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Abstract
Orthogonal drawings, i.e., embeddings of graphs into grids, are a classic topic inGraph
Drawing. Often the goal is to find a drawing that minimizes the number of bends on
the edges. A key ingredient for bend minimization algorithms is the existence of an
orthogonal representation that allows to describe such drawings purely combinatori-
ally by only listing the angles between the edges around each vertex and the directions
of bends on the edges, but neglecting any kind of geometric information such as vertex
coordinates or edge lengths. In this work, we generalize this idea to ortho-radial repre-
sentations of ortho-radial drawings, which are embeddings into an ortho-radial grid,
whose gridlines are concentric circles around the origin and straight-line spokes ema-
nating from the origin but excluding the origin itself. Unlike the orthogonal case, there
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exist ortho-radial representations that do not admit a corresponding drawing, for exam-
ple so-called strictly monotone cycles. An ortho-radial representation is called valid if
it does not contain a strictlymonotone cycle. Our first main result is that an ortho-radial
representation admits a corresponding drawing if and only if it is valid. Previously
such a characterization was only known for ortho-radial drawings of paths, cycles, and
theta graphs (Hasheminezhad et al. in Australas J Combin 44:171–182, 2009), and
in the special case of rectangular drawings of cubic graphs (Hasheminezhad et al. in
Comput Geom 43(9):767–780, 2010), where the contour of each face is required to be
a combinatorial rectangle. Additionally, we give a quadratic-time algorithm that tests
for a given ortho-radial representation whether it is valid, and we show how to draw
a valid ortho-radial representation in the same running time. Altogether, this reduces
the problem of computing a minimum-bend ortho-radial drawing to the task of com-
puting a valid ortho-radial representation with the minimum number of bends, and
hence establishes an ortho-radial analogue of the topology-shape-metrics framework
for planar orthogonal drawings by Tamassia (SIAM J Comput 16(3):421–444, 1987).

Keywords Graph drawing · Ortho-radial graph drawing · Ortho-radial
representation · Topology-shape-metrics · Efficient algorithms

Mathematics Subject Classification 68R10

1 Introduction

Grid drawings of graphs embed graphs into grids such that vertices map to grid points
and edges map to internally disjoint curves on the grid lines that connect their end-
points. Orthogonal grids, whose grid lines are horizontal and vertical lines, are popular
andwidely used inGraphDrawing.Among other applications, orthogonal graph draw-
ings are used inVLSI design (e.g., [5, 35]), diagrams (e.g., [3, 14, 20, 38]), and network
layouts (e.g., [24, 30]). They have been extensively studied with respect to their con-
struction and properties (e.g., [1, 6, 7, 29, 33]). Moreover, they have been generalized
to arbitrary planar graphs with degree higher than four (e.g., [8, 18, 32]).

Ortho-radial drawings are a generalization of orthogonal drawings to grids that
are formed by concentric circles around the origin and straight-line spokes from the
origin, but excluding the origin. Equivalently, they can be viewed as graphs drawn
in an orthogonal fashion on the surface of a standing cylinder, see Fig. 1, or a sphere
without the poles. Hence, they naturally bring orthogonal graph drawings to the third
dimension.

Among other applications, ortho-radial drawings are used to visualize network
maps; see Fig. 21. Especially, for metro systems of metropolitan areas they are highly
suitable. Their inherent structure emphasizes the city center, the metro lines that run
in circles as well as the metro lines that lead to suburban areas. While the automatic
creation of metro maps has been extensively studied for other layout styles such as

1 Note that ortho-radial drawings exclude the center of the grid, which is slightly different to the concentric
circles maps by Maxwell J. Roberts.
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(a) Ortho-radial grid (b) Cylinder drawing

Fig. 1 An ortho-radial drawing of a graph on a grid (a) and its equivalent interpretation as an orthogonal
drawing on a cylinder (b)

Fig. 2 Metro map of Berlin using an ortho-radial layout. Image copyright by Maxwell J. Roberts. Repro-
duced with permission

octilinear edge directions [23, 26, 28, 36] and curvedmetro lines [16], this is a new and
wide research field for ortho-radial drawings [2, 17]. For a more detailed discussion
on layouts of transit maps we refer to the survey by Wu et al. [37].

Adapting existing techniques and objectives from orthogonal graph drawings is a
promising step to open up that field. Onemain objective in orthogonal graph drawing is
to minimize the number of bends on the edges. The key ingredient of a large fraction of
the algorithmic work on this problem is the orthogonal representation, introduced by
Tamassia [31], which describes orthogonal drawings by listing (i) the angles formed by
consecutive edges around each vertex, and (ii) the directions of bends along the edges.
Such a representation is valid if (I) the angles around each vertex sum to 2π , and (II)
the sum of the angles around each face with k vertices is (k − 2) · π for internal faces
and (k + 2) · π for the outer face. The necessity of the first condition is obvious and
the necessity of the latter follows from the sum of inner/outer angles of any polygon
with k corners. It is thus clear that any orthogonal drawing yields a valid orthogonal
representation, and Tamassia [31] showed that the converse holds true as well; for a
valid orthogonal representation there exists a corresponding orthogonal drawing that
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realizes this representation.Moreover, the proof is constructive and allows the efficient
construction of such a drawing, a process that is referred to as compaction.

Altogether, this enables a three-step approach for computing orthogonal drawings,
the so-called Topology-Shape-Metrics Framework, which works as follows. First, fix a
topology, i.e., a combinatorial embedding of the graph in the plane (possibly planariz-
ing it if it is non-planar); second, determine the shape of the drawing by constructing a
valid orthogonal representation with few bends; and finally, compactify the orthogonal
representation by assigning suitable vertex coordinates and edge lengths (metrics). As
mentioned before, this reduces the problem of computing an orthogonal drawing of a
planar graph with a fixed embedding to the purely combinatorial problem of finding a
valid orthogonal representation, preferably with few bends. The task of actually creat-
ing a corresponding drawing in polynomial time is then taken over by the framework.
It is this approach that is at the heart of a large body of literature on bend minimization
algorithms for orthogonal drawings (e.g., [4, 9–13, 15]).
Contribution and Outline. In this paper we establish an analogous drawing framework
for ortho-radial drawings. To this end, we introduce so-called ortho-radial representa-
tions, which give a combinatorial description of ortho-radial drawings, and therefore
can be used to substitute orthogonal representations in the Topology-Shape-Metrics
Framework.

More precisely, our contributions are as follows. We show that a natural general-
ization of the validity conditions (I) and (II) above is not sufficient, and introduce a
third, less local condition that excludes so-called strictly monotone cycles, which do
not admit an ortho-radial drawing. The third condition requires an additional edge,
called the reference edge, from which we can derive whether an edge is part of a circle
or a spoke of the ortho-radial grid. We prove that these three conditions together fully
characterize ortho-radial drawings. Before that, characterizations for bend-free ortho-
radial drawings were only known for paths, cycles and theta graphs [21]. Further, for
the special case that each internal face is a combinatorial rectangle, a characterization
for cubic graphs was known [22]. Here, an internal face is a combinatorial rectangle
if it contains exactly four angles of π/2 and all other angles have π .

On the algorithmic side, we show that it can be tested in Ø(n2) time whether an
ortho-radial representation with a given reference edge is drawable. A corresponding
drawing can be obtained in the same running time. While this does not yet directly
allow us to compute ortho-radial drawings with few bends, our result paves the way
for a purely combinatorial treatment of bend minimization in ortho-radial drawings,
thus enabling the same type of tools that have proven highly successful in minimizing
bends in orthogonal drawings. Recently, Niedermann and Rutter [27] presented such
a tool based on an integer linear programming formulation showing that the topology-
shape-metrics framework for ortho-radial drawings is capable of handling real-world
networks such as metro systems.

We define basic terms and notations in Sect. 2. Afterwards, we formally intro-
duce ortho-radial drawings and ortho-radial representations in Sect. 3, where we also
establish basic properties that will be used throughout this paper. In Sect. 4 we intro-
duce helpful tools for working with ortho-radial representations. Section5 establishes
basic properties of labelings that are used to describe ortho-radial representations. In
Sects. 6 and 7 we prove that ortho-radial representations are drawable if and only if
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they are valid. In Sect. 8 we give a validity test for ortho-radial representations that
runs in Ø(n2) time. Afterwards, in Sect. 9, we revisit the rectangulation procedure
from Sect. 7 and show that using the techniques from Sect. 8 it can be implemented
to run in Ø(n2) time, improving over a naive application which would yield running
timeØ(n4). This enables a purely combinatorial treatment of ortho-radial drawings. In
Sect. 10 we discuss how to include bends and we show that deciding whether a graph
has a bend-free ortho-radial drawing is NP-complete. We conclude with a summary
and some open questions in Sect. 11.

2 Preliminaries

Let G be a plane graph with combinatorial embedding E and outer face fo. The
embedding E fixes for each vertex v of G the counterclockwise order of the edges
incident to v around the vertex v. A path in G may contain vertices multiple times,
and a cycle C may contain vertices multiple times but may not cross itself in the sense
that the pairs of edges along which C enters and leaves a vertex v do not alternate
in the cyclic order of edges around v in the embedding E . We consider all paths and
cycles to be directed. We represent a path P as the sequence v1 . . . vk of its vertices in
the order as they appear on P . Similarly, we represent a cycle as the sequence v1 . . . vk
of its vertices in the order as they appear on C , where v1 is arbitrarily chosen. For
any path P = v1 . . . vk its reverse is �P = vk . . . v1. The concatenation of two paths
P1 and P2 is written as P1 + P2. For two edges uv and wx on a path P the subpath
from uv to wx is the unique path on P that starts with uv and ends with wx , and we
denote it by P[uv,wx]. If P contains u (or x) only once, we may write u instead of
uv (or x instead of wx). This can lead to abbreviations like P [u, wx], P [uv, x], and
P [u, x]. In particular, if P is simple P [u, x] denotes the subpath of P from u to x .
For a cycle C , we similarly denote its reverse by �C , and for edges uv and wx on C
the subpath of C from uv to wx in the direction of C is denoted by C [uv,wx].

Moreover, a path or cycle is simple if it contains all vertices at most once. A facial
walk C of a face f is a cycle in G that describes the boundary of f , i.e., the cycle
C consists of edges of f and for any subpath uvw of C the edge uv precedes vw in
the cyclic order of edges around v that is defined by E . Any simple cycle C separates
two sets of faces. One of these sets contains the outer face fo, and we call these faces
together with the vertices and edges incident to them the exterior of C . Conversely
the faces of the other set and their incident vertices and edges form the interior of C .
Note that C belongs to both its interior and its exterior. Unless specified explicitly, a
simple cycle C is directed such that its interior lies to the right of C . Finally, a path P
respects a cycle C if P lies in the exterior of C .

3 Ortho-Radial Drawings and Representations

Let G = (V , E) be a planar, connected 4-graph with n vertices, where a graph is a
4-graph if it has maximum degree four. An ortho-radial drawing � of G is a plane
drawing on an ortho-radial grid G such that each vertex of G is a grid point of G and
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Fig. 3 The orthogonal drawing is transformed into an ortho-radial drawing by bending the horizontal edges
into concentric circular arcs, while vertical edges become segments of rays that emanate from the center of
the ortho-radial grid

each edge of G is a simple curve on G. We observe that in any ortho-radial drawing
there is an unbounded face fo and a face fc that contains the center of the grid; we
call the former the outer face and the latter the central face; in our figures we mark the
central face using a small “x”. All other faces are regular. We remark that fc and fo
are not necessarily distinct. We further distinguish two types of simple cycles. If the
central face lies in the interior of a simple cycle, the cycle is essential and otherwise
non-essential.

In this paper, we assume that we are given G, a fixed combinatorial embedding E
of G and two (not necessarily distinct) faces fc and fo of E . We seek an ortho-radial
drawing � of G such that the combinatorial embedding of � is E , the face fc is the
central face of � and fo is the outer face of �. We call the tuple I = (G, E, fc, fo)
an instance of ortho-radial graph drawing and � a drawing of I .

We observe that the definition of ortho-radial drawings allows edges to have bends,
i.e., an edge may consist of a sequence of straight-line segments and circular arcs. In
this paper, we focus on ortho-radial drawings without bends; we call such drawings
bend-free. Hence, each edge is either part of a radial ray or of a concentric circle
of G. This is not a restriction as any ortho-radial drawing can be turned into a bend-
free drawing by replacing bends with subdivision vertices; see Sect. 10 for a detailed
discussion.

In a bend-free ortho-radial drawing of G each edge has a geometric direction in the
sense that is drawn either clockwise, counterclockwise, towards the center, or away
from the center. Hence, using the metaphor of a cylinder, the edges point right, left,
down, or up, respectively. Moreover, horizontal edges point left or right, while vertical
edges point up or down; see Fig. 1.

We further observe that if the central and outer face are identical then an ortho-radial
drawing can be interpreted as a distorted orthogonal drawing, in which the horizontal
edges are bent to circular arcs, while the vertical edges remain straight segments; see
Fig. 3 for an example. Hence, utilizing the framework for orthogonal drawings by
Tamassia [31], this allows us to easily create an ortho-radial drawing of an instance I
for the case that the central face fc and the outer face fo are the same. Therefore, we
assume fc �= fo in the remainder of this work, which changes the problem of finding
an ortho-radial drawing of I substantially.
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Fig. 4 A combinatorial embedding (left) and an ortho-radial drawing (right) of a graph. For each combi-
natorial angle a rotation is given. Refer to the online version of this article for colored figures

We first introduce concepts that help us to combinatorially describe the ortho-radial
drawing �. Let v be a vertex of G and let E(v) be the counterclockwise order of the
edges in E around v. A combinatorial angle at v is a pair of edges (e1, e2) that are both
incident to v and such that e1 immediately precedes e2 in E(v); see Fig. 4. An angle
assignment � of an instance I = (G, E, fc, fo) assigns to each combinatorial angle
(e1, e2) of E a rotation rot (e1, e2) ∈ {−2,−1, 0, 1}. For an ortho-radial drawing �

of I we can derive an angle assignment that defines rot (e1, e2) = 2 − 2α/π for each
angle (e1, e2) at v, where α is the counterclockwise geometric angle between e1 and e2
in �. Hence, the rotation of a combinatorial angle counts the number of right turns
that are taken when going from e1 to e2 via v, where negative numbers correspond to
left turns; see Fig. 4. In particular, when traversing the boundary of a face such that the
face lies to the right, then we perform two left turns at a degree-1 vertex. Hence, in case
that e1 = e2 we derive rot (e1, e2) = −2 from �, i.e., v contributes two left turns. But
conversely, we cannot derive an ortho-radial drawing from every angle assignment.

For a face f of E with facial walk v1 . . . vk around f (where f is oriented in
clockwise order) we define rot( f ) = ∑k

i=1 rot (vi−1vi , vivi+1), where we define
v0 := vk and vk+1 := v1. Every angle assignment � that is derived from a bend-free
ortho-radial drawing is locally consistent in the following sense [21].

Definition 3.1 An angle assignment is locally consistent if it satisfies the following
two conditions.

(i) For each vertex, the sum of the rotations around v is 2(deg(v) − 2).
(ii) For each face f , we have

rot( f ) =

⎧
⎪⎨

⎪⎩

4, f is a regular face,

0, f is the outer or the central face but not both,

−4, f is both the outer and the central face.

Unlike for orthogonal representations, conditions (i) and (ii) do not guarantee that
for a locally consistent angle assignment of I there is an ortho-radial drawing of I
having the same angles; see Fig. 5. In this paper, we introduce a third more global
condition that characterizes all locally consistent angle assignments of I that can
be drawn. To that end, we first introduce basic concepts on rotations and directions
in locally consistent angle assignments in Sect. 3.1, which leads us to ortho-radial
representations. Afterwards, we define this global condition in Sect. 3.2.
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e
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e e

Fig. 5 Illustration of an ortho-radial representation where the angles around vertices sum up to 2π , and
also the sum of angles for each face is as expected for an ortho-radial drawing. However, the graph does
not have an ortho-radial drawing without bends as illustrated on a cylinder (left) and an ortho-radial grid
(right)
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Fig. 6 Generalization of rotations. a The rotation of the two edges e1 = uv and e2 = vw is rot(uvw) =
∑3

i=1 1 − 2(4 − 2) = −1. b The rotation of the path P is rot(P) = −1 + 1 − 1 − 1 + 1 + 1 = 0

3.1 Ortho-Radial Representations

We transfer two basic properties of ortho-radial drawings to locally consistent angle
assignments. First, the rotations of all cycles are either 0 or 4. Second, fixing the
geometric direction of a single edge e�, fixes the geometric directions of all edges. We
call e� a reference edge and assume that it points to the right and lies on the outer face
of E .
Definition 3.2 An ortho-radial representation is a locally consistent angle assignment
with a reference edge e� on the outer face such that the outer face lies to the left of e�.

For two edges e = uv and e′ = vwwedefine the rotation between them as rot(uvw) =∑k−1
i=1 rot (ei , ei+1) − 2(k − 2), where e = e1, . . . , ek = e′ are the edges that are

incident to v and lie between e and e′ in counterclockwise order; see Fig. 6a.
The rotation of a path P = v1 . . . vk is the sumof the rotations at its internal vertices,

that is rot(P) = ∑k−1
i=2 rot (vi−1vivi+1); see Fig. 6 (b).

Observation 3.3 Let P be a path with start vertex s and end vertex t .

• It is rot(�P) = − rot(P).
• For every edge e on P it is rot(P) = rot(P[s, e]) + rot(P[e, t]).
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Fig. 7 Illustration for proof of Lemma 3.5. Cycle C with two additional edges ab and cd. If a lies in the
exterior of C then ra = +2 and otherwise ra = −2. Similarly, if d lies in the exterior of C then rd = +2
and rd = −2 otherwise

Similarly, for a cycleC = v1 . . . vk , its rotation is the sum of the rotations at all its ver-
tices (where we define v0 = vk and vk+1 = v1), i.e., rot(C) = ∑k

i=1 rot(vi−1vivi+1).
We observe that the rotation of a face f is equal to the rotation of the cycle that we
obtain from the facial walk around f .

Lemma 3.4 Let C be a simple cycle in an ortho-radial representation �. Then,
rot(C) = 0 if C is essential and rot(C) = 4 if C is non-essential.

Proof Let H be the sub-graph of G that is contained in the interior of C ; we note
that C belongs to H . Let nH , mH , and fH denote the number of vertices, edges and
faces of H , respectively. Let �′ be the angle assignment that coincides with � on all
angles in the interior of C and has rot�′(uvw) = rot�(uvw) for any three consecutive
vertices along C . By construction, �′ satisfies property (i) and therefore the sum R of
all rotations is R = ∑

v∈V 2(deg(v) − 2) = 4(mH − nH ) = 4( fH − 2) by Euler’s
formula.

If C is essential, then fH − 2 interior faces contribute a rotation of 4 each and the
central face contributes a rotation of 0, leaving a rotation of 0 for the outer face. If C
is non-essential, then the fH − 1 interior faces contribute a rotation of 4 each, leaving
a rotation of −4 for the outer face. Since C is oriented clockwise while the outer face
is oriented counterclockwise, rot(C) = 4 follows. ��

The next lemma relates the rotations of two paths S and T that use the same edges
except on a cycle C ; see Fig. 7.

Lemma 3.5 Let C be a cycle and let ab and cd be two edges (with b �= c) such
that b and c lie on C, but a and d do not. Further, let S = ab + C[b, c] + cd and
T = ab + �C[b, c] + cd. Then

rot(S) − rot(T ) = rot(C) + ra + rd ,

where for z ∈ {a, d} we define rz = +2 if z lies in the interior of C and rz = −2 if z
lies in the exterior of C.

Proof Let t and s be the vertices immediately before and after b on C . We observe
that a lies in the interior of C if and only if ab lies locally to the right of the path sbt .
Considering all six cases how the edges ab, sb, and tb can be arranged (see Fig. 8),
we obtain rot(abs) − rot(abt) = rot(tbs) + ra . Similarly, we define s′ and t ′ as the
vertices immediately before and after c on C . Considering all cases as above we get
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Fig. 8 Illustration for proof of Lemma 3.5. In all six cases it holds rot(abs) − rot(abt) = rot(tbs) + ra

rot(s′cd) − rot(t ′cd) = rot(s′ct ′) + rd . Splitting S and T into three parts (see Fig. 7),
we have

rot(S) − rot(T ) = rot(abs) + rot (C[b, c]) + rot(s′cd) − rot(abt)

− rot (�C[b, c]) − rot(t ′cd).

Combining the rotations at b and c using the observations from above, we get

rot(S) − rot(T ) = rot(tbs) + ra + rot (C[b, c]) + rot (C[c, b]) + rot(s′ct ′) + rd
= rot(C) + ra + rd .

��
For two edges e and e′ let P be an arbitrary simple path that starts at the source or

target of e and ends at the source or target of e′, and that neither contains e nor e′. We
call P a reference path from e to e′. We define the combinatorial direction of e′ = xy
with respect to e = uv and P as

dir (e, P, e′) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

rot (e + P + e′) P starts at v and ends at x,

rot (�e + P + e′) + 2 P starts at u and ends at x,

rot (e + P + �e′) − 2 P starts at v and ends at y,

rot (�e + P + �e′) P starts at u and ends at y.

With the fixed direction of the reference edge e�, it is natural to determine the direction
of any other edge e by considering the direction of any reference path from e� to e.
In order to get consistent results, any two reference paths P and Q from e� to e must
induce the same direction of e, which means that dir (e�, P, e) and dir (e�, Q, e) may
only differ by a multiple of 4. In the following lemma we show that this is indeed the
case.

Lemma 3.6 Let e and e′ be two edges of an ortho-radial representation �, and let P
and Q be two reference paths from e to e′.
• It holds dir (e, P, e′) ≡ dir (e, Q, e′) (mod 4).
• It holds dir (e, P, e′) = dir (e, Q, e′), if there are two essential cycles C and C ′
such that
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Fig. 9 Illustration of the proof for Lemma 3.6. a The edges e and e′ are replaced by the depicted construction
to reduce the number of cases to be considered. b Four cases are considered how the edges e and e′ can be
connected by the path S. The paths S1 and S2 are defined depending on the particular case

(a) C ′ lies in the interior of C,
(b) e lies on C and e′ lies on C ′, and
(c) P and Q lie in the interior of C and in the exterior of C ′.

Proof First, we define a construction that helps us to reduce the number of cases to be
considered.We subdivide e by a vertex u into two edges e1 and e2; see Fig. 9a. Further,
we add a path consisting of two edges e3 and e4 such that the target of e4 is u. We
define that rot(e3e4) = 1 and rot(e4e2) = −1. Similarly, we subdivide e′ by a vertex
v into two edges e′

1 and e′
2. Further, we add a path consisting of two edges e′

3 and e′
4

such that the source of e′
3 is v. We define that rot(e′

1e
′
3) = 1 and rot(e′

3e
′
4) = −1. Let S

be a reference path from e to e′; see Fig. 9b. Let S1 be the path that starts at the source
of e3 and ends at the starting point of S only using edges from {e1, e2, e3, e4}. Further,
let S2 be the path that starts at the end point of S and ends at the target of e′

4 only
using edges from {e′

1, e
′
2, e

′
3, e

′
4}. The extension S′ of S is the path S1 + S + S2. The

following claim shows that we can consider S′ instead of S such that it is sufficient to
consider the rotation of S′ instead of the direction dir (e, S, e′), which distinguishes
four cases.

Claim 3.7 dir (e, S, e′) = rot(S′).

The detailed proof of Claim 3.7 is found at the end of this proof. In the following let
P ′ and Q′ be the extensions of P and Q, respectively.We show that rot(P ′) ≡ rot(Q′)
(mod 4). Moreover, for the case that e coincides with the reference edge e� and e′ lies
on an essential cycle that is respected by P and Q, we show that rot(P ′) = rot(Q′).
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Fig. 10 Illustration for proof of Lemma 3.6. The path Ri (gray) consists of a prefix of the path P ′ (orange)
and a suffix of the path Q′ (blue)

Altogether, due to Claim 3.7 this proves Lemma 3.6. We show rot(P ′) = rot(Q′) by
converting P ′ into Q′ successively. More precisely, we construct paths R1 . . . Rk such
that Ri consists of a prefix of P ′ followed by a suffix of Q′ such that with increasing
i the used prefix of P ′ becomes longer, while the used suffix of Q′ becomes shorter.
In particular, we have R1 = Q′ and Rk = P ′. We show that rot(Ri ) ≡ rot(Ri+1)

(mod 4). If Ri �= P ′, we construct Ri+1 from Ri as follows; see Fig. 10.
There is a first edge vw on P ′ such that the following edge does not lie on Ri . Let

x be the first vertex on P ′ after w that lies on Ri and let y be the vertex on Ri that
follows x immediately. As both P ′ and Ri end at the same edge, these vertices always
exist. We define Ri+1 = P[e3, x]+ Ri [x, e′

4]. We observe that Ri [x, e′
4] = Q′[x, e′

4],
as Ri [w, e′

4] = Q′[w, e′
4] and x occurs on Q′ after w. Further, Ri+1 is a path as we

can argue as follows. We can decompose Ri+1 into three paths: R1
i+1 = P ′[e3, w] =

Ri [e3, w], R2
i+1 = P ′[w, x] and R3

i+1 = Q′[x, e′
4] = Ri [x, e′

4]. The paths R1
i+1

and R3
i+1 do not intersect as both also belong to Ri , which is a path by induction.

The paths R1
i+1 and R2

i+1 do not intersect (except at their common vertex w), because
both belong to P ′. The paths R2

i+1 and R3
i+1 do not intersect (except at their common

vertex x), because by the definition of x no vertex of P ′ between w and x lies on Ri .
Next, we show that rot (Ri ) ≡ rot(Ri+1) (mod 4). To that end consider the (ini-

tially undirected) cycle Ci that consists of the two paths Ri [w, x] and Ri+1[w, x].
We orient Ci such that the interior of the cycle locally lies to the right of its
edges. By the definition of Ri+1 we obtain rot (Ri [e3, vw]) = rot (Ri+1[e3, vw])
and rot (Ri [xy, e′

4]) = rot (Ri+1[xy, e′
4]), as these subpaths of Ri and Ri+i coincide,

respectively. Hence, it remains to show that rot (Ri [vw, xy]) ≡ rot (Ri+1[vw, xy])
(mod 4) and rot (Ri [vw, xy]) = rot (Ri+1[vw, xy]) in the special case that e = e�

and e′ lies on an essential cycle that is respected by P and Q.
In general we can describe the obtained situation as follows. We are given a cycle

and two edges ab and cd (with b �= c) such that b and c lie on that cycle, but a and d
not; see also Fig. 7. Hence, we can apply Lemma 3.5.

We distinguish two cases: if the interior of Ci lies locally to the right of Ri we
define S = vw + Ri [w, x] + xy and T = vw + Ri+1[w, x] + xy, and otherwise
S = vw + Ri+1[w, x] + xy and T = vw + Ri [w, x] + xy. We only consider the
first case, as the other case is symmetric. By Lemma 3.5 we obtain rot(S)− rot(T ) =
rot(Ci ) + rv + ry . As rot(Ci ) ≡ 0 (mod 4) and rv, ry ≡ 2 (mod 4) we obtain
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rot(S) ≡ rot(T ) (mod4) andwith this rot (Ri [vw, xy]) ≡ rot (Ri+1[vw, xy]) (mod4).
Altogether, in the general case we obtain rot(Ri ) ≡ rot(Ri+1).

Finally, we prove the second statement of the lemma. Hence, there are two essential
cycles C and C ′ such that

• C ′ lies in the interior of C ,
• e lies on C and e′ lies on C ′, and
• P and Q lie in the interior of C and in the exterior of C ′.

In particular, the paths P and Q respect C ′ as they lie in the exterior of C ′. We show
that rot(S) = rot(T ). First, we observe that Ri [e, vw] respects the cycle Ci by the
simplicity of Ri and Ri+1. In particular, vw lies in the exterior of Ci so that rv = −2.
We distinguish the two cases whether Ci is essential or non-essential. If Ci is a non-
essential cycle, the edge xy is also contained in the exterior of Ci as P and Q end on
the essential cycleC ′, which both respect. Hence, we obtain ry = −2. Thus, we get by
Lemmas 3.4 and 3.5 that rot(S) − rot(T ) = rot(Ci ) + rv + ry = 4− 2− 2 = 0. If Ci

is an essential cycle, then the cycle C ′ is contained in the interior of Ci as both contain
the central face, and Ci is composed by parts of paths that respect C ′. Consequently,
the edge xy lies in the interior of Ci so that we obtain ry = 2. By Lemmas 3.4 and 3.5
we get rot(S) − rot(T ) = rot(Ci ) + rv + ry = 0 − 2 + 2 = 0. It remains to prove
Claim 3.7. ��
Proof of Claim 3.7 Wedistinguish the four cases given by the definition of dir (e, S, e′);
see Fig. 9b. If S starts at the target of e and ends at the source of e′, we obtain
dir (e, S, e′) = rot (e + S + e′) = rot (e2 + S + e′

1) as subdividing e and e′ transfers
the directions of e and e′ to e2 and e′

1, respectively. Hence, we obtain

rot(S′) = rot (S1 + S + S2)

= rot (e3 + e4 + e2 + S + e′
1 + e′

3 + e′
4)

= rot (e3 + e4 + e2) + rot (e2 + S + e′
1) + rot (e′

1 + e′
3 + e′

4)

= 0 + dir (e, S, e′) + 0 = dir (e, S, e′).

If S starts at the source of e and ends at the source of e′, we obtain dir (e, S, e′) =
rot (�e + S + e′) + 2 = rot (�e1 + S + e′

1) + 2 and with this we obtain

rot(S′) = rot (S1 + S + S2)

= rot (e3 + e4 + �e1 + S + e′
1 + e′

3 + e′
4)

= rot (e3 + e4 + �e1) + rot (�e1 + S + e′
1) + rot (e′

1 + e′
3 + e′

4)

= 2 + dir (e, S, e′) − 2 + 0 = dir (e, S, e′).

If S starts at the target of e and ends at the target of e′, we obtain dir (e, S, e′) =
rot (e + S + �e′) − 2 = rot (e2 + S + �e′

2) − 2 and with this we obtain

rot(S′) = rot (S1 + S + S2)

= rot (e3 + e4 + e2 + S + �e′
2 + e′

3 + e′
4)
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= rot (e3 + e4 + e2) + rot (e2 + S + �e′
2) + rot (�e′

2 + e′
3 + e′

4)

= 0 + dir (e, S, e′) + 2 − 2 = dir (e, S, e′).

If S starts at the source of e and ends at the target of e′, we obtain dir (e, S, e′) =
rot (�e + S + �e′) = rot (�e1 + S + �e′

2) and with this we obtain

rot(S′) = rot (S1 + S + S2)

= rot (e3 + e4 + �e1 + S + �e′
2 + e′

3 + e′
4)

= rot (e3 + e4 + �e1) + rot(�e1 + S + �e′
2) + rot (�e′

2 + e′
3 + e′

4)

= 2 + dir (e, S, e′) − 2 = dir (e, S, e′).

Altogether, this shows the claim dir (e, S, e′) = rot(S′). ��
Corollary 3.8 If e is the reference edge e� and e′ lies on an essential cycle that is
respected by P and Q, then dir (e, P, e′) = dir (e, Q, e′).

Proof The statement directly follows from the second statement of Lemma 3.6 by
assuming that C is the outermost essential cycle of � and C ′ is the cycle containing e′.

��
Using this result, the geometric directions of all edges of a given ortho-radial represen-
tation � can be determined as follows. Let P be any reference path from the reference
edge e� to any edge e, the edge e points right, down, left, and up if dir (e�, P, e) is
congruent to 0, 1, 2, and 3, respectively. Edges that point up or down are vertical
and edges that point left or right are horizontal. Lemma 3.6 ensures that the result
is independent of the choice of the reference path. In fact, Lemma 3.6 even gives a
stronger result as we can infer the geometric direction of one edge from the geometric
direction of another edge locally without having to resort to paths to the reference
edge. We often implicitly make use of this observation in our proofs.

3.2 Drawable Ortho-Radial Representations

In this section we introduce concepts that help us to characterize the ortho-radial
representations that have an ortho-radial drawing. To that end, consider an arbitrary
bend-free ortho-radial drawing � of a plane 4-graph G. As we assume throughout
this work that the outer and central face are not the same, there is an essential cycle
C that lies on the outer face f of �. Let e be a horizontal edge of C that points to
the right and that lies on the outermost circle of the ortho-radial grid among all such
edges, and let R� be the set of all edges e′ with dir (e, P, e′) = 0 for any path P on f ;
see Fig. 11. We observe that R� is independent of the choice of e, because if there are
multiple choices for e, then all of these edges are contained in R�. We call the edges
in R� the outlying edges of �. Note that not all outlying edges lie on the outermost
circle of �; consider for example the edge e′ in Fig. 11. Without loss of generality, we
require that the reference edge of the according ortho-radial representation � stems
from R�; as R� is not empty and all of the edges in R� are possible candidates for
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e′e
e′′

Fig. 11 The outer face of an ortho-radial drawing. All outlying edges are marked blue
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Fig. 12 a Two cycles C1 and C2 may have both common edges with different labels (�C1 (e) = 4 �= 0 =
�C2 (e)) and ones with equal labels (�C1 (e

′) = �C2 (e
′) = 0). bAll labels ofC1[v, w] are positive, implying

that C1 goes down. Note that not all edges of C1[v, w] point downwards

being a reference edge, we can always change the reference edge of � to one of the
edges in R�.

An ortho-radial representation � of a graph G with reference edge e� is drawable
if there exists a bend-free ortho-radial drawing � of G embedded as specified by �

such that the corresponding angles in � and � are equal and the edge e� is an outlying
edge, i.e., e� ∈ R�. Note that it is not required that e� lies on the outermost circle
of �. For example in Fig. 11 the edge e′ is a suitable reference edge, but there is no
drawing where e′ lies on the outermost circle. Rather, the requirement is that every
path along the outer face from e′ to an edge on the outermost circle has rotation 0.
Unlike for orthogonal representations, conditions (i) and (ii) do not guarantee that
the ortho-radial representation is drawable; see Fig. 5. Therefore, we introduce a third
condition, which is formulated in terms of labelings of essential cycles.

Let e be an edge on an essential cycle C in G and let P be a reference path
from the reference edge e� to e that respects C . We define the label of e on C as
�C (e) = dir (e�, P, e). By Corollary 3.8 the label �C (e) of e does not depend on the
choice of P . However, if an edge e is contained in two essential cycles C1 and C2,
then their labels may generally differ, i.e., �C1(e) �= �C2(e). In fact, Fig. 12 shows
that two cycles C1,C2 may share two edges e, e′ such that �C1(e) �= �C2(e) and
�C1(e

′) = �C2(e
′).

We call the set of all labels of an essential cycle its labeling.
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We call an essential cycle monotone if either all its labels are non-negative or all
its labels are non-positive. A monotone cycle is a decreasing cycle if it has at least
one strictly positive label, and it is an increasing cycle if it has at least one strictly
negative label. We also refer to increasing and decreasing cycles as strictly monotone.
An ortho-radial representation is valid if it contains no strictly monotone cycles. The
validity of an ortho-radial representation ensures that on each essential cycle with
at least one non-zero label there is at least one edge pointing up and one pointing
down. We note that whether an essential cycle is monotone crucially depends on the
reference edge. In Fig. 11 the cycle bounding the outer face is not monotone if e or e′
is the reference edge, but it is strictly monotone if e′′ is the reference edge.

A main goal of this paper is to show that a graph with a given ortho-radial repre-
sentation can be drawn if and only if the representation is valid. Further, we show how
to test validity of a given representation and how to obtain a bend-free ortho-radial
drawing from a valid ortho-radial representation in quadratic time. Altogether, this
yields our main results:

Theorem 3.9 An ortho-radial representation is drawable if and only if it is valid.

Theorem 3.10 Given an ortho-radial representation �, it can be determined inØ(n2)
time whether� is valid. In the negative case a strictly monotone cycle can be computed
in Ø(n2) time.

Theorem 3.11 Given a valid ortho-radial representation, a corresponding drawing
can be constructed in Ø(n2) time.

Weprove the three theorems in the given order. Sections4–6 deal with Theorem 3.9.
In Sect. 7we prove Theorem 3.10. In particular, together with the proof of Theorem 3.9
this already leads to a version of Theorem 3.11, but with a running time of Ø(n4). In
Sect. 9 we show how to achieve Ø(n2) running time proving Theorem 3.11.

4 Transformations of Ortho-Radial Representations

In this section we introduce helpful tools that we use throughout this work. In the
remainder of this work we assume that we are given an ortho-radial representation �

with reference edge e�.
Since the reference edge lies on an essential cycle by definition, we can compute

the labelings of essential cycles via the rotation of paths as shown in the following
lemma. This simplifies the arguments of our proofs.

Lemma 4.1 For every edge e on an essential cycle C there is a reference path P from
e� to e such that P respects C, starts at the target of e� and ends on the source of e.
Moreover, �C (e) = rot (e� + P + e).

Proof Let Q be a reference path from the reference edge e� = rs to e = tu respecting
C . We construct the desired reference path P as follows. Let C ′ be the outermost
essential cycle, i.e., C ′ is the unique essential cycle such that every edge of C ′ bounds
the outer face. If C and C ′ have a common vertex, we define v to be the first common
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Fig. 13 Illustration of proof for Lemma 4.1. The outermost cycle C ′ contains the essential cycle C . There
is always a reference path from s on C ′ to t on C respecting C . a The cycles C and C ′ have vertices in
common. b The cycles C and C ′ are disjoint
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Fig. 14 Illustration of proof for Lemma 4.2. The outermost cycleCo contains the essential cycleC . Further,
there is a reference path P from e� to an edge e on C . a The path P contains the edge e��. b The path P
does not contain the edge e��

vertex onC ′ after s; see Fig. 13a.We set P = C ′[s, v]+C[v, t]. By the choice of v this
concatenation is a path. Moreover, it is a reference path from e� to e that respects C . If
C andC ′ are disjoint, let v be the first vertex of Q lying onC and letw be the last vertex
of Q before v that lies on C ′; see Fig. 13b. We set P = C ′[s, w] + Q[w, v] +C[v, t].
We observe that the concatenation P is a path by the choice of v and w, and that P is
a reference path from e� to e respecting C .

By Corollary 3.8 we have �C (e) = dir (e�, P, e) since P is a reference path from
e� to e respecting C . Further, since P starts at the target s of the reference edge
e� and ends at the source t of the edge e, we can express the direction of P as
dir (e�, P, e) = rot (e� + P + e). ��
Thenext lemma showshowwecan change the reference edge e� on the unique essential
cycle Co whose edges are all incident to the outer face; Fig. 14 illustrates the lemma.

Lemma 4.2 Let � be an ortho-radial representation and let e� be the reference edge
of �. Further, let Co be the essential cycle that lies on the outer face and let e�� be
an edge on Co such that rot (Co[e�, e��]) = 0. For every edge e on an essential cycle
C of � it holds �C (e) = �C (e), where �C is the labeling of C with respect to e��. In
particular, � with reference edge e� is valid if and only if � with reference edge e�� is
valid.
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(a) Flipping the cylinder.

c c

(b) The ortho-radial drawing before and after flipping

Fig. 15 Illustration of flipping the cylinder

Proof Let e be an edge of an essential cycle C in � and let P be a reference path from
e� to e. By Lemma 4.1 we assume that P starts at the target of e� and ends at the
source of e. Without loss of generality we assume that only a prefix of P is part of Co.
Further, let e� = st and e�� = s′t ′.

If P contains e��, then

�C (e) = rot (e� + P + e) = rot (e� + P[t, e��]) + rot (e�� + P ′ + e),

where P ′ is the suffix of P that starts at t ′; see Fig. 14a. By assumption
rot (e� + P[t, e��]) = 0 and �C (e) = rot (e�� + P ′ + e).

If P does not contain e��, then Co[t ′, e�] + P is a reference path of e with respect
to e��, which contains e�; see Fig. 14b. Swapping e� and e�� in the argument of the
previous case yields the claim. Note that rot (Co[e��, e�]) = 0 as rot(Co) = 0. ��

In our arguments we frequently exploit certain symmetries. For an ortho-radial rep-
resentation � we introduce two new ortho-radial representations, its flip flip(�) and
its mirror mirror(�). Geometrically, viewed as a drawing on a cylinder, a flip corre-
sponds to rotating the cylinder by an angle of π around a line perpendicular to the
axis of the cylinder so that is upside down, see Fig. 15, whereas mirroring corresponds
to mirroring it at a plane that is parallel to the axis of the cylinder; see Fig. 16. Intu-
itively, the first transformation exchanges left/right and top/bottom, and thus preserves
monotonicity of cycles, while the second transformation exchanges left/right but not
top/bottom, and thus maps increasing cycles to decreasing ones and vice versa. This
intuition indeed holds with the correct definitions of flip(�) and mirror(�), but due
to the non-locality of the validity condition for ortho-radial representations and the
dependence on a reference edge this requires some care. The following two lemmas
formalize flipped and mirrored ortho-radial representations. We denote the reverse of
a directed edge e by�e.

To define flip(�) it is necessary that the cycle bounding the central face fc contains
an edge e�� with � fc(e

��) = 0. In particular, such an edge exists if the cycle bounding
the central face is not strictlymonotone.We choose �e�� as the reference edge of flip(�).
The central face of� becomes the outer face of flip(�) and the outer face of� becomes
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Fig. 16 Mirroring the cylinder

the central face of flip(�). All other information of � is transferred to flip(�) without
modification.

Lemma 4.3 (Flipping) Let � be an ortho-radial representation with outer face fo and
central face fc. If the cycle bounding the central face is not strictly monotone, then
flip(�) is an ortho-radial representation such that

(i) �fc is the outer face of flip(�) and �fo is the central face of flip(�),
(ii) �

f
�C (�e) = �C (e) for all essential cycles C and edges e on C, where � f is the labeling

in ��.
In particular, increasing and decreasing cycles of � correspond to increasing and
decreasing cycles of flip(�), respectively.

Proof As the local structure is unchanged, flip(�) is an ortho-radial representation.
The essential cycles in � bijectively correspond to the essential cycles in flip(�) by
reversing the direction of the cycles. That is, any essential cycle C in � corresponds
to the cycle �C in flip(�). Note that the reversal is necessary since we always consider
essential cycles to be directed such that the center lies in its interior, which is defined
as the area locally to the right of the cycle.

Consider any essential cycle C in �. We denote the labeling of C in � by �C and
the labeling of �C in flip(�) by �

f
�C . We show that for any edge e on C , �C (e) = �

f
�C (�e),

which in particular implies that any monotone cycle in � corresponds to a monotone
cycle in �� and vice versa. By Lemma 4.1 there is a reference path P from the target
of e� to the source of the edge e respecting C . Similarly, there is a path Q from the
target of e to the source of e�� that lies in the interior of C . The path �Q is a reference
path from e�� to�e respecting �C in flip(�).

Assume for now that P + e + Q is simple. We shall see at the end how the proof
can be extended if this is not the case. By the choice of e��, we have

0 = � fc (e
��) = rot (e� + P + e + Q + e��) = rot (e� + P + e) + rot (e + Q + e��).

(1)

123



Discrete & Computational Geometry

e��

e�

e
C

P

Q

(a)

e�

xC C ′ x ′

(b)

Fig. 17 Illustration of proof for Lemma 4.3. a The path P is a reference path from e� to e in � respecting
C and the path Q is a reference path from e�� to�e in flip(�) respecting �C . b The edge e is subdivided by
a vertex x . Afterwards, G is cut at C such that the interior and the exterior get their own copies of C . The
copies are connected by an edge between x and x ′

Hence, rot (e� + P + e) = − rot (e + Q + e��) = rot ( �e�� + �Q +�e) and in total

�
f
�C (�e) = rot ( �e�� + �Q +�e) = rot (e� + P + e) = �C (e). (2)

Thus, any monotone cycle in � corresponds to a monotone cycle in flip(�) and vice
versa.

If P + e + Q is not simple, we make it simple by cutting G at C such that the
interior and the exterior of C get their own copies of C ; see Fig. 17. We connect the
two parts by an edge between two new vertices x and x ′ on the two copies of e, which
we denote by vw in the exterior part and v′w′ in the interior part. The new edge is
placed perpendicular to these copies. The path P + vxx ′w′ + Q is simple and its
rotation is 0. Hence, the argument above implies �

f
�C (�e) = �C (e). ��

We define mirror(�) as follows. We reverse the direction of all faces and reverse
the order of the edges around each vertex. The outer and central face are equal to
those in � (except for the directions) and the reference edge is �e�. By this definition
(e1, e2) is a combinatorial angle in � if and only if (�e2,�e1) is a combinatorial angle in
mirror(�). We define rotmirror(�)(�e2,�e1) = rot�(e1, e2), where the subscript indicates
the ortho-radial representation that defines the rotation. Thus, edges that point left in
� point right in mirror(�) and vice versa, but the edges that point up (down) in � also
point up (down) in mirror(�).

Lemma 4.4 (Mirroring) Let � be an ortho-radial representation with outer face fo
and central face fc. Then, mirror(�) is an ortho-radial representation such that

(i) �fo is the outer face of mirror(�) and �fc is the central face of mirror(�),
(ii) �m�C (�e) = −�C (e) for all essential cycles C and edges e on C, where �m is the

labeling in mirror(�).

In particular, increasing and decreasing cycles of � correspond to decreasing and
increasing cycles of mirror(�), respectively.
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Fig. 18 Illustration of proof for Lemma 5.2. The essential cycles C1 and C2 intersect each other having a
common vertex v. The essential cycle C bounds the central face of H

Proof Note that the construction of mirror(�) satisfies the conditions for ortho-radial
representations. Let e = tu be an edge on an essential cycleC and let P be a reference
path from e� = rs to e that respects C ; by Lemma 4.1 we assume that P starts
at s and ends at t . After mirroring, P still is a reference path from e� to e, but its
rotation in mirror(�) may be different from its rotation in �. As above, to distinguish
the directions and rotations of paths in mirror(�) from the ones in �, we include
mirror(�) and � as subscripts to rot and dir .

As P starts at s and ends at t we have by definition

dir�(e�, P, e) = rot�(e� + P + e),

dirmirror(�)(�e�, P,�e) = rotmirror(�)(e
� + P + e).

As for any path Q we have rot�(Q) = − rotmirror(�)(Q), we obtain
dirmirror(�)(�e�, P,�e) = − dir�(e�, P, e). By the definition of labels as directions of
reference pathswedirectly obtain that �m�C (�e) = −�C (e). In particular, ifC is increasing

(decreasing) in �, then �C is decreasing (increasing) in mirror(�). ��

5 Properties of Labelings

In this section we study the properties of labelings in more detail to derive useful
tools for proving Theorem 3.9. Throughout this section, we are given an instance
(G, E, fc, fo) with an ortho-radial representation � and a reference edge e�. The
following observation follows immediately from the definition of labels and the fact
that the rotation of any essential cycle is 0.

Observation 5.1 Let C be an essential cycle. Then, for any two edges e and e′ on C,
it holds that rot (C[e, e′]) = �C (e′) − �C (e).

The rest of this section is devoted to understanding the relationship between label-
ings of essential cycles that share vertices or edges. The following technical lemma is
a key tool in this respect; see also Fig. 18.

Lemma 5.2 LetC1 andC2 be two essential cycles and let H = C1+C2 be the subgraph
of G formed by C1 and C2. Let v be a common vertex of C1 and C2 that is incident
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to the central face of H. For i = 1, 2, let further ui and wi be the vertices preceding
and succeeding v on Ci , respectively. Then �C1(vw1) = �C1(u1v) + rot(u1vw1) =
�C2(u2v) + rot(u2vw1). Moreover, if w1 = w2, then �C1(vw1) = �C2(vw2).

Proof By Observation 5.1 it holds that �C1(vw1) = �C1(u1v) + rot(u1vw1).
Let C be the cycle that bounds the central face of H . First assume that the edge

vw1 is incident to the central face of H . Every reference path that respects C1 also
respects C . Hence,

�C (vw1) = �C1(vw1).

Therefore, our goal is to show �C (vw1) = �C2(u2v) + rot(u2vw1).
Let P be a reference path from the reference edge rs to u2v respecting C2. By

Lemma 4.1 we assume that P starts at the target of the reference edge. Further, we
assume that P contains either u2 or v but not both.

Let x be the first vertex of P that lies onC2. If x �= v, then Q = P[s, x]+C2[x, u2]
is a reference path for u2v that respectsC2 and does not contain v. Then, Q′ = Q+u2v
is a reference path for vw1 respecting C . Hence,

�C (vw1) = rot (e� + Q′ + vw1) = rot (e� + Q + u2v) + rot(u2vw1)

= �C2(u2v) + rot(u2vw1).

Now assume that x = v. Let Q = P[s, v] and let y be the vertex before v on Q.
The vertex y lies strictly in the exterior of C2 and thus not on C . In particular, y �= w1.

By local consistency we get

rot(yvu2) + rot(u2vw1) + rot(w1vy) = 2.

Since Q respects C2 and thus also C , we find

�C2(u2v) = rot (e� + Q + vu2) − 2 = rot (e� + Q) + rot(yvu2) − 2,

�C (vw1) = rot (e� + Q + vw1) = rot (e� + Q) + rot(yvw1).

Subtracting the first equation from the second we get

�C (vw1) − �C2(u2v) = rot(yvw1) − rot(yvu2) + 2

= − rot(w1vy) − rot(yvu2) + 2

= rot(u2vw1),

where the last step uses the equation obtained by local consistency.
If vw1 does not lie on C , then the edge vw2 does. By swapping the roles of C1

and C2 and using the same argument as above, we obtain

�C1(u1v) + rot(u1vw2) = �C2(u2v) + rot(u2vw2).
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Fig. 19 Illustration of proof for Proposition 5.4. All edges of C2 are labeled with 0. In this situation there
are edges on C1 with labels −1 and 1. Hence, C2 is neither increasing nor decreasing

Since vw1 lies locally to the left of both u1vw2 and u2vw2, it is rot(uivw1) =
rot(uivw2) − α for i = 1, 2 and the same constant α, which is either 1 or 2. Hence,
we get

�C1(vw1) = �C1(u1v) + rot(u1vw1) = �C1(u1v) + rot(u1vw2) − α

= �C2(u2v) + rot(u2vw2) − α = �C2(u2v) + rot(u2vw1).

Finally, ifw1 = w2, i.e., vw1 lies on both C1 and C2, then �C1(vw1) = �C2(u2v)+
rot(u2vw1) = �C2(u2v) + rot(u2vw2) = �C2(vw2). ��
Corollary 5.3 Let C1 and C2 be two essential cycles, let H = C1+C2 be the subgraph
of G formed by C1 and C2, and let e be an edge that lies on both C1 and C2 and that
is incident to the central face of H. Then �C1(e) = �C2(e).

This allows us to prove an important criterion to exclude strictly monotone cycles.
We call an essential cycle C horizontal if �C (e) = 0 for all edge e of C . We show that
a strictly monotone cycle and a horizontal cycle cannot share vertices.

Proposition 5.4 Let C2 be a horizontal cycle and let C1 be an essential cycle that
shares at least one vertex with C2. Then C1 is not strictly monotone.

Proof The situation is illustrated in Fig. 19.
If the two cycles are equal, the claim clearly holds. Otherwise, we show that one

can find two edges on C1 whose labels have opposite signs.
Let v be a shared vertex of C1 and C2 that is incident to the central face f of

H = C1 + C2 and such that the edge vw1 on C is not incident to f . For i = 1, 2
denote by ui and wi the vertex preceding and succeeding v on Ci , respectively. By
Lemma 5.2 it is

�C1(vw1) = �C2(u2v) + rot(u2vw1) = rot(u2vw1), (3)

where the second equality follows from the assumption that �C2(u2v) = 0.
Let y be the first common vertex of C1 and C2 on the central face f after v. That is,

f [v, y] is a part of one of the cycles C1 and C2, and it intersects the other cycle only
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at v and y. For i = 1, 2, we denote by xi and zi the vertices preceding and succeeding
y on Ci . Again by Lemma 5.2 (this time swapping the roles of C1 and C2), we have

0 = �C2(yz2) = �C1(x1y) + rot(x1yz2). (4)

Overall, we have �C1(vw1) = rot(u2vw1) and �C1(x1y) = − rot(x1yz2).
By construction vw1 and x1y lie on the same side of C2. Hence, u2vw1 and x1yz2

both make a right turn if vw1 and x1y lie in the interior of C2 and a left turn otherwise.
Thus, it is rot(u2vw1) = rot(x1yz2) �= 0, and therefore �C1(vw1) and �C1(x1y) have
opposite signs. Hence, C1 is not strictly monotone. ��

In many cases we cannot assume that one of two essential cycles sharing a vertex is
horizontal. However, we can still draw conclusions about their intersection behavior
from their labelings and find conditions under which shared edges have the same label
on both cycles.

Intuitively, positive labels can often be interpreted as going downwards and negative
labels as going upwards. In Fig. 12b all edges of C1[v,w] have positive labels and in
total the distance from the center decreases along this path, i.e., the distance of v from
the center is greater than the distance of w from the center. Yet, the edges on C1[v,w]
point in all possible directions—even upwards. One can still interpret a maximal path
with positive labels as leading downwards with the caveat that this is a property of
the whole path and does not impose any restriction on the directions of the individual
edges.

Using this intuition, we expect that a path P going down cannot intersect a path Q
going up if P starts below Q. In Lemma 5.5, we show that this assumption is correct
if we restrict ourselves to intersections on the central face.

Lemma 5.5 Let C1 and C2 be two simple, essential cycles in G sharing at least one
vertex. Let H = C1 + C2, and denote the central face of H by f . Let v be a vertex
that is shared by C1 and C2 that is incident to f and, for i = 1, 2, let ui and wi be
the vertices preceding and succeeding v on Ci , respectively.

(i) If �C1(u1v) ≥ 0 and �C2(u2v) ≤ 0, then u2v lies in the interior of C1.
(ii) If �C1(vw1) ≥ 0 and �C2(vw2) ≤ 0, then vw2 lies in the exterior of C1.

Proof The second case follows from the first by taking the mirror representation; this
reverses the order on the cycles and changes the sign of each label by Lemma 4.4, but
does not change the notion of interior and exterior. It therefore suffices to consider the
first case.

Since the central face f lies in the interior of both C1 and C2 and v lies on the
boundaryof f , oneof the edgesvw1 andvw2 is incident to f .Wedenote this edgebyvx
and it is either x = w1 (as in Fig. 20a) or x = w2. By Lemma 5.2, we have �C1(u1v)+
rot(u1vx) = �C2(u2v) + rot(u2vx). Applying �C1(u1v) ≥ 0 and �C2(u2v) ≤ 0, we
obtain rot(u1vx) ≤ rot(u2vx). Therefore, u2v lies to the right of or on u1vx and thus
in the interior of C1. ��

The next lemma is a direct consequence of Lemma 5.5 when applied to decreasing
and increasing cycles.

123



Discrete & Computational Geometry

v

C1
C2

u1

w1

u2

w2

≤ 0≥ 0

(a)
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w2

≤ 0 ≥ 0
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Fig. 20 Possible intersection of two cycles C and C ′ at v. a The labels of the incoming edges satisfy �C1
(u1v) ≥ 0 and �C2 (u2v) ≤ 0. The edges vw1 and vw2 could be exchanged. b The labels of the outgoing
edges satisfy �C1 (vw1) ≥ 0 and �C2 (vw2) ≤ 0. The edges u1v and u2v could be exchanged

C2

P

v

w
C1

x

Fig. 21 Illustration of proof for Lemma 5.6. The cycle C1 is increasing and the cycle C2 is decreasing.
The edge of C2 ending at v strictly lies in the exterior of C1 and the edge of C2 starting at w strictly lies in
the interior of C1. Hence, the edge of C2 ending at x strictly lies in the interior of C1, which contradicts
Lemma 5.5

Lemma 5.6 A decreasing and an increasing cycle do not have any common vertex.

Proof For an illustration see Fig. 21. LetC1 be an increasing andC2 a decreasing cycle.
Assume that they have a common vertex. But then there also is a common vertex on
the central face f of the subgraph C1 + C2. Consider any maximal common path P
of C1 and C2 on f . We denote the start vertex of P by v and the end vertex by w.
Note that v may equal w. By Lemma 5.5 the edge to v on the decreasing cycle C2 lies
strictly in the exterior of C1, where the strictness follows from the maximality of P .
Similarly, the edge from w on C2 lies strictly in the interior of C1. Hence, C2[w, v]
crosses C1. Let x be the first intersection of C1 and C2 on f after w. Then the edge to
x on C2 lies strictly in the interior of C1, contradicting Lemma 5.5. ��

For the correctness proof in Sect. 7, a crucial insight is that for essential cycles
using an edge that is part of a regular face, we can find an alternative cycle without
this edge in a way that preserves labels on the common subpath.

Lemma 5.7 If an edge e belongs to both a simple essential cycle C and a regular
face f , then there exists a simple essential cycle C ′ that can be decomposed into two
paths P and Q such that

(i) P or �P lies on f ,
(ii) Q = C ∩ C ′, and
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Fig. 22 The edge e cannot lie on both the outer and the central face. In both cases C ′ can be subdivided in
two paths P and Q on C and f , respectively. Here, these paths are separated by the vertices a and b. a The
cycle bounding the outer face is C ′. The edge e does not lie on the outer face, and hence the cycle bounding
this face is defined as C ′. b The cycle bounding the central face is C ′

(iii) �C (e) = �C ′(e) for all edges e on Q.

Proof Consider the graph H = C + f composed of the essential cycle C and the
regular face f . Since e is incident to f , the edge e cannot lie on both the outer and
the central face in H . If e does not lie on the outer face, we define C ′ as the cycle
bounding the outer face but directed such that it contains the center in its interior; see
Fig. 22a. Otherwise, C ′ denotes the cycle bounding the central face; see Fig. 22b.

SinceC lies in the exterior of f , the intersection ofC withC ′ forms one contiguous
path Q. Setting P = C ′ − Q yields a path that lies completely on f (it is possible
though that P and f are directed differently).

By the construction of C ′ the edges of Q are incident to the central face of C +C ′.
Then Lemma 5.2 implies that �C (e) = �C ′(e) for all edges e of Q. ��

The last lemma of this section shows that we can replace single edges of an essential
cycle C with complex paths without changing the labels of the remaining edges on C .

Lemma 5.8 Let C be an essential cycle in an ortho-radial representation � and let
uv be an edge of C. Consider an ortho-radial representation �′ that is created by
replacing uv with a path P such that the interior vertices of P do not belong to �,
i.e., they are newly inserted vertices in �′. If the cycle C ′ = C[v, u] + P is essential,
then the labels of C and C ′ coincide on C[v, u] (=C ′[v, u]).
Proof For an illustration of the proof see Fig. 23. Let e = xy be an arbitrary edge on
C[v, u] and let R be a reference path from the reference edge e� to e that respects
C . We first construct a new reference path R′ that does not contain uv as follows.
Let w be the first vertex of R that lies on C . If C[w, x] does not contain e, we define
R′ = R−R[w, x]+C[w, x] and otherwise R′ = R−R[w, x]+�C[w, y]. We observe
that R′ is again a reference path of e that respects C . Further, it can be partitioned
into a prefix that only consists of edges that do not belong to C and a suffix that only
consists of edges that belong to C[v, u].

We now show that R′ is a reference path of e in �′ that respects C ′. As R′ does
not use uv, it is still contained in �′ and hence it is a reference path of e. So assume
that R′ does not respect C ′. Hence, R′ and C ′ have a vertex z in common such that
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Fig. 23 Illustration of the proof for Lemma 5.8. The reference path R′ (green) for the edge xy is constructed
based on the reference path R. Replacing the edge uv with a path P , does not impact R′, which implies
that the label of xy remains the same

the outgoing edge e′ of R′ at z strictly lies in the interior of C ′. As R′ respects C , this
vertex lies on P . It cannot be an intermediate vertex of P , because these are newly
inserted in �′. Hence, z is either u or v and thus part of C[v, u]. In particular, it occurs
on R′ after w, which implies that e′ belongs to C . This contradicts that e′ strictly lies
in the interior of C ′. Altogether, this shows that R′ is a reference path of e both in �

and �′ such that C and C ′ are respected. Consequently, �C (e) = �C ′(e). ��

6 Characterization of Rectangular Ortho-Radial Representations

Throughout this section, assume that I = (G, E, fc, fo) is an instance with an ortho-
radial representation � and a reference edge e�. We prove Theorem 3.9 for the case
that � is rectangular. In a rectangular ortho-radial representation the central face and
the outer face are horizontal cycles, and every regular face is a rectangle, i.e., it has
exactly four right turns, but no left turns.

We first observe that a bend-free ortho-radial drawing � can be described by an
angle assignment together with the lengths of its vertical edges and the angles of the
circular arcs representing the horizontal edges; we call the angles of the circular arcs
central angles. We define two flow networks that assign consistent lengths and central
angles to the vertical edges and horizontal edges, respectively. These networks are
straightforward adaptions of the networks used for drawing rectangular graphs in the
plane [34]. In the following, vertex and edge refer to the vertices and edges of G,
whereas node and arc are used for the flow networks.

The network Nver = (Fver, Aver) contains one node for each face of G except for
the central and the outer face. All nodes have a demand of 0. For each vertical edge e
in G, which we assume to be directed upwards, there is an arc ae = f g in Nver, where
f is the face to the left of e and g the one to its right. The flow on f g has the lower
bound l( f g) = 1 and upper bound u( f g) = ∞. An example of this flow network is
shown in Fig. 24a.

Similarly, the network Nhor = (Fhor, Ahor) assigns the central angles of the hor-
izontal edges. There is a node for each face of G, and an arc ae = f g for every
horizontal edge e in G such that f lies locally below e and g lies locally above e.
Additionally, Nhor includes one arc from the outer to the central face. Again, all edges
require a minimum flow of 1 and have infinite capacity. The demand of all nodes is 0.
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(a) Nver
(b) Nhor

Fig. 24 Flow networks Nver and Nhor (blue arcs) for an example graph G (black edges)

Figure24b shows an example of such a flow network. Valid flows in these two flow
networks then yield an ortho-radial drawing of �.

Lemma 6.1 A pair of valid flows in Nhor and Nver corresponds to a bend-free ortho-
radial drawing of � and vice versa.

Proof Given a bend-free ortho-radial drawing � of �, we can extract flows in the two
networks. For each vertical edge e we set the flow ϕver(ae) of the corresponding arc
ae to le/lmin, where le is the length of e in � and lmin is the length of the shortest
edge in �. With the scaling, we ensure that the flow of each arc is at least 1. Similarly,
for the horizontal edges we assign to each arc ae of each horizontal edge e the flow
ϕhor(ae) = αe/αmin, where αe is the central angle of e in � and αmin is the smallest
central angle of any horizontal edge in �. Again, the scaling ensures that each arc has
flow at least 1. Since the opposing vertical sides of the regular faces have the same
lengths and the opposing horizontal sides of the regular faces have the same central
angles, the flow is preserved at all nodes.

Conversely, given feasible flows in the flow networks, we construct a corresponding
drawing by interpreting the flow values in ϕver as edge lengths, and the flow values
in ϕhor as central angles. The flow conversation ensures that opposing sides have the
same lengths (vertical edges) and same central angles (horizontal edges), respectively.
To obtain a drawing, we normalize the central angles so that the total flow on the back
edge of Nhor is 2π . To prove that this works, we reduce it to the orthogonal case by
cutting performing a straight-line cut from the central face to the outer face.

First observe that if there exists a path P of only vertical edges that runs from a
vertex incident to the central face to a vertex incident to the outer face, then we can
split this path into a left copy Pl and a right copy Pr as in Fig. 25a. Then the resulting
flow corresponds to an orthogonal drawing (on the standard grid). However, since
for each edge e of G its copies on Pl and Pr have the same lengths, this orthogonal
drawing can be merged into an ortho-radial drawing.
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Fig. 25 Illustration of proof of Lemma 6.1. a The ortho-radial representation is cut along the vertical path
that goes from the center to the outer face. b The path P ends at a face at vertex v. The face is divided into
two sub-faces

We now show that, if G does not contain such a path, then we can augment G so it
contains one. Let P be the maximum length path of only upward edges that starts at a
vertex incident to the central face. Assume P ends at a vertex v and that has no edge
pointing upward; see Fig. 25b. Since � is rectangular, the vertex v then has left and
right-pointing edges, and we denote by f the face between them. By assumption f is
not the outer face and it is therefore regular. Let B be the right-ward path that bounds
the bottom side of f ; we denote the first vertex of B by b1. We observe that v lies
on B. Let φB = ∑

e∈B[b1,v] ϕhor(ae) denote the sum of the flow values of Nhor on
the arcs that correspond to edges of B[b1, v], where ae denotes the arc of e in Nhor.
Consider now the right-ward path T = t1, . . . , tk that bounds the top side of f . Let i
be the smallest index such that φT = ∑

e∈T [t1,ti ] ϕhor(ae) ≥ φB . If φB = φT , then we
add to � the vertical edge vti , thereby splitting f into a left fl and a right face fr. We
then reconnect the incoming arcs of f before v to fl and the incoming arcs after v

to fr. Similarly, we reconnect the outgoing arcs of f before ti to fl and the outgoing
arcs of f after ti to fr. Observe that, by construction, we have flow conservation at fl
and fr and we have extended the maximum length of an outward path from the central
face.

Now assume φB < φT . In that case, we add a subdivision vertex t ′ on the edge
ti−1ti . We then add the edge vt ′, thereby again splitting the face f into a left face fl
and a right face fr. As before, we reconnect the incoming arcs before v to fl and
the incoming arcs after v to fr. The outgoing edges of f that correspond to an edge
of T [t1, ti−1]we simply reconnect to fl and similarly, we reconnect the outgoing edges
of f that correspond to an edge of T [ti , tk] to fr. The flow on the outgoing edge f g
that corresponds to ti−1ti , we split on the two edges flg and frg in such a way that the
total outflow of fl is φB . Observe that this yields again a valid flow in the augmented
flow network. Thus also in this case, we have extended the maximum length of an
outward path from the central face. Observe further that a drawing of the modified
ortho-radial representation �′ contains a drawing of �. It follows that � is drawable.

��
Using this correspondence of drawings and feasible flows, we show the character-

ization of rectangular graphs.
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Fig. 26 The path P from s to v—constructed backwards by going only up or left—does not intersect the
interior of C . The rotations of the edges on P relative to e� are 0 or 1

Theorem 6.2 Let � be a rectangular ortho-radial representation and let Nhor =
(Fhor, Ahor) and Nver = (Fver, Aver) be the flow networks as defined above. The
following statements are equivalent:

(i) � is drawable.
(ii) � is valid.
(iii) For every subset S ⊆ Fver such that there is an arc from Fver \ S to S in Nver, there

is also an arc from S to Fver \ S.

Proof “(i)⇒ (ii)”: Let � be a bend-free ortho-radial drawing of G preserving the
embedding described by � and let C be an essential cycle. Our goal is to show that C
is not strictly monotone. To this end, we construct a path P from the reference edge of
� to a vertex onC such that either the labeling ofC induced by P attains both positive
and negative values or it is 0 everywhere.

In � either all vertices of C lie on the same concentric circle, or there is a maximal
subpath Q of C whose vertices all have maximum distance to the center of the ortho-
radial grid among all vertices of C . In the first case, we may choose the endpoint v of
the path P arbitrarily, whereas in the second case we select the first vertex of Q as v;
for an example see Fig. 26.

We construct the path P backwards (i.e., the construction yields �P) as follows:
Starting at v we choose the edge going upwards from v, if it exists, or the one leading
left. Since all faces of � are rectangles, at least one of these always exists. This
procedure is repeated until the target s of the reference edge is reached.

To show that this algorithm terminates, we assume that this was not the case. As G
is finite, there must be a first time a vertexw is visited twice. Hence, there is a cycleC ′
in � containing w that contains only edges going left or up. As all drawable essential
cycles with edges leading upwards must also have edges that go down [21], all edges
of C ′ are horizontal. By construction, there is no edge incident to a vertex of C ′ that
leads upwards. The only cycle with this property, however, is the one enclosing the
outer face because G is connected. But this cycle contains the reference edge, and
therefore the algorithm halts.

This not only shows that the construction of P ends, but also that P is a path (i.e.,
the construction does not visit a vertex twice). Thus, P is a reference path from the
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C

C ′

Fig. 27 A set S of nodes in a graph G such that Nver[S] has no outgoing but two incoming arcs a and a′.
The set of faces S corresponding to the nodes in S are shaded with blue. The outermost boundary of S
forms an increasing cycle C . The edges on this cycle with label −1 are exactly those that are crossed by a
or a′. All other edges on C are labeled with 0. Note that the edge on C at the bottom is curved because G
does not admit an ortho-radial drawing

reference edge e� to the edge vv′, where v′ is the vertex following v on C . Further, P
respects C as �P starts at the outermost circle of the ortho-radial grid that is used by C
and as by construction all edges of �P point left or upwards.

By the construction of P , the label of vv′ induced by P is 0. If all edges of C are
horizontal, this implies �C (e) = 0 for all edges e of C , which shows that C is not
strictly monotone. Otherwise, we claim that the edges e− = uv and e+ = wx directly
before and after Q onC have labels−1 and+1, respectively. Since all edges on Q are
horizontal and e− goes down, we have rot (C[v, x]) = 1 and therefore �C (e+) = 1.
Similarly, rot(uvv′) = 1 implies that �C (uv) = �C (vv′) − rot(uvv′) = −1.

“(ii)⇒ (iii)”: Instead of proving this implication directly, we show the contraposi-
tive. That is, we assume that there is a set S � Fver of nodes in Nver such that S has
no outgoing but at least one incoming arc. From this assumption we derive that � is
not valid, as we find a strictly monotone cycle.

Let Nver[S] denote the node-induced subgraph of Nver induced by the set S.Without
loss of generality, S can be chosen such that Nver[S] is weakly connected, i.e., the
underlying undirected graph is connected. If Nver is not weakly connected, at least one
weakly-connected component of Nver[S] possesses an incoming arc but no outgoing
arc, and we can work with this component instead.

As each node of S corresponds to a face ofG, S can also be considered as a collection
of faces of G. To distinguish the two interpretations of S, we refer to this collection
of faces by S. Our goal is to show that the innermost or the outermost boundary of S
forms a strictly monotone cycle in �.

Figure 27 shows an example of such a set S of nodes. Here, the arcs a and a′ lead
from a node outside of S to one in S. These arcs cross edges on the outer boundary of
S, which point upwards.

Let F be the set of faces of E (including the central and outer face). Let Z be a
connected component ofF \S such that there exists an arc from Z to S in Nver and let
C be the cycle in G that separates Z from S. If C were non-essential, then rot(C) = 4
and C would therefore contain an upward and a downward edge. One of these edges
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would correspond to an incoming arc of S and the other edge to an outgoing arc of S,
contradicting the choice of S. Thus, C is essential.

As usual we consider C in clockwise direction. We may assume without loss of
generality thatC contains S in its interior; otherwise, we consider flip(�) and �C . Note
that for each edge of C the face locally to the right belongs to S whereas the face
locally to the left does not. Hence, upward edges of C correspond to incoming arcs of
S and downward edges to outgoing arcs. Since there is an arc from Z to S but not vice
versa, the cycle C contains at least one upward but no downward edge. Hence, there
is some integer k such that all labels of C belong to Lk = {4k, 4k + 1, 4k + 2}. Since
the numbers in Lk are either all non-negative (if k ≥ 0) or all negative (if k < 0), the
cycle C is monotone. Moreover, C is not horizontal because it has an upward edge.

“(iii)⇒ (i)”: By Lemma 6.1 the existence of a drawing is equivalent to the existence
of feasible flows in Nhor and Nver. If a flow network N contains for each arc a a cycle
Ca that contains a, then routing one unit flow along each of these cyclesCa and adding
all flows gives a circulation in N where at least one unit flows along each arc. Hence,
it suffices to prove that in Nhor and in Nver each arc is contained in a cycle.

Note that Nhor without the arc from the outer face g to the central face f is a directed
acyclic graph with f as its only source and g as its only sink. For each arc a �= g f in
Nhor there is a directed path Pa from f to g via a. Adding the arc g f , we obtain the
cycle Ca = Pa + g f .

For Nver we consider an arc a = f g, and we define the set Sg of all nodes h for
which there exists a directed path from g to h in Nver. By definition, there is no arc
from a vertex in Sg to a vertex not in Sg . As Nver satisfies (iii), Sg does not have any
incoming arcs either. Hence, f ∈ Sg and there is a directed path Pa from g to f . Then
Ca = Pa + f g is the desired cycle. ��

By [21] the angle assignment defined by an ortho-radial drawing of a graph is
locally consistent (in the sense of Definition 3.1). Therefore, Theorem 6.2 implies the
characterization of ortho-radial drawings for rectangular graphs.

Corollary 6.3 (Theorem 3.9 for Rectangular Ortho-Radial Representations) A rectan-
gular ortho-radial representation is drawable if and only if it is valid.

We note that we can construct the flows in Nhor and Nver using standard techniques
based on flows in planar graphs with multiple sinks and sources [25]. With this a

drawing can be computed in Ø(n
3
2 ) time.

7 Drawable Representations of Planar 4-Graphs

In the previous section we proved that a rectangular ortho-radial representation is
drawable if and only if it is valid. We extend this result to general ortho-radial repre-
sentations by reduction to the rectangular case. In Sect. 7.1 we present a procedure that
augments a given instance such that all faces become rectangles. For readability we
defer some of the proofs to Sect. 7.2. In Sect. 7.3 we use the rectangulation procedure
and Corollary 6.3 to showTheorem 3.9.We remark that all our proofs are constructive,
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Fig. 28 Examples of augmentations. a The candidate edges of u are e1, e2 and e3. b Insertion of vertical
edge uz. c �u

e1 contains a decreasing cycle. d �u
e2 is valid. e Insertion of horizontal edge uwi because there

is a horizontal path from wi to u

but make use of tests whether certain modified ortho-radial representations are valid.
We develop an efficient testing algorithm for this in Sect. 8.

7.1 Rectangulation Procedure

Throughout this section, we are given an instance I = (G, E, fc, fo) with a valid
ortho-radial representation � and a reference edge e�. The core of the argument is a
rectangulation procedure that successively augments G with new vertices and edges
to a graph G ′ along with a valid rectangular ortho-radial representation �′. Then, �′ is
drawable by Corollary 6.3, and removing the augmented parts yields a drawing of �.

The rectangulation procedure works by augmenting non-rectangular faces one by
one, thereby successively removing concave angles at the vertices until all faces are
rectangles. Traversing the boundary of a face in clockwise direction yields a sequence
of left and right turns, where a degree-1 vertex contributes two left turns. Note that
concave angles correspond exactly to left turns in this sequence. Consider a face f
with a left turn (i.e., a concave angle) at u such that the following two turns when
walking along f (in clockwise direction) are right turns; see Fig. 28. We call u a port
of f . We define a set of candidate edges (or just candidates) that contains precisely
those edges vw of f , for which rot ( f [u, vw]) = 2; see Fig. 28a. We treat this set
as a sequence, where the edges appear in the same order as in f , beginning with the
first candidate after u. The augmentation �u

vw with respect to a candidate edge vw is
obtained by splitting the edge vw into the edges vz and zw, where z is a new vertex,
and adding the edge uz in the interior of f such that the angle formed by zu and the
edge following u on f is π/2. The direction of the new edge uz in �u

vw is the same for
all candidate edges. If this direction is vertical, we call u a vertical port and otherwise
a horizontal port. We note that any vertex with a concave angle in a face becomes a
port during the augmentation process. For regular faces Tamassia [31] shows that they
always contain a port.Moreover, the following observation can be proven analogously.

Observation 7.1 If u is a port of a face f and vw is a candidate edge for u, then �u
vw

is an ortho-radial representation.

123



Discrete & Computational Geometry

v

u

w

s

r

x y

C ′′

C ′

Fig. 29 The outer and the central face are rectangulated by adding cycles of length 3. The cycleC ′ is conne-
cted to an arbitrary edge xy that has label 0 andC ′′ is connected to a new vertex on the old reference edge rs.
The edge uv is selected as the new reference edge

However, an augmentation�u
vw is not necessarily valid.Weprove thatwe can always

find an augmentation that is valid. The crucial ingredient is the following proposition.

Proposition 7.2 Let G be a planar 4-graph with valid ortho-radial representation �,
let f be a regular face of G and let u be a port of f with candidate edges e1 =
v1w1, . . . , ek = vkwk . Then the following facts hold:

1. If u is a vertical port, then �u
e1 is a valid ortho-radial representation; see Fig.28b.

2. If u is a horizontal port, then �u
e1 does not contain an increasing cycle and �u

ek
does not contain a decreasing cycle; see Fig.28c, d.

3. Let Pi be the maximal path in � that contains the vertex wi of the candidate edge
ei = viwi and that consists of only horizontal edges. If u is a horizontal port
and �u

ei contains a decreasing cycle and �u
ei+1

contains an increasing cycle, then
u is an endpoint of Pi and adding the horizontal edge uz to the other endpoint z
of Pi yields a horizontal cycle; see Fig.28e. In particular, � + uz is valid.

To increase the readability we split the proof of Proposition 7.2 into the separate
Lemmas 7.3–7.7, which we defer to Sect. 7.2.

We are now ready describe the rectangulation procedure. Let G be a planar 4-graph
with valid ortho-radial representation �. Without loss of generality, we can assume
that G is connected, otherwise we can treat the connected components separately. We
further insert triangles in both the central and outer face and suitably connect these to
the original graph; see Fig. 29. Namely, for the central face g we identify an edge e
on the simple cycle C bounding g such that �C (e) = 0. Since � is valid and C is an
essential cycle, such an edge exists. We then insert a new cycle C ′ of length 3 inside
g and connect one of its vertices to a new vertex on e. The new cycle C ′ now forms
the boundary of the central face. Analogously, we insert into the outer face a cycle Co

of length 3 which contains G and is connected to the reference edge e�. We choose
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an arbitrary edge e�� on Co as new reference edge. We observe that there is a path P
from e�� to e� with rotation 0. Hence, each reference path from e� to an essential cycle
in � can be extended by P such that the new path is a reference path with respect to
e�� and has the same rotation.

After this preprocessing any face f that is not a rectangle is regular, and it therefore
contains a port u. If any of the candidate augmentations�u

ei is valid, then�u
ei has fewer

concave corners than �, and we continue the augmentation procedure with �u
ei . On the

other hand, if none of these augmentations is valid, then each �u
ei contains a strictly

monotone cycle. Let i be the smallest index such that �u
ei contains an increasing cycle

and note that such an index i exists and that i > 1 by property 2 of Proposition 7.2.
Then, by definition of i , �u

ei−1
contains a decreasing cycle and �u

ei contains an increas-
ing cycle. But then property 3 of Proposition 7.2 guarantees the existence of a vertex z
such that � + uz is valid and has fewer concave corners than �. Using this procedure
we can iteratively augment � to a rectangular ortho-radial representation that contains
a subdivision of the ortho-radial representation �.

7.2 Proof of Proposition 7.2

Throughout this section, we assume that we are in the situation described by Propo-
sition 7.2. That is, G is a planar 4-graph with valid ortho-radial representation �,
and u is a port of a regular face f with candidate edges e1 = v1w1, . . . , ek = vkwk .
After possibly replacing � with flip(�), we may assume that the edge uz resulting
from an augmentation with a candidate is directed to the right or up. By Lemma 4.3
there is a one-to-one correspondence between increasing (decreasing) cycles in � and
increasing (decreasing) cycles in flip(�).

Lemma 7.3 If u is a vertical port, then �u
e1 is a valid ortho-radial representation.

Proof Assume for the sake of contradiction that�u
e1 contains a strictly monotone cycle

C . As � is valid, C must contain the new edge uz in either direction (i.e., uz or zu).
Let f ′ be the new rectangular face of G + uz containing u, v1 and z, and consider the
subgraph H = C + f ′ of G + uz. According to Lemma 5.7 there exists an essential
cycle C ′ that does not contain uz. Moreover, C ′ can be decomposed into paths P and
Q such that P lies on f ′ and Q is a part of C ; see Fig. 30.

The goal is to show that C ′ is increasing or decreasing. We present a proof only for
the case that C is an increasing cycle. The proof for decreasing cycles can be obtained
by flipping all inequalities.

For each edge e on Q the labels �C (e) and �C ′(e) are equal by Lemma 5.7, and
hence �C ′(e) ≤ 0. For an edge e of P , there are two possible cases: e either lies on
the side of f ′ parallel to uz or on one of the two other sides. In the first case, the label
of e is equal to the label �C (uz) (�C (zu) if C contains zu instead of uz). In particular
the label is negative.

In the second case, we first note that �C ′(e) is even, since e points left or right.
Assume that �C ′(e) was positive and therefore at least 2. Then, let e′ be the first edge
on C ′ after e that points to a different direction. Such an edge exists, since otherwise
C ′ would be an essential cycle whose edges all point to the right, but they are not
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C,C ′

C,C
′

w1

f ′
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Q

u

ze1v1

CC ′

Fig. 30 Illustration of proof for Lemma 7.3. In this illustration it is assumed that inserting the edge uz into
a valid ortho-radial representation creates an increasing cycle C that uses uz. However, then there is cycle
C ′ not using uz that is also increasing

labeled with 0. This edge e′ lies on Q or is parallel to uz. Hence, the argument above
implies that �C ′(e′) ≤ 0. However, �C ′(e′) differs from �C ′(e) by at most 1, which
requires �C ′(e′) ≥ 1. Therefore, �C ′(e) cannot be positive.

We conclude that all edges of C ′ have a non-positive label. If all labels were 0, C
would not be an increasing cycle by Proposition 5.4. Thus, there exists an edge on C ′
with a negative label and C ′ is an increasing cycle in �. But as � is valid, such a cycle
does not exist, and therefore C does not exist either. Hence, �u

e1 is valid. ��
Lemma 7.4 If u is a horizontal port, then �u

e1 contains no increasing cycle.

Proof Let f ′ be the new rectangular face of �u
e1 containing u, v1 and z, and assume

for the sake of contradiction that there is an increasing cycle C in �u
e1 . This cycle must

use either uz or zu. Similar to the proof of Lemma 7.3, we find an increasing cycle C ′
in �, contradicting the validity of �.

Applying Lemma 5.7 to C and f ′ yields an essential cycle C ′ without uz and zu
that can be decomposed into a path P on f ′ and a path Q ⊆ C \ f ′ such that all edges
of Q have non-positive labels. We show in the following that the edges of P also have
non-positive labels.

IfC contains uz, there are three possibilities for an edge e of P , which are illustrated
in Fig. 31: The edge e lies on the left side of f ′ and points up, e is parallel to uz,
or e = v1z. In the first case �C ′(e) = �C (uz) − 1 < 0 and in the second case
�C ′(e) = �C (uz) ≤ 0. If e = v1z, C cannot contain zv1 and therefore zw1 ∈ C . Then,
�C ′(e) = �C (zw1) < 0. In all three cases the label of e is at most 0.

If C contains zu, the label of zu has to leave a remainder of 2 when it is divided by
4 since zu points to the left. As the label is also at most 0, we conclude �C (zu) ≤ −2.
The edges of P lie either on the left, top or right of f ′. Therefore, the label of any
edge e on P differs by at most 1 from �C (zu), and thus we get �C ′(e) ≤ 0.

Summarizing the results above, we see that all edges on C ′ are labeled with non-
positive numbers. The case that all labels ofC ′ are equal to 0 can be excluded, since C
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Fig. 31 The increasing cycle C contains uz. There are three possibilities for edges on C ′ that lie not on C :
They lie on the left side of f ′ (like e1), on the top (like e2), or on the right side formed by only the edge v1z
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Fig. 32 The situation in the proof of Lemma 7.5. The cycleC is decreasing and it is assumed that �C ′ (xy) <

0. a The decomposition of C ′ into P and Q. b The reference paths R and C ′[b, x] from ab to xy

would not be an increasing cycle by Proposition 5.4. Hence, C ′ is an increasing cycle,
which was already present in �, contradicting the validity of �. ��
Lemma 7.5 If u is a horizontal port, then �u

ek contains no decreasing cycle.

Proof Let uz be the new edge inserted in �u
ek . In �u

ek , the face f is split in two parts.
Let f ′ be the face containing vk and f ′′ the one containing wk . Assume for the sake
of contradiction that there is a decreasing cycle C in �u

ek . Then, either uz or zu lies
on C . By Lemma 5.7 there exists an essential cycle C ′ that can be decomposed into
a path P on f ′′ and Q = C ∩ C ′; see Fig. 32a. For all edges e of Q, we have
�C (e) = �C ′(e) ≥ 0 by Lemma 5.7. Since C ′ is already present in � and � is valid,
C ′ cannot be decreasing. Moreover, since C and C ′ intersect, C ′ cannot be horizontal
by Proposition 5.4. Therefore, C ′ must contain an edge xy with �C ′(xy) < 0, which
hence has to lie on P .

Our goal is to show that there must be a candidate on f after y and in particular
after the last candidate ek—a contradiction. The following claim gives a sufficient
condition for the existence of such a candidate.
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Claim 7.6 If rot ( f [u, yx]) ≤ 2, then there is a candidate on f [yx, u].
To prove Claim 7.6, we determine for each edge e on f the value r(e) :=

rot ( f [u, e]). By assumption, it is r(yx) ≤ 2. For the last edge elast on f [yx, u] it
is r(elast) = rot( f ) − rot(tuv) = 5, where t and v are the preceding and succeeding
vertices of u on f , respectively. Here, we use that f is a regular face (i.e., rot( f ) = 4)
and rot(tuv) = −1 since u is a port.

Note that for two consecutive edges e, e′ on the boundary of f , it is r(e′) ≤ r(e)+1.
Therefore, there exists an edge e that lies between yx and elast on the boundary of f
that satisfies r(e) = 2. Hence, e is a candidate that lies after yx on the boundary of f .
This finishes the proof of Claim 7.6.

To finish the proof of the lemma it hence suffices to show that rot ( f [u, yx]) ≤ 2.
As ek is a candidate, we have rot ( f [u, zwk]) = 2 and therefore

rot ( f [u, yx]) = rot ( f [u, zwk]) + rot ( f [zwk, yx]) = rot ( f [zwk, yx]) + 2.

Thus, it suffices to show rot ( f [zwk, yx]) ≤ 0.
We present a detailed argument for the case that C uses uz as illustrated in Fig. 32.

At the end of the proof, we briefly outline how the argument can be adapted if C uses
zu.

If C uses uz, then P is directed such that f ′′ lies to the left of P . Thus, C ′ lies
in the interior of C . Let now ab be the last edge of Q, and let R be the path defined
by C[b, uz] + f [zwk, y]; see Fig. 32b. Both R and C ′[b, x] are reference paths from
ab to xy that lie in the interior of C and in the exterior of C ′. Applying the second
statement of Lemma 3.6 hence gives

dir (ab, R, xy) = dir (ab,C ′[b, x], xy). (5)

The direction along R is defined as

dir (ab, R, xy) = rot (ab + R + yx) − 2

= rot (ab + C[b, uz] + f [zwk, y] + yx) − 2

= rot (C[ab, uz] + f [zwk, yx]) − 2

= rot (C[ab, uz]) + rot(uzwk) + rot ( f [zwk, yx]) − 2

= �C (uz) − �C (ab) + rot ( f [zwk, yx]) − 1.

The last step uses rot (C[ab, uz]) = �C (uz) − �C (ab) and rot(uzwk) = 1.
The rotation along C ′[b, x] is defined as

dir (ab,C ′[b, x], xy) = rot (ab + C ′[b, x] + xy)

= rot (C ′[ab, xy])
= �C ′(xy) − �C ′(ab)

= �C ′(xy) − �C (ab).
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Fig. 33 Three possibilities how the path between w and v′ can look like: a w = v′, b all edges point right,
and c all edges point left. In the first two cases the edge uw is inserted and in c uv′ is added

The last step uses that �C (ab) = �C ′(ab) by Lemma 5.7. Altogether, we obtain

�C (uz) − �C (ab) + rot ( f [zwk, yx]) − 1 = �C ′(xy) − �C (ab),

which can be rearranged to

rot ( f [zwk, yx]) = �C ′(xy) − �C (uz) + 1.

With �C ′(xy) ≤ −1 and �C (uz) ≥ 0 we obtain rot ( f [zwk, yx]) ≤ 0. This completes
the proof for the case that uz lies on C .

If zu lies on C , we consider the flipped representation flip(�u
ek ). In flip(�u

ek ) the

cycle �C is decreasing and contains the edge uz. The cycle �C ′ is not decreasing and
contains the edge yx with label �

f
�C ′(yx) = �C ′(xy) < 0. Moreover, the cycle �C

contains �C ′ in its interior. Thus, the argument above can be applied to �C , �C ′, and yx
instead of C,C ′, and xy. ��
Lemma 7.7 Let Pi be the maximal path that contains the vertex wi of the candidate
edge ei = viwi and that consists of only horizontal edges. If u is a horizontal port
and �u

ei contains a decreasing cycle and �u
ei+1

contains an increasing cycle, then u
is an endpoint of Pi and adding the horizontal edge uz to the other endpoint z of Pi
yields a horizontal cycle. In particular, � + uz is valid.

Proof Figure 33 illustrates three possibilities of the path. Let zi be the new vertex
inserted in �u

ei and zi+1 the one in �u
ei+1

. Since both uzi and uzi+1 point to the right,
there is no augmentation of � containing both edges. We compare �u

ei and �u
ei+1

by the
following construction (see also Fig. 34), which models all important aspects of both
representations: Starting from � we insert new vertices zi on ei and zi+1 on ei+1. We
connect u and zi by a path of length 2 that points to the right and denote its internal
vertex by x . Furthermore, a path of length 2 from x via a new vertex y to zi+1 is
added. The edge xy points down and yzi+1 to the right. In the resulting ortho-radial
representation �̃ the edge uzi in �u

ei is modeled by the path uxzi . Similarly, the edge
uzi+1 in �u

ei+1
is modeled by the path uxyzi+1 in �̃.

Take any decreasing cycle in �u
ei . As � is valid, this cycle must contain either uzi

or zi u. We obtain a cycle C1 in �̃ by replacing uzi with uxzi (or zi u with zi xu). Note
that ux and xzi have the same label as uzi , and the labels of all other edges on the
cycles stay the same by Lemma 5.8. Therefore, C1 is a decreasing cycle.
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Fig. 34 Illustration of proof for Lemma 7.7. a �u
ei is obtained by inserting the edge uzi into �. b �u

ei+1
is

obtained by inserting the edge uzi+1 into �. c �̃ is obtained by combining �u
ei and �u

ei+1

Similarly, there exists an increasing cycle in �u
ei+1

, which contains uzi+1 or zi+1u.

Replacing uzi+1 with uxyzi+1 (or zi+1u with zi+1yxu) we get a cycle C2 in �̃. By
Lemma 5.8 the labels of C2 are non-positive outside of uxyzi+1 (or zi+1yxu) and
there is an edge with negative label. Consequently, the only edge of C2 that may have
a positive label is the edge e between x and y. Since C1 and C2 intersect, Lemma 5.6
implies that C2 is not increasing. Thus, the label of e is positive. If e = yx , then e
points upwards. Hence, �C2(e) ≡ 3 mod 4, which implies that �C2(e) ≥ 3. Thus, its
succeeding edge has a positive label as well contradicting that e is the only edge on
C2 with a positive label. Hence, the cycle C2 contains the edge xy and consequently
the edge ux .

Using this construction we show that one endpoint of Pi is u and the other is another
vertex of f . To that end, we prove the following claims.

Claim 7.8 The cycles C1 and C2 both contain the edge ux and it is �C1(ux) =
�C2(ux) = 0.

Claim 7.9 The vertices wi and vi+1 have a degree of at least 2. Further, C1 contains
wi and C2 contains vi+1.

Claim 7.10 The edges of f [wi , vi+1] are part of Pi . In particular, C2 contains wi or
C1 contains vi+1.

Claim 7.11 The right endpoint of Pi is u and the left endpoint z lies on f .

Using these claims we prove the lemma as follows. Due to Claim 7.11 we can insert
the horizontal edge uz into� obtaining a horizontal cycle Pi +uz. The resulting ortho-
radial representation is valid, because any strictly monotone cycle necessarily contains
uz and hence shares a vertex with a horizontal cycle, contradicting Lemma 5.4. This
finishes the proof. In the following we prove the claims.

Claim 7.8. Let H = C1 +C2 be the graph formed by the two cycles C1 and C2 and
let f̃ be its central face. We first show that ux is incident to f̃ . If all edges of f̃ belong
to one of the two cycles, say C1, then f̃ = C1 since C1 is simple. Thus, ux is incident
to f̃ . Otherwise, there is an edge e of C2 \ C1 on f̃ whose source v lies on C1; see

123



Discrete & Computational Geometry

C1

C2v

x1

x2

f̃

u

x
e

Fig. 35 Illustration of proof for Claim 7.8 of Lemma 7.7

Fig. 35. Let x1 and x2 be the succeeding vertices of v on C1 and C2, respectively. As
C1 is a decreasing cycle, we have �C1(vx1) ≥ 0. If �C2(vx2) ≤ 0, then by Lemma 5.5
the edge e = vx2 lies in the exterior of C1, which contradicts the choice of e. Hence,
we have �C2(vx2) > 0, which implies that e = xy. Further, the cyclic order of the
vertex x implies that ux is the predecessor of xy on the central face.

Since C2 contains ux , the central face f̃ lies to the right of ux . Since C1 is also
directed such that f̃ lies to the right of C1, it cannot contain xu, but it contains ux . By
Lemma 5.2 we further obtain that �C1(ux) = �C2(ux) = 0.

Claim 7.9. We consider the setting in �̃; see Fig. 34c. From Claim 7.8 we obtain
�C1(xzi ) = 0. Consequently, since C1 is a decreasing cycle and since rot(xziwi ) = 1
and rot(xzivi ) = −1, the cycle contains the edge ziwi but not the edge zivi . In
particular, this implies that wi has a degree of at least 2, as otherwise C1 would not
be simple. Similarly, from Claim 7.8 we obtain �C1(yzi+1) = 0. Consequently, since
C2 has only non-positive labels except on xy and since rot(xzi+1vi+1) = −1 and
rot(xzi+1wi+1) = 1, the cycle contains the edge zi+1vi+1 but not the edge zi+1wi+1.
In particular, this implies that vi+1 has a degree of at least 2, as otherwise C2 would
not be simple.

Claim 7.10. Let es be the direct successor of ei and let ep be the direct predecessor
of ei+1 on the boundary of f . In order to show the claim, we do a case distinction on
the rotations rot(ei , es) and rot(ep, ei+1). From Claim 7.9 it follows that rot(ei , es) ∈
{−1, 0, 1} and rot(ep, ei+1) ∈ {−1, 0, 1}. Further, it cannot be both rot(ei , e f ) = 1
and rot(ep, ei+1) = 1. Otherwise, since rot ( f [u, ei ]) = 2 and rot ( f [u, ei+1]) = 2,
it would hold rot ( f [u, es]) = 3 and rot ( f [u, ep]) = 1. In that case, there would be a
further candidate edge e with rot ( f [u, e]) = 2 between ei and ei+1. Thus, we obtain
rot (ei , es) ∈ {−1, 0} or rot (ep, ei+1) ∈ {−1, 0},

First, assume that rot (ei , es) = 0. We obtain es = ei+1 and hence ep = ei . Other-
wise, es would be a candidate edge between ei and ei+1. Consequently, f [wi , vi+1],
which consist of the single vertex v = wi = vi+1, trivially belongs to Pi . Moreover,
by Claim 7.8 the cycle C2 then also contains wi and C1 contains vi+1. The very same
argument can be applied for rot (ep, ei+1) = 0, as we also obtain es = ei+1 and
ep = ei . In particular, we obtain rot (ei , es) = 0 if and only if rot (ep, ei+1) = 0.
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Fig. 36 Illustration of proof for Claim 7.10 of Lemma 7.7

Now, assume that rot (ei , es) = −1 or rot (ep, ei+1) = −1. We first consider the
case that rot (ei , es) = −1; see Fig. 36a. We observe that C1 contains es as it also
contains the vertex wi by Claim 7.8. Let Qi be the maximal horizontal path on f
that starts at wi . We observe that Qi is a prefix of Pi , and the cycle C1 shares at
least es with Qi . Since by Claim 7.8 the cycle C1 has label 0 on ux , it also has
label 0 on any of its edges that lie on Qi . In fact, this implies that C1 completely
contains the path Qi . Otherwise, it would contain an edge that does not belong Qi ,
but starts at an intermediate vertex of Qi . By the choice of Qi such an edge has
a negative label since its preceding edge has label 0, which contradicts that C1 is
decreasing. For the same reason, the edge e that succeeds Qi on f has a negative
label. Hence, the edge e is the candidate ei+1. Consequently, C1 contains vi+1 and
f [wi , vi+1] = Qi , which shows Claim 7.10. For the case that rot (ep, ei+1) = −1 we
use similar arguments; see Fig. 36b. Let Qi+1 be the maximal horizontal path on f
that starts at vi+1 when going along f counterclockwise. The first edge of Qi+1 is ep,
which also belongs to C2. Further, C2 has label 0 on any of its edges that belong to
Qi+1. Consequently, C2 contains Qi+1 completely, as otherwise it would contain an
edge that points downwards, contradicting that C2 has only non-positive labels except
for the edge xy. Hence, the edge of f that is incident with the endpoint of Qi+1 and
does not belong to Qi+1 is the candidate edge ei , which concludes the proof.

Claim 7.11. We first show that u is the right endpoint of Pi . To that end, let H =
C1 +C2 be the graph formed by the two cycles C1 and C2 and let f̃ be its central face.
From the proof of Claim 7.8 we know that ux is incident to the central face. Further,
from Claims 7.9 and 7.10 it follows that C1 and C2 have the vertex wi or the vertex
vi+1 in common; see Figs. 36a and 36b, respectively. Let v = wi in the former case
and let v = vi+1 in the latter case.

We first show that C1[v, x] = C2[v, x]. Assume that this is not the case. Consider
the maximal common prefix of C1[v, x] and C2[v, x], and let w be the endpoint of
that prefix. As v is incident to f̃ , this also applies to w. Further, by Lemma 5.5 the
outgoing edge of w on C2 lies in the exterior of C1. Let t be the first intersection of
C1 and C2 on f̃ after w. Then the edge to t on C2 lies strictly in the exterior of C1
contradicting Lemma 5.5.

Hence, we haveC1[v, x] = C2[v, x]; we denote that path by P . Since ux is incident
to f̃ , all edges of P are incident to f̃ as well. Hence, by Corollary 5.3 all edges of
P have the same label on C1 and C2. Since C1 is decreasing, i.e., its labels are non-
negative, and the labels on C2 are non-positive on C2[zi+1, u], the labels of the edges
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Fig. 37 Illustration of proof for Claim 7.11 of Lemma 7.7

of P are 0. Therefore, these edges are horizontal. As f [wi , vi+1] also belongs to Pi ,
we conclude that u is the right endpoint of Pi .

Finally, we argue that z belongs to the face f . As by Claim 7.10, f [wi , vi+1]
belongs to Pi , the vertex z belongs to a prefix Q of Pi that does not contain any edge
of f [wi , vi+1] and ends either at wi or at vi+1; see Figs. 37a and 37b, respectively.
If Q is empty, wi or vi+1 is z, respectively, which shows the claim. So assume that
Q is not empty. Let vw be the last edge of Q, i.e., depending on the considered case
we either have w = wi or w = vi+1. By the local ordering of the incident edges of
w, the path Q lies in the interior of f . Further, vw is incident to f on both sides, as
otherwise the two other incident edges of w could not be incident to f as well. Hence,
we obtain rot ( f [u, wv]) = 3 and rot ( f [u, vw]) = 0. Thus, the path f [wv, vw] of f
consists only of horizontal edges, as otherwise there would be an edge e on that path
with rot ( f [u, e]) = 2, which contradicts the choice of ei and ei+1. Altogether, the
path f [wv, vw] is �Q + Q, which proves that z belongs to f . ��

7.3 Proof of theMain Theorem

We are now ready to prove the characterization of drawable ortho-radial representa-
tions.

Theorem 7.12 An ortho-radial representation is drawable if and only if it is valid.

For an illustration of the proof see Fig. 38. If� is a valid ortho-radial representation,
then using the rectangulation procedure of Sect. 7.1weobtain a valid rectangular ortho-
radial representation �′ that contains a subdivision of �. Then �′ has a drawing �′ by
Theorem 6.3, and a drawing � of � is obtained from �′ by removing edges that are
in �′ but not in �, and by undoing subdivisions. It remains to show that the reference
edge e� of � is an outlying edge in �, which then implies that � is drawable.

Let Co be the essential cycle that is part of the outer face of � and let eo be an
outermost horizontal edge of Co in �, i.e., an horizontal edge of Co with maximum
distance to the center; see Fig. 38a. To show that e� is an outlying edge in �, we show
rot (Co[eo, e�]) = 0.

Let CT be the essential cycle that forms the outer face of �′. Further, let l be the ray
that emanates from the center of �′ and goes through the source vertex v of eo. Let
p1, . . . , pk be the intersection points of l with �′ from v on. We observe that p1 = v

and pk lies on CT . For each intersection point pi with 1 ≤ i ≤ k we insert a vertex vi
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Fig. 38 Illustration of proof for Theorem 3.9

at pi if there is no vertex so far. Further, we add vertical edges to �′ such that the new
drawing contains the path P = v1 . . . vk . We denote the resulting drawing by �′′; see
Fig. 38b.

By the construction of the rectangulation the drawing �′′ further contains a path Q
that connects a subdivision vertex u1 on e� with a vertex u2 on CT . We observe that
the cycleC = Co[v1, u1]+Q+T [u2, vk]+ �P is essential. Moreover, by construction
the path C[u1, v1] = Q + CT [u2, vk] + �P has rotation 2. Since C has a left bend at
both v1 and u1 it follows thatCo[v1, u1] has rotation 0. Consequently, e� is an outlying
edge in �. Altogether, we obtain that � is drawable.

Conversely, assume that � is drawable. Hence, � has a drawing � in which the
reference edge e� of � is an outlying edge. By Lemma 4.2 we can assume without
loss of generality that e� lies on the outermost circle that is used by an essential cycle
of �. By [21] the representation � satisfies conditions (i) and (ii) of Definition 3.1. To
prove that � is valid, we show how to reduce the general case to the more restricted
one, where all faces are rectangles. By Corollary 6.3 the existence of a drawing and
the validity of the ortho-radial representation are equivalent.
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Given the drawing �, we augment it such that all faces are rectangles. This rect-
angulation is similar to the one described in Sect. 7.1 but works with a drawing and
not only with a representation. We first insert the missing parts of the innermost and
outermost circle that are used by � such that the outer and the central face are already
rectangles. For each left turn on a face f at a vertex u, we then cast a ray from v in f in
the direction in which the incoming edge of u points. This ray intersects another edge
in �. Say the first intersection occurs at the point p. Either there already is a vertex z
drawn at p or p lies on an edge. In the latter case, we insert a new vertex, which we
call z, at p. We then insert the edge uz in G and update � and � accordingly.

Repeating this step for all left turns, we obtain a drawing �′ and an ortho-radial
representation �′ of the augmented graph G ′; see Fig. 38c for an example of �′. As
the labelings of essential cycles are unchanged by the addition of edges elsewhere in
the graph, any increasing or decreasing cycle in � would also appear in �′. But by
Corollary 6.3 �′ is valid, and hence neither � nor �′ contain increasing or decreasing
cycles. Thus, � is valid. ��

We remark that the proof of Theorem 3.9 is in fact constructive and it can easily
be implemented in polynomial time, provided that we can check in polynomial time
whether a given ortho-radial representation is valid. We develop such an algorithm
with running time Ø(n2) in Sect. 8. In Sect. 9 we show how compute a rectangulation
of � in time Ø(n2).

8 Validity Testing

In this section, we show how to check whether a given ortho-radial representation is
valid in polynomial time, which yields the following statement.

Theorem 8.1 Given an ortho-radial representation �, it can be determined in Ø(n2)
time whether� is valid. In the negative case a strictly monotone cycle can be computed
in Ø(n2) time.

The two conditions for ortho-radial representations are local and checking them can
easily be done in linear time. Throughout this section, we therefore assume that we
are given an instance I = (G, E, fc, fo) with an ortho-radial representation � and a
reference edge e�. The condition for validity however references all essential cycles of
which there may be exponentially many. We present an algorithm that checks whether
� contains a strictly monotone cycle and computes such a cycle if one exists. The
main difficulty is that the labels on a decreasing cycle C depend on a reference path
P that runs from e� to C and respects C . However, we know neither the path P nor
the cycle C in advance, and choosing a specific cycle C may rule out certain paths P
and vice versa.

We only describe how to search for decreasing cycles; increasing cycles can be
found by searching for decreasing cycles in themirrored representation by Lemma 4.4.
A decreasing cycle C is outermost if it is not contained in the interior of any other
decreasing cycle. Clearly, if� contains a decreasing cycle, then it also has an outermost
one. We first show that in this case this cycle is uniquely determined.
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Lemma 8.2 If � contains a decreasing cycle, there is a unique outermost decreasing
cycle.

Proof Assume that � has two outermost decreasing cycles C1 and C2, i.e., C1 does
not lie in the interior of C2 and vice versa. Let C be the cycle bounding the outer
face of the subgraph H = C1 + C2 that is formed by the two decreasing cycles. By
construction,C1 andC2 lie in the interior ofC , andwe claim thatC is a decreasing cycle
contradicting that C1 and C2 are outermost. To that end, we show that �C (e) = �C1(e)
for any edge e that belongs to both C and C1, and �C (e) = �C2(e) for any edge e
that belongs to both C and C2. Hence, all edges of C have a non-negative label since
C1 and C2 are decreasing. By Proposition 5.4 there is at least one label of C that is
positive, and hence C is a decreasing cycle.

It remains to show that �C (e) = �C1(e) for any edge e that belongs to both C and
C1; the case that e belongs to both C and C2 can be handled analogously. Let �H be
the ortho-radial representation � restricted to H . We flip the cylinder to exchange the
outer face with the central face and vice versa. More precisely, Lemma 4.3 implies that
the reverse edge�e of e lies on the central face of the flipped representation flip(�H )

of �H . Further, it proves that �
f
�C (�e) = �C (e) and �

f
�C1

(�e) = �C1(e), where � f is the

labeling in ��H . Hence, by Corollary 5.3 we obtain �
f
�C (�e) = �

f
�C1

(�e). Flipping back the
cylinder, again by Lemma 4.3 we obtain �C (e) = �C1(e). ��

The core of our algorithm is an adapted left-first DFS. Given a directed edge e it
determines the outermost decreasing cycle C in � such that C contains e in the given
direction and e has the smallest label among all edges on C , if such a cycle exists. By
running this test for each directed edge of G as the start edge, we find a decreasing
cycle if one exists.

More precisely, the DFS visits each vertex at most once and it maintains for each
visited vertex v a reference edge ref(v), the edge of the search tree via which v was
visited. Whenever it has a choice which vertex to visit next, it picks the first outgoing
edge in clockwise direction after the reference edge that leads to an unvisited vertex.
In addition to that, we employ a filter that ignores certain outgoing edges during the
search. To that end, we define for all outgoing edges e incident to a visited vertex v

a search label �̃(e) by setting �̃(e) = �̃(ref(v)) + rot (ref(v) + e) for each outgoing
edge e of v. In our search we ignore edges with negative search labels. For a given
directed edge vw in G we initialize the search by setting ref(w) = vw, �̃(vw) = 0
and then start searching from w.

Let T denote the directed search tree with root w constructed by the DFS in this
fashion. If T contains v, then this determines a candidate cycle C containing the edge
vw. If C is a decreasing cycle, which we can easily check by determining a reference
path, we report it. Otherwise, we show that there is no outermost decreasing cycle C
such that vw lies on C and has the smallest label among all edges on C .

It is necessary to check that C is essential and decreasing. For example the cycle
in Fig. 39 is found by the search and though it is essential, it is non-decreasing. This
is caused by the fact that the label of vw is actually −4 on this cycle but the search
assumes it to be 0.
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Fig. 40 Path Q and its prefix P that leaves C once and ends at a vertex p of C

Lemma 8.3 Assume that � contains a decreasing cycle. Let C be the outermost
decreasing cycle of � and let vw be an edge on C with the minimum label, i.e.,
�C (vw) ≤ �C (e) for all edges e of C. Then the left-first DFS from vw finds C.

Proof Assume for the sake of contradiction that the search does not find C . Let T be
the tree formed by the edges visited by the search. Since the search does not find C
by assumption, a part of C[w, v] does not belong to T . Let xy be the first edge on
C[w, v] that is not visited, i.e., C[w, x] is figurea part of T but xy /∈ T . There are two
possible reasons for this. Either �̃(xy) < 0 or y has already been visited before via
anotherfigurefrom w with Q �= C[w, y].

The case �̃(xy) < 0 can be excluded as follows. By the construction of the labels �̃,
for any path P from w to a vertex z in T and any edge e′ incident to z we have �̃(e′) =
rot (vw + P + e′). In particular, �̃(xy) = rot (C[vw, xy]) = �C (xy) − �C (vw) ≥ 0
since the rotation can be rewritten as a label difference (see Observation 5.1) and vw

has the smallest label on C .
Hence, T contains a path Q from w to x that was found by the search before and

Q does not completely lie on C . There is a prefix of Q (possibly of length 0) lying on
C followed by a subpath not on C until the first vertex p of Q that again belongs to
C ; see Fig. 40. We set P = Q[w, p] and denote the vertex where P leaves C by b. By
construction the edge vw lies on C[p, b]. The subgraph H = P +C that is formed by
the decreasing cycle C and the path P consists of the three internally vertex-disjoint
paths P[b, p], C[b, p] and �C[b, p] between b and p. Since edges that are further left
are preferred during the search, the clockwise order of these paths around b and p is
fixed as in Fig. 40. In H there are three faces, bounded by C , �C[b, p] + �P[p, b] and
P[b, p] + �C[p, b], respectively. Since C is an essential cycle and it bounds a face in
H , it bounds the central face and one of the two other faces is the outer face. These
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Fig. 41 The two possible embeddings of the subgraph formed by the decreasing cycle C and the path P ,
which was found by the search

two possibilities are shown in Fig. 41. We denote the cycle bounding the outer face
but in which the edges are directed such that the outer face lies locally to the left by
C ′. That is, the boundary of the outer face is �C ′. We distinguish cases based on which
of the two possible cycles constitutes �C ′.

If �C ′ = �C[b, p]+ �P[p, b] forms the outer face of H , vw lies on C ′ as illustrated in
Fig. 41a and we show that C ′ is a decreasing cycle, which contradicts the assumption
that C is the outermost decreasing cycle. Since P is simple and lies in the exterior of
C , the path P is contained in C ′, which means C ′[w, p] = P . The other part of C ′ is
formed by C[p, w]. Since C forms the central face of H , the labels of the edges on
C[p, w] are the same forC andC ′ byProposition 5.2. In particular, �C (vw) = �C ′(vw)

and all the labels of edges on C[p, w] are non-negative because C is decreasing. The
label of any edge e on both C ′ and P is �C ′(e) = �C ′(vw) + rot (vw + P[w, e]) =
�C (vw)+ �̃(e) ≥ 0. Thus, the labeling of C ′ is non-negative. Further, not all labels of
C ′ are 0 since otherwiseC would not be a decreasing cycle by Proposition 5.4. Hence,
C ′ is decreasing and contains C in its interior, a contradiction.

If �C ′ = �C[p, b] + P[b, p], the edge vw does not lie on C ′; see Fig. 41b. We show
thatC ′ is a decreasing cycle containingC in its interior, again contradicting the choice
of C . As above, Proposition 5.2 implies that the common edges of C and C ′ have
the same labels on both cycles. It remains to show that all edges xy on �P[p, b] have
non-negative labels. To establish this we use paths to the edge that follows b onC . This
edge bc has the same label on both cycles and thus provides a handle on �C ′(xy). We
make use of the following equations, which follow immediately from the definition
of the (search) labels.

�C ′(bc) = �C ′(xy) + rot (�P[xy, db]) + rot(dbc)

= �C ′(xy) − rot (P[bd, yx]) − rot(cbd)

�C (bc) = �C (vw) + rot (C[vw, ab]) + rot(abc)

�̃(yx) = rot (C[vw, ab]) + rot(abd) + rot (P[bd, yx]).

Since �C (bc) = �C ′(bc) and rot(abd) = − rot(dba), we thus get

�C ′(xy) = �C (vw) + rot (C[vw, ab]) + rot(abc) + rot (P[bd, yx]) + rot(cbd)

= �C (vw) + �̃(yx) + rot(dba) + rot(abc) + rot(cbd).
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Since �C (vw) ≥ 0 and �̃(yx) ≥ 0 (as yx was not filtered out), it follows that �C ′(xy) ≥
rot(abc)+ rot(dba)+ rot(cbd) = 2 as this is the sum of clockwise rotations around a
degree-3 vertex. Hence,C ′ is decreasing and containsC in its interior, a contradiction.
Since both embeddings of H lead to a contradiction, we obtain a contradiction to our
initial assumption that the search fails to find C . ��

The left-first DFS clearly runs in Ø(n) time. In order to guarantee that the search
finds a decreasing cycle if one exists, we run it for each of the Ø(n) directed edges
of G. Since some edge must have the lowest label on the outermost decreasing cycle,
Lemma 8.3 guarantees that we eventually find a decreasing cycle if one exists. Increas-
ing cycles can be found by searching for decreasing cycles in the mirror representation
mirror(�) (Lemma 4.4). Altogether, this proves Theorem 3.10.

9 Efficient Rectangulation Procedure

Let G be a planar 4-graph with valid ortho-radial representation �. By Theorem 3.9
� is drawable. The proof of Theorem 3.9 is constructive and shows how to augment �
to a valid rectangular ortho-radial representation ��. Then a drawing �� of �� can
be computed by determining flows in two flow networks by Theorem 6.1. A drawing
� of � can be finally obtained by undoing augmentation steps. Hence, it remains to
show how a valid ortho-radial representation can be rectangulated efficiently.

To follow the construction of the proof of Theorem 3.9, one needs to determine
efficiently whether an augmentation yields a valid ortho-radial representation �u

vw.
We call such an augmentation a valid augmentation. Since each valid augmentation
reduces the number of concave angles, we obtain a rectangulation after Ø(n) valid
augmentations. Moreover, there are Ø(n) candidates for each augmentation, each of
which can be tested for validity (and increasing/decreasing cycles can be detected) in
Ø(n2) time by Theorem 3.10. Thus, the rectangulation algorithm can be implemented
to run in Ø(n4) time.

In the remainder of this section we present an improvement to Ø(n2) time, which
is achieved in three steps. First, we show that, due to the nature of augmentations,
each validity test can be done in Ø(n) time. This reduces the running time of the
augmentation procedure to Ø(n3); see Sect. 9.1. Second, we show how to find a valid
augmentation for a given port u using only Ø(log n) validity tests, thus improving the
running time to Ø(n2 log n); see Sect. 9.2. Finally, we design an algorithm that can be
used to post-process a valid augmentation and which reduces the number of validity
tests to Ø(n) and the running time to Ø(n2) in total; see Sect. 9.3. Altogether, this
proves our third main result.

Theorem 9.1 Given a valid ortho-radial representation, a corresponding drawing can
be constructed in Ø(n2) time.

9.1 1st Improvement—Faster Validity Test

The general test for strictly monotone cycles performs one left-first DFS per edge and
runs in Ø(n2) time. However, we can exploit the special structure of the augmentation
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Fig. 42 A decreasing cycle C that uses uz and an essential cycle C ′ derived from C

to reduce the running time to Ø(n). For the proof we restrict ourselves to the case that
the inserted edge uz points to the right. The case that it points left can be handled by
flipping the representation using Lemma 4.3.

The key result is that in any decreasing cycle of an augmentation the new edge
uz has the minimum label. Thus, performing only one left-first DFS starting at uz is
sufficient. For increasing cycles the arguments do not hold, but in a second step we
show that the test for increasing cycles can be replaced by a simple test for horizontal
paths.

Recall that the augmentations �u
vw that are tested during the rectangulation are built

by adding one edge uz to a valid representation �. Hence, any strictly monotone cycle
in �u

vw contains the edge uz.
We first show that the new edge uz has label 0 on any decreasing cycle in the

augmentation �u
vw if vw is the first candidate. We extend this result afterwards to

augmentations to all candidates. Since the label of edges on decreasing cycles is non-
negative, this implies in particular that the label of uz is minimum, which is sufficient
for the left-first DFS to succeed (see Lemma 8.3).

Lemma 9.2 Let � be a valid ortho-radial representation and let u be a horizontal port
on f with first candidate vw. If �u

vw contains a decreasing cycle C, then C contains
uz in this direction and �C (uz) = 0.

Proof We first consider the case thatC uses uz (and not zu) and assume for the sake of
contradiction that �C (uz) �= 0; see Fig. 42. Since uz points right, �C (uz) is divisible
by 4. Together with �C (uz) ≥ 0 because C is decreasing, we obtain �C (uz) ≥ 4. By
Lemma 5.7 there is an essential cycle C ′ without uz in the subgraph H that is formed
by the new rectangular face f ′ and C . We show that C ′ is a decreasing cycle. We
observe that each edge of C ′ either lies on f ′ or is an edge of C . For any edge e of
C ′ ∩ C Lemma 5.7 gives �C ′(e) = �C (e) ≥ 0. Since f ′ is rectangular, the labels of
edges in C ′ ∩ f ′ differ by at most 1 from �C (uz). By assumption it is �C (uz) ≥ 4 and
therefore �C ′(e) ≥ 3 for all edges e in C ′ ∩ f ′. Hence, C ′ is a decreasing cycle in G
contradicting the validity of �.

If zu lies on C , it is �C (zu) ≥ 2 and a similar argument yields a decreasing cycle
in �. ��

While the same statement does not generally hold for all candidates, it does hold if
the first candidate creates a decreasing cycle.
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Fig. 43 The structure used to simulate the simultaneous insertion of uz to vw and uz′ to v′w′

Lemma 9.3 Let � be a valid ortho-radial representation and let u be a horizontal port
on f with first candidate vw. Further, let v′w′ be another candidate and denote the
edge inserted in �u

v′w′ by uz′. If �u
vw contains a decreasing cycle, any decreasing cycle

C ′ in �u
v′w′ uses uz′ in this direction and �C ′(uz′) = 0.

Proof In order to simulate the simultaneous insertion of two new edges to both vw

and v′w′ we use the structure from the proof of Lemma 7.7; see Fig. 43. We denote
the resulting augmented representation by �̃. There is a one-to-one correspondence
between decreasing cycles in �u

vw and decreasing cycles in �̃ containing uxz. Let C
be a decreasing cycle in �̃ containing uxz. By Lemma 9.2 the cycle C contains uxz
in this direction, and we have �C (ux) = 0.

Similarly, for any decreasing cycle in �u
v′w′ there is a cycle in �̃ where uz′ (z′u) is

replaced by the path uxyz′ (z′yxu). Let C̃ ′ be the cycle in �̃ that corresponds to the
decreasing cycle C ′ in �u

v′w′ .
Suppose for now that C ′ uses uz′ in this direction, which means that C̃ ′ uses ux . In

particular, since �C̃ ′(ux) = �C ′(uz′), it holds �C̃ ′(xy) = �C̃ ′(ux) + 1 ≥ 1. Let f̃ be

the central face of H = C̃ + C̃ ′. We note that f̃ is a decreasing cycle by Lemma 5.2
and Proposition 5.4. Since� is valid, f̃ is not exclusively formed by edges ofG. Thus,
by the construction of H , the path uxyz′ lies on f̃ . Lemma 5.2 therefore implies that
�C̃ ′(ux) = �C (ux) = 0, where the last equality follows from Lemma 9.2.

Above we assumed that C ′ uses uz′ in this direction. This is in fact the only
possibility. Assume for the sake of contradiction that C ′ contains z′u and hence
xu ∈ C̃ ′. As above we can argue that the central face f̃ of C̃ + C̃ ′ is not exclu-
sively formed by edges of G and that the path z′yxz lies on f̃ . By Lemma 5.2 we
have �C̃ ′(yx) = �C (xz) − rot(yxz) = −1. Hence, we obtain �C ′(z′u) = �C̃ ′(xu) =
�C̃ ′(yx) + rot(yxu) = −2, which contradicts that C ′ is a decreasing cycle. ��

Altogether, we can efficiently test which of the candidates e1, . . . , ek produce
decreasing cycles as follows. By Lemma 9.2, if the first candidate is not valid, then
�u
e1 has a decreasing cycle that contains the new edge uz with label 0, which is hence

the minimum label for all edges on the cycle. This can be tested in Ø(n) time by
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Fig. 44 Here, the insertion of the edge uz to the last candidate v′w′ introduces an increasing cycle C with
�C (uz) = −4

Lemma 8.3. Fact 2. of Proposition 7.2 guarantees that we either find a valid aug-
mentation or a decreasing cycle. In the former case we are done, in the second case
Lemma 9.3 allows us to similarly restrict the labels of uz to 0 for the remaining can-
didate edges, thus allowing us to detect decreasing cycles in �u

ei in Ø(n) time for
i = 2, . . . , k.

It is tempting to use the mirror symmetry (Lemma 4.4) to exchange increasing and
decreasing cycles to deal with increasing cycles in an analogous fashion. However,
this fails as mirroring invalidates the property that u is followed by two right turns in
clockwise direction. For example, in Fig. 44 inserting the edge to the last candidate
introduces an increasing cycle C with �C (uz) = −4. We therefore give a direct
algorithm for detecting increasing cycles in this case.

Let ei = viwi and ei+1 = vi+1wi+1 be two consecutive candidates for u such
that �u

ei contains a decreasing cycle but �
u
ei+1

does not. If �u
ei+1

contains an increasing
cycle, then by Fact 3. of Proposition 7.2 the vertices wi , vi+1 and u lie on a horizontal
path that starts at a vertex z incident to f and ends at u. The presence of such a
horizontal path P can clearly be checked in linear time, thus allowing us to also detect
increasing cycles provided that the previous candidate produced a decreasing cycle.
If P exists, we insert the edge uz. By Proposition 5.4 this does not produce strictly
monotone cycles. Otherwise, if P does not exist, the augmentation �u

ei+1
is valid. In

both cases we have resolved the horizontal port u successfully.
Summarizing, the overall algorithm for augmenting from a horizontal port u now

works as follows. By exploiting Lemmas 9.2 and 9.3, we test the candidates in the
order as they appear on f until we find the first candidate e for which �u

e does not
contain a decreasing cycle. Using Fact 3. of Proposition 7.2 we either find that �u

e is
valid, or we find a horizontal path as described above. In both cases this allows us to
determine an edge whose insertion does not introduce a strictly monotone cycle. Since
in each test for a decreasing cycle the edge uz can be restricted to have label 0, each
of the tests takes linear time. This improves the running time of the rectangulation
algorithm to Ø(n3).

9.2 2nd Improvement—Fewer Validity Tests

Instead of linearly searching for a suitable candidate for u, we can employ a binary
search on the candidates, which reduces the number of validity tests for u from linear to

123



Discrete & Computational Geometry

logarithmic. To do this efficiently, we first compute the list of all candidates e1, . . . , ek
for u in time linear in the size of f . Next, we test if the augmentation �u

e1 is valid. If
it is, we are done.

Otherwise, we start the binary search on the list e1, . . . , ek , where k is the number of
candidates for u. The search maintains a sublist ei , . . . , e j of consecutive candidates
such that�u

ei contains a decreasing cycle and�u
e j does not.Note that this invariant holds

in the beginning, because we explicitly test for a decreasing cycle in �u
e1 and there is

no decreasing cycle in �u
ek by Fact 2. of Proposition 7.2. If the list consists of only two

consecutive candidates, i.e., j = i + 1, we stop. Otherwise, we set m = �(i + j)/2�
and test if �u

em contains a decreasing cycle. If it does, we recurse on em, . . . , e j and
otherwise on ei , . . . , em . As the invariant is preserved, we end upwith two consecutive
candidates ei and ei+1 such that �u

ei contains a decreasing cycle and �u
ei+1

does not. In
this situation Fact 3. of Proposition 7.2 guarantees that we find a valid augmentation.
Clearly this only requires Ø(log n) validity tests in total. Further, as argued in the
previous subsection each of these tests can be performed in linear time. Altogether,
we obtain the following lemma.

Lemma 9.4 Using binary search we find a valid augmentation for u inØ(n log n) time.

Since there are Ø(n) ports to remove, we obtain that any planar 4-graph with valid
ortho-radial representation can be rectangulated in Ø(n2 log n) time.

Theorem 9.5 Given a valid ortho-radial representation �, a corresponding rectangu-
lation can be computed in Ø(n2 log n) time.

9.3 3rd Improvement—Linear Number of Validity Tests

In this section we describe an improvement of our algorithm that reduces the total
number of validity tests to Ø(n) such that the running time of our algorithm becomes
Ø(n2). The improvement adapts the augmentation step for horizontal ports of the
rectangulation procedure. Let u be a horizontal port of a face f and let e1, . . . , ek be
its candidate edges. The adapted augmentation step resolves u in two steps.
Step 1. We do a linear scan on e1, . . . , ek to search for the first candidate em of u
that gives rise to a valid augmentation with an additional edge uz. Recall that z either
subdivides em or uz completes a horizontal cycle that contains the source of em . We
note that we apply m validity tests in this step. In case that m < 4, the augmentation
step is stopped. Otherwise we continue with the following step.

Step 2. In the following let �0 be the valid ortho-radial representation that we obtain
after Step 1. We observe that the inserted edge uz splits the face f into two smaller
faces. In Step 2.1we partition the face that contains the edges e1, . . . , em−1 by inserting
two paths T and B of constant size that start at subdivision vertices on uz and end at
subdivision vertices on e1 and em−1, respectively; see Fig. 45. These two paths separate
two sub-faces f1 and f2 of f that contain the candidate edges e1, . . . , em−2, which
are all but a constant number of edges for which we have performed validity tests in
Step 1. In Step 2.2. we rectangulate f1 without performing any validity test and in
Step 2.3 we rectangulate f2 performing a number of validity tests that is proportional
to the size of f2. In the following we describe the three steps in greater detail.
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Fig. 45 Illustration of Step 1, which inserts R, T and B into �0. Depending on whether uz lies on a
horizontal cycle C in �0, the edge r2r3 points a to the right or b downwards

Step 2.1.We adapt�0 as follows.We introduce a path B = b1 . . . b5 in f that connects
a subdivision vertex b1 on uz with a subdivision vertex on em−1; see Fig. 45. The edge
b1b2 points upwards, the edge b3b4 points downwards, and the other two edges point
to the right. The face that lies to the left of B is the face f ′ we seek to rectangulate.
Similarly, we introduce a path T = t1 . . . t5 in f ′ that connects a subdivision vertex t1
on ub1 with a subdivision vertex on e1. The edge t1t2 points upwards, the edge t3t4
points downwards, and the other two edges point to the right. Finally, we subdivide
the edge ut1 by two additional vertices. Altogether, the edge uz has been replaced by
a path R = r1 . . . r6 with r1 = u, r4 = t1, r5 = b1 and r6 = z. As we have obtained
the edges of R by subdividing uz, they all point to the right. In the case that uz does
not lie on a horizontal cycle, we orient r2r3 such that it points downwards.

We denote the resulting ortho-radial representation by �1. Further, let f1 be the
face that lies to the right of T , and let f2 be the face that lies to the left of T .

Step 2.2.We iteratively resolve the ports in f1 until the face is rectangulated. For each
port u′ of f1 we augment the ortho-radial representation as follows. If u′ is a vertical
port, we augment with respect to the first candidate edge and if u′ is a horizontal port
we augment with respect to the last candidate edge of u′. The procedure stops when
f1 is completely rectangulated. We denote the resulting ortho-radial representation
by �2. We emphasize that this step does not execute any validity test.

Step 2.3. Starting with�2, we rectangulate the face f2, which has a constant number of
ports, by iteratively applying the original augmentation step. We denote the resulting
ortho-radial representation by �3.

In the following we show that the modified rectangulation procedure runs in Ø(n2)
time and yields a valid ortho-radial representation.

Lemma 9.6 The modified rectangulation procedure produces a valid, rectangulated
ortho-radial representation.

Since the proof is rather technical, we defer it to Sect. 9.6. In the following we argue
the running time. To that end, we first prove that the output rectangulation has linear
size.
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Lemma 9.7 The rectangulated ortho-radial representation produced by the modified
rectangulation procedure has size Ø(n).

Proof For the proof we define the potential function


 = 3 · horizontal corners of � + vertical corners of �,

where a horizontal (vertical) corner is a concave corner that becomes a horizontal
(vertical) port of a face during the rectangulation procedure. At the beginning of the
rectangulation procedure it holds 
 ≤ 4n, because each vertex with degree greater
than 1 can be either a horizontal or a vertical corner, but not both. Further, each
vertex with degree 1 is both a horizontal and vertical corner. We show that for each
augmentation step of the rectangulation procedure the potential 
 decreases by some
value �
 ≥ 1 and that the number �V of inserted vertices is proportional to �
.
Since the rectangulation procedure terminates with 
 = 0, Lemma 9.7 follows.

In case that the augmentation step handles a vertical port, this vertical corner is
resolved but no new corner is created. Hence, 
 decreases by �
 = 1. Moreover,
�V = 1. For the case that the augmentation step handles a horizontal port, we dis-
tinguish two sub-cases. If m < 4, this horizontal corner is resolved but no new corner
is created. Hence, 
 decreases by �
 = 3. Moreover, �V ≤ 1 (in case that the
augmentation step closes a horizontal cycle we have �V = 0). Now consider the
case that m ≥ 4. Let k1 and k2 be the number of the horizontal and vertical corners,
respectively, that are resolved during the rectangulation of f1 and f2 in Step 2.2 and
Step 2.3, excluding those that lie on R, T and B.

Due to the insertion of the vertices r3 and b4 the potential increases by at most
2. Further, by resolving the horizontal corner u the potential decreases by 3. Further,
rectangulating f1 and f2 decreases the potential by 3k1 + k2. Altogether, we obtain
�
 ≥ (3 − 2) + 3k1 + k2 ≥ 1 + k1 + k2. Moreover, in Step 2.1 we add at most 13
vertices. In Step 2.2 we add k1 + k2 vertices for the corners not on T and B, and we
add three vertices for t4, b2, and b3. In Step 2.3 we add at most three vertices for t2, t3,
and possibly r2. In total, we add �V ≤ 19 + k1 + k2 vertices.

In all cases �V ≤ 19�
. Altogether, we obtain that the rectangulation proce-
dure terminates (since 
 decreases in every rectangulation step) and the resulting
rectangulation has Ø(n) vertices, and therefore Ø(n) edges. ��
Lemma 9.8 The modified rectangulation procedure applies Ø(n) validity tests and
runs in Ø(n2) time.

Proof We now show that by replacing the original augmentation step with this adap-
tion, the number of validity tests is linear and the rectangulation procedure runs in
Ø(n2) time. We use a charging argument that assigns to each vertex and to each edge
of the output rectangulation a constant number of the validity tests that have been
applied during the rectangulation procedure. Further, we distribute the total running
time such that running time linear in the output size is assigned to each vertex and
each edge. Hence, by Lemma 9.7 the rectangulation procedure applies Ø(n) validity
tests and runs in Ø(n2) time.
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Let u be a port that is considered in a rectangulation step. If u is a vertical port, we
determine its first candidate edge in Ø(n) time, which we charge on u. Further, we do
not apply a validity test.

If u is a horizontal port, we determine its candidate edges in Ø(n) time, which we
charge on u. Further, we apply m validity tests in Step 1. If m < 4, only a constant
number of validity tests is applied, which we charge on u. Otherwise, we charge the
validity tests of e1, em−1 and em on u. We observe that after the augmentation step,
the horizontal port u is resolved and no further validity tests can be charged on u.
Further, we charge the validity test of ei with 2 ≤ i ≤ m − 2 on ei . Hence, since by
construction the candidates e2, . . . , em−2 belong to rectangles after the augmentation
step, each edge can only be charged twice (once from each side).

Step 2.1 has constant running time and applies no validity tests. We charge the
running timeonu. Step 2.2 requires no validity tests and resolves each concave corner v
on f1 in Ø(n) time, which we charge on v. Afterwards, the face f1 is rectangulated
and v cannot be charged again. In Step 2.3 we need Ø(n) time for each concave corner
v to identify the candidate edges, which we charge on v. Further, when applying a
validity test in this step, we charge it on the corresponding candidate edge. As f2 has
only a constant number of concave corners, each edge of f2 is charged with at most
a constant number of validity tests. Further, since f2 is rectangulated afterwards its
edges cannot be charged again (from the side of f2).

Hence, over all rectangulation steps we obtain Ø(n) validity tests and running time
Ø(n2). ��

Altogether, we obtain that any planar 4-graph with valid ortho-radial representation
can be rectangulated in Ø(n2) time. Using Corollary 6.3 this further implies that a
corresponding bend-free ortho-radial drawing can be computed in Ø(n2) time.

Theorem 9.9 Given a valid ortho-radial representation �, a corresponding rectangu-
lation can be computed in Ø(n2) time.

9.3.1 Proof of Lemma 9.6

We prove Lemma 9.6 by showing that each rectangulation step yields a valid
ortho-radial representation. By Proposition 7.2, Step 1 yields a valid ortho-radial rep-
resentation �0. If Step 2 is not considered, �0 is the output of the rectangulation step.
So assume that Step 2 is executed. We use the same notation as in the description of
the algorithm. In particular, Step 2.1, Step 2.2 and Step 2.3 produce the ortho-radial
representations �1, �2 and �3 from the ortho-radial representation of the preceding
step. In the following we consider the sub-steps of Step 2 separately and show that
�1, �2 and �3 are valid.
Correctness of Step 2.1. In order to show the correctness of thefirst stepwe successively
add the paths R, T and B to �0 and prove the validity of each created ortho-radial
representation. To that end, let�R = �0−uz+R,�T = �R +T and�B = �T +B =
�1.

Lemma 9.10 The ortho-radial representation �R is valid.
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Proof Let C be an essential cycle in �R . If C does not contain R, it is contained in
�0. Since �0 is valid, C is not strictly monotone. It remains to consider the case that
C uses R.

If the edge r2r3 of R points to the right, R lies on a horizontal cycle by construction.
By Proposition 5.4 C is not strictly monotone. If r2r3 points downwards, the cycle C
corresponds to an essential cycleC ′ = C[z, u]+uz in �0. By Lemma 5.8 the labels of
C and C ′ coincide on C[z, u]. By construction C ′ is not horizontal. Hence, it contains
edges e and e′ with �C ′(e) = 1 and �C ′(e′) = −1. Since uz is a horizontal edge, we
have e �= uz �= e′. Therefore, �C (e) = 1 and �C (e′) = −1, that is, C is not strictly
monotone. ��

Next, we prove that �T and �B are valid. To that end, we introduce the following
definition. A cascading cycle is a non-monotone essential cycle that can be partitioned
into two paths P and Q such that the labels on P are −1 and the labels on Q are non-
negative. We further require that the edges incident to the internal vertices of P either
all lie in the interior of C or they all lie in the exterior of C . In the first case we call
C an outer cascading cycle and in the second case an inner cascading cycle. The path
P is the negative path of the cycle. We first prove the following two general lemmata
on cascading cycles. The first lemma shows that a cascading cycle cannot be crossed
by an increasing cycle.

Lemma 9.11 Let C1 be a cascading cycle and C2 an increasing cycle. Either C1 lies
in the interior of C2 or vice versa.

Proof We assume without loss of generality that C1 is an outer cascading cycle. The
case that it is an inner cascading cycle can be handled by flipping the cylinder, which
exchanges the exterior and interior of essential cycles but keeps the labels.

Let g be the central face of the subgraph formed by the cycles C1 and C2. Assume
that g is neither C1 nor C2. Hence, there exist (not necessarily distinct) vertices v and
v′ on g such that g[v, v′] belongs to both C1 and C2, the edge that precedes v on g
does not belong to C2, and the edge that succeeds v′ on g does not belong to C1; see
Fig. 46.

For i = 1, 2 let ui and wi be the vertices of Ci that precede and succeed v,
respectively. Further, let u′

i and w′
i be the vertices of Ci that precede and succeed

v′, respectively. Since u2v strictly lies in the exterior of g, we obtain rot(u2vw1) <

rot(u1vw1). Hence, Lemma 5.2 gives �C1(u1v) < �C2(u2v). Further, by definition of
C1 andC2 it holds �C1(u1v) ≥ −1 and �C2(u2v) ≤ 0. Thus, we obtain �C1(u1v) = −1
and �C2(u2v) = 0. Since C1 is an outer cascading cycle this also implies that v is the
endpoint of the negative path P of C1.

Since v′w′
1 strictly lies in the exterior of g, we obtain rot(u

′
2v

′w′
2) > rot(u′

2v
′w′

1).
Further, by the definition of labels we obtain �C2(u

′
2v

′) = �C2(v
′w′

2) − rot(u′
2v

′w′
2).

Applying this in Lemma 5.2 gives �C1(v
′w′

1) = �C2(v
′w′

2) − rot(u′
2v

′w′
2) +

rot(u′
2v

′w′
1). Thus, we obtain �C1(v

′w′
1) < �C2(v

′w′
2). Analogously to the arguments

above, �C2(v
′w′

2) = 0 and �C1(v
′w′

1) = −1. Thus, v′ lies on P and it is not the
endpoint of P . It follows v �= v′ and C1 − P is contained in g[v, v′]. Hence, there is
an edge e on g[v, v′] with label �C1(e) > 0. By Corollary 5.3 �C2(e) = �C1(e), which
contradicts that C2 is an increasing cycle. ��
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Fig. 46 Illustration of proof for Lemma 9.11. It is assumed that the central face g is neither the outer
cascading cycle C1 nor the increasing cycle C1. Further, C1 and C2 have the edges g[v, v′] in common. It
is proven that any edge of C1[v, v′] has label 0 and any edge of C1[v′, v] has label −1, which contradicts
that C1 is a cascading cycle

We use the next lemma to show that the introduced paths T and B do not impact
the validity of the ortho-radial representation.

Lemma 9.12 Let C be a cascading cycle in an ortho-radial representation � and let
P be a sub-path of C such that

(i) the intermediate vertices of P have degree 2 in the graph,
(ii) P contains the negative path of C, and
(iii) P contains an edge e with label �C (e) > 0.

If � without P is valid, then � is valid.

Proof First assume that � contains a decreasing cycle C ′, which implies that P is
contained in C ′ (in either direction). Let H = C +C ′ be the common sub-graph of C
and C ′, and let g be the central face of H . We distinguish the following two cases.

Case 1, P is part of g. First assume that C and C ′ use P in opposite directions.
Since the central face locally lies to the right of any essential cycle, this implies that
the central face lies to the left and right of P . Consequently, the central face is not
simple, which contradicts that H is biconnected. So assume that C and C ′ use P in
the same direction. By Proposition 5.2 it holds �C (e′) = �C ′(e′) = −1 for any edge
e′ on the negative path of C . Thus, C ′ is not a decreasing cycle.

Case 2, P is not part of g. Let Cg be the essential cycle formed by g. Since Cg

consists of edges of C ′ and C , the corresponding labels of C ′ and C also apply on
Cg by Proposition 5.2. Further, since C ′ is a decreasing cycle and P is the only part
of C that has a negative label on C , the cycle Cg only has non-negative labels. Since
P does not lie on Cg but on C , C ′ has at least one vertex with Cg in common. By
Proposition 5.4 the cycle Cg is not horizontal. Altogether, Cg is a decreasing cycle
that also exists in � − P , which contradicts its validity.

Finally, assume that � contains an increasing cycle C ′, which implies that P is
contained in C ′ in either direction. Lemma 9.11 implies that the central face g of the
subgraph formed by the two essential cycles C and C ′ is either C or C ′. In particular,
P or �P lies on g. Hence, both C and C ′ use P in the same direction as otherwise g
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would lie in the exterior of one of these cycles. But this would contradict that they
are essential. Hence, they both contain P in this direction and P also lies on g. By
Proposition 5.2 both cycles have the same labels on P . Since P contains the edge e
with �C (e) > 0 and thus �C ′(e) > 0, the cycle C ′ is not an increasing cycle. ��

We construct a cascading cycle CT in �T as follows. Let C be the outermost
decreasing cycle in �u

e1 and let ut5 be the newly inserted edge in �u
e1 . We replace ut5

by R[u, r4] + T obtaining the cycle CT , which is well-defined because C uses ut5 in
that direction by Lemma 9.2.

Lemma 9.13 CT is a cascading cycle with negative path t1t2 no matter whether r2r3
points to the right or downwards.

Proof Let C be the outermost decreasing cycle in �u
e1 . By Lemma 5.8 the labels of C

and CT coincide on C[t5, u] (=CT [t5, u]). Hence, since C is a decreasing cycle all
labels on CT [t5, u] are non-negative. Further, by Lemma 9.2 the edge ut5 has label 0
on C . If r2r3 points to the right the sequence of the labels on R[u, r4]+ T is therefore
0, 0, 0,−1, 0, 1, 0. If r2r3 points downwards the sequence is 0, 1, 0,−1, 0, 1, 0. In
both cases CT is a cascading cycle. ��

Applying Lemma 9.11 to the situation of CT proves that �T does not contain
any increasing cycles. Together with Lemma 9.12 this yields that �T is valid. We
analogously prove the validity of �B as for �T . Let C be the outermost decreasing
cycle in �u

em−1
and let ub5 be the newly inserted edge in �u

em−1
. We replace ub5 by

R[u, r5]+ B obtaining the cycle CB , which is well-defined because C uses ub5 in that
direction by Lemma 9.2.

Lemma 9.14 CB is a cascading cycles no matter whether r2r3 points to the right or
downwards. In particular, b1b2 is the negative path of CB.

Proof Let C be the outermost decreasing cycle in �u
em−1

. By Lemma 5.8 the labels of
C andCB coincide onC[b5, u] (=CB[b5, u]). Hence, sinceC is a decreasing cycle all
labels on CB[b5, u] are non-negative. Further, by Lemma 9.3 the edge ub5 has label 0
on C . If r2r3 points to the right the sequence of the labels on R[u, r4]+ B is therefore
0, 0, 0, 0,−1, 0, 1, 0. If r2r3 points downwards the sequence is 0, 1, 0, 0,−1, 0, 1, 0.
In both cases CB is a cascading cycle. ��

Applying Lemma 9.11 to the situation of CT proves that �B does not contain any
increasing cycles. TogetherwithLemma9.12 this yields that�B is valid. The following
lemma summarizes the result.

Lemma 9.15 The ortho-radial representation �B = �1 is valid.

Correctness of Step 2.2. By Lemma 9.15 the ortho-radial representation �1 of Step 1
is valid. We now prove that �2 is a valid ortho-radial representation. We use the same
notation as in the description of the algorithm.

Starting with the valid ortho-radial representation �1, the procedure iteratively
resolves ports in the face f1, which locally lies to the right of T . In case that we resolve
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a vertical port u′ in a representation �, the resulting ortho-radial representation �u′
e′
1

is valid by Fact 1. of Proposition 7.2, where e′
1 is the first candidate of u

′. So assume
that u′ is a horizontal port. In that case we take �u′

e′
l
for the next iteration, where e′

l is

the last candidate of u′. We observe that the augmentation of f1 may subdivide edges
on the negative paths of CT and CB , but the added edges lie in the interior of CT

and the exterior of CB . Hence, CT remains an outer cascading cycle and CB an inner
cascading cycle.

Lemma 9.16 The ortho-radial representation �u′
e′
l
is valid.

Proof Assume that �u′
e′
l
is not valid. Hence, there is a strictly monotone cycle C that

uses e = u′z′, where z′ is the vertex subdividing e′
l . Since e

′
l is the last candidate of

u′, the cycle C is increasing by Fact 2. of Proposition 7.2. By construction e strictly
lies in the interior of CT and the exterior of CB . This implies that C lies in the interior
of CT and the exterior of CB by Lemma 9.11. In other words, C is contained in the
subgraph H formed by the intersection of the interior of CT and the exterior of CB .
As R[r1, r4] belongs to both CT and CB , it is incident to the outer and the central face
of H . Hence, removing R[r1, r4] leaves a subgraph without essential cycles. Thus, the
essential cycle C includes R[r1, r4].

By Proposition 5.2 the labels of C and CT are the same on R[r1, r4]. If r2r3 points
downwards, its label is 1,which contradicts thatC is increasing. If otherwise r2r3 points
right, it lies on a horizontal cycle. But then C is not increasing by Proposition 5.4. ��

Altogether, applying the lemma inductively on the inserted edges, we obtain that
�2 is valid.
Correctness of Step 2.3. As we only apply the first phase of the augmentation step on
f2, the resulting ortho-radial representation �3 is also valid due to the correctness of
the first phase. This concludes the correctness proof of the second phase.

10 BendMinimization

We have considered bend-free ortho-radial drawings so far. In this section we shortly
describe how to extend our results to ortho-radial drawings with bends. We model
bends by subdividing each edge of G with K degree-2 vertices. Let S denote the
set of all these subdivision vertices. A vertex v ∈ S is a bend in an ortho-radial
representation if for its two incident edges e1 and e2 it holds rot (e1, e2) �= 0. A valid
ortho-radial representation of I is bend-minimal if there is no other valid ortho-radial
representation of I that has fewer bends. Niedermann and Rutter [27] showed that
K = 2n−4 subdivision vertices per edge are sufficient for creating bend-minimal valid
ortho-radial representations. They propose an integer linear programming formulation
for creating valid bend-minimal ortho-radial representations assuming a pre-defined
embedding of the graph.

If we do not assume a pre-defined embedding of the graph, finding a bend-minimal
drawing becomes NP-hard even for the orthogonal case. Garg and Tamassia [19]
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Fig. 47 Possible embeddings of G′: In both cases G contains no essential cycles. The roles of C1 and C3
can be exchanged

showed that the problem Orthogonal Embeddability to decide whether a given
planar 4-graph admits an orthogonal drawing without bends is NP-complete. In
the remaining part of this section we study the analogous problem Ortho- radial
Embeddability for ortho-radial drawings and prove that it isNP-complete as well.
We say a graph G admits an ortho-radial (or orthogonal) embedding if there is an
embedding of G such that G can be drawn ortho-radially (or orthogonally) without
bends.

We give a reduction from Orthogonal Embeddability. To do so, we note that
the reduction by Garg and Tamassia [19] actually produces instances G = (V , E)

with a fixed edge e ∈ E such that it is NP-complete to decide whether G has an
orthogonal embedding where e is incident to the outer face.

Given such a graph, we build a structure around G that yields a graph G ′ such
that in any ortho-radial embedding of G ′ the induced representation � of G does not
contain any essential cycles. In other words,� is actually an orthogonal representation
of G. Hence, an ortho-radial embedding of G ′ can only exist if G admits an orthog-
onal embedding. We may assume without loss of generality that G is connected as
otherwise, we handle each component separately.

The construction of G ′ from G is based on the fact that there is only one way to
ortho-radially draw a triangleC , i.e., a cycle of length 3, without bends: as an essential
cycle on one circle of the grid. We build a graph H consisting of three triangles called
C1,C2 andC3 and denote the vertices onCi by ui , vi andwi . Furthermore, H contains
the edges u1u2 and u2u3. In Fig. 47 H is formed by the black edges. To connect H
and G, we replace the special edge e = uv of G by a 3× 3-grid and connect one of
the degree-3 vertices z of that grid by a path P to v2, where we choose the length of
the path equal to the number of edges in G. The resulting graph is G ′; see Fig. 47.
The reduction clearly runs in polynomial time. Moreover, if G ′ admits an ortho-radial
embedding, then the triangles of H must be drawn as essential cycles, and therefore G
must be contained in one of the two regular faces of H , and can hence not contain any
essential cycles. We therefore find an orthogonal embedding of G. Conversely, if we
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have an orthogonal embedding ofG with e on the outer face, then it can be inserted into
a face of the drawing of H and the path P can be drawn as it is sufficiently long. We
therefore obtain an ortho-radial embedding of G ′. This proves the following theorem.

Theorem 10.1 Ortho- radial Embeddability is NP-complete.

11 Conclusion

In this paper we considered orthogonal drawings of graphs on cylinders. Our main
result is a characterization of the plane 4-graphs that can be drawn bend-free on a
cylinder in terms of a combinatorial description of such drawings. These ortho-radial
representations determine all angles in the drawingwithout fixing any lengths, and thus
are a natural extension of Tamassia’s orthogonal representations. However, compared
to those, the proof that every valid ortho-radial representation has a corresponding
drawing is significantly more involved. The reason for this is the more global nature
of the additional property required to deal with the cyclic dimension of the cylinder.

Our ortho-radial representations establish the existence of an ortho-radial TSM
framework in the sense that they are a combinatorial description of the graph serving
as interface between the “Shape” and “Metrics” step.

For rectangular plane 4-graphs, we gave an algorithm producing a drawing from
a valid ortho-radial representation. Our proof reducing the drawing of general plane
4-graphs with a valid ortho-radial representation to the case of rectangular plane 4-
graphs is constructive. We have described an algorithm that checks the validity of an
ortho-radial representation in Ø(n2) time. In the positive case, we can also produce
a corresponding drawing in the same running time, whereas in the negative case we
find a strictly monotone cycle. These algorithms correspond to the “Metrics” step in
a TSM framework for ortho-radial drawings. It is an interesting question whether the
running time can be improved further.

While bend-minimal orthogonal representations can be created in polynomial time,
it remains an open question whether the same can be achieved for bend-minimal valid
ortho-radial representations.

Finally, we want to emphasize that we deem the generalization of ortho-radial
drawings from the cylinder to the torus or even more complex surfaces an interesting
and promising research question. It is far from clear how to transfer our results to the
torus as its two cyclic dimensions lead to different types of essential cycles.

Acknowledgements Lukas Barth was funded by the German Research Foundation (DFG) as part of the
Research TrainingGroupGRK2153: Energy StatusData—InformaticsMethods for its Collection, Analysis
and Exploitation. Matthias Wolf was funded by the Helmholtz Association Program Storage and Cross-
linked Infrastructures, Topic 6 Superconductivity, Networks and System Integration and by the German
Research Foundation (DFG) as part of the Research Training Group GRK 2153: Energy Status Data—
Informatics Methods for its Collection, Analysis and Exploitation.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,

123



Discrete & Computational Geometry

and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Alam, M.J., Kobourov, S.G., Mondal, D.: Orthogonal layout with optimal face complexity. Comput.
Geom. 63, 40–52 (2017)

2. Bast, H., Brosi, P., Storandt, S.: Metro maps on flexible base grids. In: 17th International Symposium
on Spatial and Temporal Databases (SSTD’21), pp. 12–22. ACM, New York (2021)

3. Batini, C., Nardelli, E., Tamassia, R.: A layout algorithm for data flow diagrams. IEEE Trans. Softw.
Eng. SE-12(4), 538–546 (1986)

4. Bertolazzi, P., di Battista, G., Didimo, W.: Computing orthogonal drawings with the minimum number
of bends. IEEE Trans. Comput. 49(8), 826–840 (2000)

5. Bhatt, S.N., Leighton, F.T.: A framework for solving VLSI graph layout problems. J. Comput. Syst.
Sci. 28(2), 300–343 (1984)

6. Biedl, T.C.: New lower bounds for orthogonal graph drawings. In: Brandenburg, F.J. (ed.) Graph
Drawing (GD’95). Lecture Notes in Computer Science, vol. 1027, pp. 28–39. Springer, Berlin (1996)

7. Biedl, T., Kant, G.: A better heuristic for orthogonal graph drawings. Comput. Geom. 9(3), 159–180
(1998)

8. Biedl, T.C., Madden, B.P., Tollis, I.G.: The three-phase method: a unified approach to orthogonal graph
drawing. In: DiBattista, G. (ed.) Graph Drawing (GD’97). Lecture Notes in Computer Science, vol.
1353, pp. 391–402. Springer, Berlin (1997)

9. Bläsius, T., Rutter, I., Wagner, D.: Optimal orthogonal graph drawing with convex bend costs. ACM
Trans. Algorithms 12(3), Art. No. 33 (2016)

10. Bläsius, T., Lehmann, S., Rutter, I.: Orthogonal graph drawing with inflexible edges. Comput. Geom.
55, 26–40 (2016)

11. Chang, Y.-J., Yen, H.-C.: On bend-minimized orthogonal drawings of planar 3-graphs. In: Aronov,
B., Katz, M.J. (eds.) Computational Geometry (SoCG’17). Leibniz International Proceedings in Infor-
matics (LIPIcs), vol. 77, Art. No. 29. Schloss Dagstuhl—Leibniz-Zentrum für Informatik, Wadern
(2017)

12. Cornelsen, S., Karrenbauer, A.: Accelerated bend minimization. In: van Kreveld, M., Speckmann, B.
(eds.) Graph Drawing (GD’12). Lecture Notes of Computer Science, vol. 7034, pp. 111–122. Springer,
Heidelberg (2012)

13. Eiglsperger,M.,Kaufmann,M., Siebenhaller,M.:A topology-shape-metrics approach for the automatic
layout ofUMLclass diagrams. In: Proceedings of the 2003ACMSymposiumonSoftwareVisualization
(SoftVis’03), pp. 189–ff. ACM, New York (2003)

14. Eiglsperger,M., Gutwenger, C., Kaufmann,M., Kupke, J., Jünger,M., Leipert, S., Klein, K.,Mutzel, P.,
Siebenhaller, M.: Automatic layout of UML class diagrams in orthogonal style. Inf. Vis. 3(3), 189–208
(2004)

15. Felsner, S., Kaufmann, M., Valtr, P.: Bend-optimal orthogonal graph drawing in the general position
model. Comput. Geom. 47(3, Part B), 460–468 (2014)

16. Fink, M., Haverkort, H., Nöllenburg, M., Roberts, M., Schuhmann, J., Wolff, A.: Drawing metro maps
using Bézier curves. In: Didimo, W., Patrignani, M. (eds.) Graph Drawing (GD’13). Lecture Notes in
Computer Science, vol. 7704, pp. 463–474. Springer, Heidelberg (2013)

17. Fink,M., Lechner,M.,Wolff, A.: Concentricmetromaps. In: Roberts,M.J., Rodgers, P. (eds.) Abstracts
of the Schematic Mapping Workshop 2014 (2014)

18. Fößmeier, U., Kaufmann, M.: Drawing high degree graphs with low bend numbers. In: International
Symposium on Graph Drawing (Passau 1995). Lecture Notes in Computer Science, vol. 1027, pp.
254–266. Springer, Berlin (1996)

19. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing.
SIAM J. Comput. 31(2), 601–625 (2001)

123

http://creativecommons.org/licenses/by/4.0/


Discrete & Computational Geometry

20. Gutwenger, C., Jünger, M., Klein, K., Kupke, J., Leipert, S., Mutzel, P.: A new approach for visualizing
UML class diagrams. In: 1st ACM Symposium on Software Visualization (San Diego 2003), pp.
179–188. ACM, New York (2003)

21. Hasheminezhad, M., Hashemi, S.M., Tahmabasi, M.: Ortho-radial drawings of graphs. Australas. J.
Combin. 44, 171–182 (2009)

22. Hasheminezhad, M., Hashemi, S.M., McKay, B.D., Tahmasbi, M.: Rectangular-radial drawings of
cubic plane graphs. Comput. Geom. 43(9), 767–780 (2010)

23. Hong, S.-H., Merrick, D., do Nascimento, H.A.D.: Automatic visualisation of metro maps. J. Vis.
Lang. Comput. 17(3), 203–224 (2006)

24. Kieffer, S., Dwyer, T., Marriott, K., Wybrow, M.: Hola: human-like orthogonal network layout. IEEE
Trans. Visual. Comput. Graph. 22(1), 349–358 (2016)

25. Miller, G.L., Naor, J.: Flow in planar graphs with multiple sources and sinks. SIAM J. Comput. 24(5),
1002–1017 (1995)

26. Nickel, S., Nöllenburg, M.: Towards data-driven multilinear metro maps. In: Diagrammatic Represen-
tation and Inference. Lecture Notes in Artificial Intelligence, vol. 12169, pp. 153–161. Springer, Cham
(2020)

27. Niedermann, B., Rutter, I.: An integer-linear program for bend-minimization in ortho-radial drawings.
In: 28th International Symposium on Graph Drawing and Network Visualization (Vancouver 2020).
Lecture Notes in Computer Science, vol. 12590, pp. 235–249. Springer, Cham (2020)

28. Nöllenburg, M., Wolff, A.: Drawing and labeling high-quality metro maps by mixed-integer
programming. IEEE Trans. Vis. Comput. Graph. 17(5), 626–641 (2011)

29. Papakostas, A., Tollis, I.G.: Algorithms for area-efficient orthogonal drawings. Comput. Geom. 9(1–2),
83–110 (1998)

30. Rüegg, U., Kieffer, S., Dwyer, T., Marriott, K., Wybrow, M.: Stress-minimizing orthogonal layout of
data flow diagrams with ports. In: 22nd International Symposium onGraph Drawing (Würzburg 2014).
Lecture Notes in Computer Science, vol. 8871, pp. 319–330. Springer, Heidelberg (2014)

31. Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput.
16(3), 421–444 (1987)

32. Tamassia, R., Di Battista, G., Batini, C.: Automatic graph drawing and readability of diagrams. IEEE
Trans. Syst. Man Cybern. 18(1), 61–79 (1988)

33. Tamassia, R., Tollis, I.G., Vitter, J.S.: Lower bounds for planar orthogonal drawings of graphs. Inf.
Process. Lett. 39(1), 35–40 (1991)

34. Tollis, I.G., Di Battista, G., Eades, P., Tamassia, R.: Graph Drawing: Algorithms for the Visualization
of Graphs. Prentice Hall, Upper Saddle River (1999)

35. Valiant, L.G.: Universality considerations in VLSI circuits. IEEE Trans. Comput. 30(2), 135–140
(1981)

36. Wang, Y.-S., Chi, M.-T.: Focus+context metro maps. Trans. Vis. Comput. Graph. 17(12), 2528–2535
(2011)

37. Wu, H.-Y., Niedermann, B., Takahashi, S., Roberts, M.J., Nöllenburg, M.: A survey on transit map
layout—fromdesign,machine, and humanperspectives. Comput.Graph. Forum 39(3), 619–646 (2020)

38. Wybrow, M., Marriott, K., Stuckey, P.J.: Orthogonal connector routing. In: 17th International Sympo-
sium on Graph Drawing (Chicago 2009). Lecture Notes in Computer Science, vol. 5849, pp. 219–231.
Springer, Berlin (2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	A Topology-Shape-Metrics Framework for Ortho-Radial Graph Drawing
	Abstract
	1 Introduction
	2 Preliminaries
	3 Ortho-Radial Drawings and Representations
	3.1 Ortho-Radial Representations
	3.2 Drawable Ortho-Radial Representations

	4 Transformations of Ortho-Radial Representations
	5 Properties of Labelings
	6 Characterization of Rectangular Ortho-Radial Representations
	7 Drawable Representations of Planar 4-Graphs
	7.1 Rectangulation Procedure
	7.2 Proof of Proposition 7.2
	7.3 Proof of the Main Theorem

	8 Validity Testing
	9 Efficient Rectangulation Procedure
	9.1 1st Improvement—Faster Validity Test
	9.2 2nd Improvement—Fewer Validity Tests
	9.3 3rd Improvement—Linear Number of Validity Tests
	9.3.1 Proof of Lemma 9.6


	10 Bend Minimization
	11 Conclusion
	Acknowledgements
	References


