28,293 research outputs found

    Complexity results for three-dimensional orthogonal graph drawing

    Get PDF
    AbstractIn this paper we consider the problem of finding three-dimensional orthogonal drawings of maximum degree six graphs from the computational complexity perspective. We introduce a 3SAT reduction framework that can be used to prove the NP-hardness of finding three-dimensional orthogonal drawings with specific constraints. By using the framework we show that, given a three-dimensional orthogonal shape of a graph (a description of the sequence of axis-parallel segments of each edge), finding the coordinates for nodes and bends such that the drawing has no intersection is NP-complete. Conversely, we show that if node coordinates are fixed, finding a shape for the edges that is compatible with a non-intersecting drawing is a feasible problem, which becomes NP-complete if a maximum of two bends per edge is allowed. We comment on the impact of these results on the two open problems of determining whether a graph always admits a drawing with at most two bends per edge and of characterizing orthogonal shapes admitting an orthogonal drawing without intersections

    Extending Orthogonal Planar Graph Drawings Is Fixed-Parameter Tractable

    Get PDF
    The task of finding an extension to a given partial drawing of a graph while adhering to constraints on the representation has been extensively studied in the literature, with well-known results providing efficient algorithms for fundamental representations such as planar and beyond-planar topological drawings. In this paper, we consider the extension problem for bend-minimal orthogonal drawings of planar graphs, which is among the most fundamental geometric graph drawing representations. While the problem was known to be NP-hard, it is natural to consider the case where only a small part of the graph is still to be drawn. Here, we establish the fixed-parameter tractability of the problem when parameterized by the size of the missing subgraph. Our algorithm is based on multiple novel ingredients which intertwine geometric and combinatorial arguments. These include the identification of a new graph representation of bend-equivalent regions for vertex placement in the plane, establishing a bound on the treewidth of this auxiliary graph, and a global point-grid that allows us to discretize the possible placement of bends and vertices into locally bounded subgrids for each of the above regions

    Transforming planar graph drawings while maintaining height

    Full text link
    There are numerous styles of planar graph drawings, notably straight-line drawings, poly-line drawings, orthogonal graph drawings and visibility representations. In this note, we show that many of these drawings can be transformed from one style to another without changing the height of the drawing. We then give some applications of these transformations

    Stress-Minimizing Orthogonal Layout of Data Flow Diagrams with Ports

    Full text link
    We present a fundamentally different approach to orthogonal layout of data flow diagrams with ports. This is based on extending constrained stress majorization to cater for ports and flow layout. Because we are minimizing stress we are able to better display global structure, as measured by several criteria such as stress, edge-length variance, and aspect ratio. Compared to the layered approach, our layouts tend to exhibit symmetries, and eliminate inter-layer whitespace, making the diagrams more compact

    Simultaneous Orthogonal Planarity

    Full text link
    We introduce and study the OrthoSEFEk\textit{OrthoSEFE}-k problem: Given kk planar graphs each with maximum degree 4 and the same vertex set, do they admit an OrthoSEFE, that is, is there an assignment of the vertices to grid points and of the edges to paths on the grid such that the same edges in distinct graphs are assigned the same path and such that the assignment induces a planar orthogonal drawing of each of the kk graphs? We show that the problem is NP-complete for k3k \geq 3 even if the shared graph is a Hamiltonian cycle and has sunflower intersection and for k2k \geq 2 even if the shared graph consists of a cycle and of isolated vertices. Whereas the problem is polynomial-time solvable for k=2k=2 when the union graph has maximum degree five and the shared graph is biconnected. Further, when the shared graph is biconnected and has sunflower intersection, we show that every positive instance has an OrthoSEFE with at most three bends per edge.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Incremental Grid-like Layout Using Soft and Hard Constraints

    Full text link
    We explore various techniques to incorporate grid-like layout conventions into a force-directed, constraint-based graph layout framework. In doing so we are able to provide high-quality layout---with predominantly axis-aligned edges---that is more flexible than previous grid-like layout methods and which can capture layout conventions in notations such as SBGN (Systems Biology Graphical Notation). Furthermore, the layout is easily able to respect user-defined constraints and adapt to interaction in online systems and diagram editors such as Dunnart.Comment: Accepted to Graph Drawing 201

    Drawing Graphs within Restricted Area

    Full text link
    We study the problem of selecting a maximum-weight subgraph of a given graph such that the subgraph can be drawn within a prescribed drawing area subject to given non-uniform vertex sizes. We develop and analyze heuristics both for the general (undirected) case and for the use case of (directed) calculation graphs which are used to analyze the typical mistakes that high school students make when transforming mathematical expressions in the process of calculating, for example, sums of fractions
    corecore