mathrm{flow}}(n)), where Tflow(n)T_{\mathrm{flow}}(n) is the time necessary to compute a maximum flow in a planar flow network with multiple sources and sinks, and kk is the number of inflexible edges having at least one endpoint of degree 4.Comment: 23 pages, 5 figure

    New Approaches to Classic Graph-Embedding Problems - Orthogonal Drawings & Constrained Planarity

    Get PDF
    Drawings of graphs are often used to represent a given data set in a human-readable way. In this thesis, we consider different classic algorithmic problems that arise when automatically generating graph drawings. More specifically, we solve some open problems in the context of orthogonal drawings and advance the current state of research on the problems clustered planarity and simultaneous planarity

    A generic design concept for geometric algorithms

    Get PDF
    The design phase of an algorithm’s implementation is confronted with the issues of efficiency, flexibility, and ease-of-use. In this paper, we suggest a concept that greatly increases the flexibility of an implementation without sacrificing its ease-of-use. The loss in terms of efficiency is small. We demonstrate the advantages of our concept at a C++ implementation of a simple rectangleintersection algorithm, which follows the well-known sweep-line paradigm. We lead the reader from a naive interface in a step-by-step guide to an interface offering full flexibility. The gain in flexibility can reduce implementation effort by facilitating code reusage. Reusability in turn helps to achieve correctness since more users mean more testing. Though most of the ingredients of our concept have already been suggested elsewhere, to our knowledge this is the first time that they are applied vigorously in a geometric setting. We include a thorough experimental analysis on random and real world data that arouse in the context of map labeling

    An Open Toolkit for Reverse Engineering Data Visualisation and Exploration

    Get PDF
    • …
    corecore