
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Journal of Discrete Algorithms 6 (2008) 140–161

www.elsevier.com/locate/jda

Complexity results for three-dimensional
orthogonal graph drawing

Maurizio Patrignani

Dipartimento di Informatica e Automazione, Università di Roma Tre, Rome, Italy

Received 17 November 2005; accepted 23 June 2006

Available online 12 January 2007

Abstract

In this paper we consider the problem of finding three-dimensional orthogonal drawings of maximum degree six graphs from the
computational complexity perspective. We introduce a 3SAT reduction framework that can be used to prove the NP-hardness of
finding three-dimensional orthogonal drawings with specific constraints. By using the framework we show that, given a three-
dimensional orthogonal shape of a graph (a description of the sequence of axis-parallel segments of each edge), finding the
coordinates for nodes and bends such that the drawing has no intersection is NP-complete. Conversely, we show that if node
coordinates are fixed, finding a shape for the edges that is compatible with a non-intersecting drawing is a feasible problem, which
becomes NP-complete if a maximum of two bends per edge is allowed. We comment on the impact of these results on the two
open problems of determining whether a graph always admits a drawing with at most two bends per edge and of characterizing
orthogonal shapes admitting an orthogonal drawing without intersections.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Because of its impact on applications and because of its theoretical appeal three-dimensional orthogonal graph
drawing has attracted much research interest through the last decades [3,4,8,14,16,18,22,24–26,31,33,34]. Several
algorithms have been conceived to compute orthogonal drawings of graphs of maximum degree six in O(n3/2) volume
[3,16,18,32], which has been proven to be asymptotically optimal [24] (finding a drawing in the minimum volume is
known to be NP-hard [16]). Further, the goal of reducing the number of bends has been pursued, producing algorithms
that compute drawings with as few as three bends per edge maximum [18,26,35]. The tradeoff between the volume
and the maximum number of bends per edge has also been explored [18,34].

Nevertheless, some basic questions still lack an answer. It is open, for example, whether a graph of maximum
degree six always admits a drawing with at most two bends per edge (called a 2-bend drawing). This problem, first
posed by Eades et al. [18], is mentioned as one of the most interesting problems of the field by several authors ([33,
34], and [10], problem #46). Two bends would be best possible, since any drawing of K5 uses at least two bends on
at least one edge [32]. Hence, drawings with zero bends (0-bend drawings) or with a maximum of one bend per edge

E-mail address: patrignani@dia.uniroma3.it.
1570-8667/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.jda.2006.06.002

https://core.ac.uk/display/82497173?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jda
mailto:patrignani@dia.uniroma3.it
http://dx.doi.org/10.1016/j.jda.2006.06.002


M. Patrignani / Journal of Discrete Algorithms 6 (2008) 140–161 141
(1-bend drawings) are not guaranteed to exist for all maximum degree six graphs. In particular, it has been proven
that it is NP-hard to recognize graphs admitting 0-bend drawings [16]. On the contrary, the complexity of recognizing
graphs that admit 1-bend drawings is unknown, and it is also unknown if all simple graphs with maximum degree at
most three admit such drawings [33].

Regarding the question of whether a graph of maximum degree six always admits a 2-bend drawing, in [17] it was
conjectured that the answer is false, but the graph that was thought to require three bends, the K7 graph, was drawn
with two bends per edge by Wood [31], along with the other 6-regular complete multi-partite graphs K6,6, K3,3,3, and
K2,2,2,2 [32]. The best known upper bound on the number of bends in three-dimensional orthogonal graph drawings
is 2 + 2

7 bends per edge on average [34]. Also, it is known that if the graph has maximum degree five, two bends per
edge suffice [34]. There are graph families for which a drawing with two bends per edge implies many edges sharing
the same axis-perpendicular plane [33].

A further open problem in this field is the characterization of the orthogonal shapes admitting an orthogonal draw-
ing without intersections. Such a characterization is still missing in the general case ([15] and [7], problem 20) and
would allow the separation of the task of defining the shape of the drawing from the task of computing its coordi-
nates, extending to three dimensions a well-studied and widely adopted two-dimensional approach [11,28,29]. In 2D,
the topology-shape-metrics approach consists of three main steps. In the first step, a planar embedding of the input
graph G is defined. In the second step, a two-dimensional orthogonal representation of G is computed. An orthogonal
representation is an equivalence class of orthogonal drawings of G all having the same shape and such that no two
edges intersect. It can be described by labeling each edge (u, v) of G with a sequence of labels in the set {x+, x–,
y+, y–}, representing the directions followed when travelling along edge (u, v) from u to v. In the third step, the
coordinates for the nodes and for the bends along the edges are found.

A key component of the 2D topology-shape-metrics approach is a characterization of those labelings that guarantee
the existence of an orthogonal drawing without intersections. Such a characterization can be found in the works by
Vijayan and Wigderson [30] and by Tamassia [28], and a 3D counterpart of it consists of the solution to the following
SHAPE GRAPH REALIZATION problem: Let G be a graph whose edges are directed and labeled with a sequence of
labels in the set {x+, x–, y+, y–, z+, z–}. Does a 3D orthogonal drawing of G exist such that each edge has a shape
“consistent” with its labeling and no two edges intersect? For example, Fig. 1 shows two graphs, G1 and G2, along
with a labeling for their edges. For G1 there exists a 3D orthogonal drawing without intersections and such that every
edge has a shape consistent with the sequence of labels associated with it. For G2, such a drawing does not exist.

Preliminary results toward the recognition of realizable orthogonal shapes are provided in [12,13] where paths
(with further additional constraints) and cycles are considered, respectively. In [15] it is shown that the known char-
acterization for cycles does not immediately extend to even seemingly simple graphs such as theta graphs (simple
graphs consisting of three cycles).

In this paper we consider three-dimensional orthogonal drawings of a maximum degree six graph from the com-
putational complexity perspective. The main contributions of this paper are the following:

Fig. 1. Graph G1 (a) admits a non-intersecting 3D orthogonal drawing such that the edges are “consistent” with the directions and labels associated
with them. Graph G2 (b) does not admit such a drawing.
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• We introduce a framework that can be used for reducing an NP-hard problem (namely, the 3SAT problem) to a
three-dimensional geometric problem. The 3SAT reduction framework can be used to show that it is NP-hard to
decide if an orthogonal 3D drawing of a graph satisfying some constraints exists.

• By using such a framework we show that the SHAPE GRAPH REALIZATION problem is NP-complete.
• Conversely, we show that the opposite problem, called N -BEND ROUTING, of producing a non-intersecting

N -bend drawing when the position of the nodes is fixed is a feasible problem for N = 0, N = 1, and for N � 6. In
fact, we produce algorithms for deciding if a graph with nodes at fixed positions admits 0- and 1-bend drawings
that run in O(|V |2) time, where |V | is the number of nodes of the input graph. Also, we show that a graph with
nodes at fixed positions always admits a 6-bend drawing by describing an algorithm for computing such drawings
that runs in O(|V | log |V |) time.

• By using the 3SAT reduction framework, we show that 2-BEND ROUTING is NP-complete.
• We comment on the impact of these results on the two open problems of determining whether a graph always

admits a drawing with at most two bends per edge and of characterizing orthogonal shapes admitting an orthogonal
drawing without intersections.

The paper is organized as follows. In Section 2 some preliminary definitions are given. Section 3 introduces the
3SAT reduction framework. Section 4 is devoted to the problem of finding a drawing with a given shape, while
Section 5 is devoted to the reverse problem of finding a drawing with nodes at fixed points. Finally, Section 6 contains
a discussion of the results and some open problems.

2. Background

We assume familiarity with basic graph drawing, graph theory, and computational geometry terminology (see, e.g.
[5,11,27]).

A 3D orthogonal drawing of a graph G = (V ,E) is such that each node u ∈ V is mapped to a distinct point of
the three-dimensional space and each edge e = (u, v) ∈ E is mapped to a polygonal chain of axis-parallel segments
joining u and v. A bend is a point shared between two consecutive segments of the same edge. An intersection in
a three dimensional orthogonal drawing is a pair of edges that overlap in at least one point that does not correspond
to a common end-node. A k-bend (3D orthogonal) drawing of a graph, where k is a non-negative integer, is a non-
intersecting orthogonal drawing such that each edge has at most k bends.

A 3D orthogonal grid drawing is a 3D orthogonal drawing such that nodes and bends have integer coordinates. In
the remainder of this paper, unless differently specified, 3D orthogonal drawings will be considered (i.e., real-valued
coordinates are allowed). Also, for the sake of brevity a 3D orthogonal drawing is called a drawing.

An X-plane (Y -plane, Z-plane, respectively) is a plane perpendicular to the X-axis (Y -axis, Z-axis, respectively).
Given a drawing Γ of a graph G and two nodes u and v, we write u >x v if the X-coordinate of u is greater than
the X-coordinate of v in Γ , and we write u =x v if u and v have the same X-coordinate. Also, we write u >x>y v if
u >x v and u >y v.

A direction label is a label in the set {x+, x–, y+, y–, z+, z–}. Let G be a graph and Γ be a 3D orthogonal drawing
of G. Let e be an undirected edge of G whose end-nodes are u and v. Select one of the two possible orientations
(u, v) and (v,u) of e and call p1,p2, . . . , pm the endpoints of the orthogonal segments corresponding to edge e in Γ

as they are encountered while moving along e from u to v (p1 = u and pm = v). The shape of e in Γ is the sequence
of the direction labels corresponding to the directions of vectors −−−−−−→pi,pi+1, i = 1, . . . ,m − 1. For example, consider an
edge (u, v) drawn with a single bend b and such that u <x=y b =x<y v. The shape of e consists of the orientation

from u to v and the sequence of labels x+, y+. We also write u
x+−→ y+−→ v.

When producing a 3D orthogonal drawing of a graph one can ask if the positions of the vertices and the shapes of
the edges can be computed separately. For example, it can be asked if it is always possible to find a drawing of a graph
whose vertex positions are fixed. We can define the following family of problems parametric in the integer N .

Problem: N -BEND ROUTING

Instance: A graph G = (V ,E) and an injection between nodes and distinct points of the three-dimensional space.
Question: Does a non-intersecting 3D N -bend drawing of G exist such that the nodes have the specified coordinates?
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Conversely, it can be asked what is the complexity of deciding if a graph admits a drawing such that its edges
have a specified shape. A shape graph is a graph where a shape (an orientation and a sequence of direction labels) is
specified for each edge. A shape graph H is realizable if it admits a non-intersecting drawing Γ such that each edge
has the specified shape. Observe that the segments of the polygonal chains of Γ corresponding to the edges are not
allowed to have zero length. Formally, the SHAPE GRAPH REALIZATION problem is as follows.

Problem: SHAPE GRAPH REALIZATION

Instance: A shape graph H .
Question: Does a non-intersecting drawing of H exist such that each edge has the specified shape?

Observe that the above defined problems ask for orthogonal drawings where nodes and bends are allowed to have
real-valued coordinates. While SHAPE GRAPH REALIZATION clearly has the same complexity in the integer and real-
valued coordinate settings, N -BEND ROUTING restricted to integer coordinates yields a different family of problems,
possibly with a different time complexity, called N -BEND GRID ROUTING. The complexity of such problems is
addressed in Section 6.

3. The 3SAT reduction framework

In [23] a powerful paradigm, called “logic engine”, for proving NP-hardness of graph drawing problems was ex-
tended to the three-dimensional setting. The logic engine consists of a device that mechanically simulates an instance
of an NP-complete problem known as NOT-ALL-EQUAL-3-SAT [2,6,11,16,19,20]. The basic mechanism exploited
by the logic engine is the physical collision between its mobile components. This makes the logic engine suitable
for proving NP-hardness of problems where metrics have to be taken into account. The list of problems shown to be
NP-hard by using the logic engine paradigm confirms this intuition: unit-length grid drawings of trees in 2D [2] and in
3D [16], minimum area grid drawings of trees [6], nearest neighbour graph realization [19], mutual nearest neighbor
graph realization in 2D [11] and in 3D [23], Euclidean minimum spanning tree realization [20], unit-length planar
straight-line drawings [11], unit disk touching realization [11], etc.

The problems addressed in this paper, instead, seem to have a different nature, more related to the shapes than to
the distances involved in the drawings. Hence, we had to develop a novel framework especially targeted at proving
NP-hardness of three-dimensional graph drawing problems where shapes, rather than metrics, are taken into account.
The 3SAT reduction framework introduced in this section can be used to show that it is NP-hard finding a 3D drawing
of a graph within the orthogonal standard that satisfies a generic constraint. By using this framework in Sections 4
and 5, respectively, it is shown the NP-hardness of SHAPE GRAPH REALIZATION and of 2-BEND ROUTING. Also,
in Section 6 the NP-hardness of finding 0-bends drawings is reproved.

A constraint is a statement that, given a drawing Γ of a graph G, produces a true or a false value. More formally,
a constraint γ is a formula obtained by applying the logical operators ∧, ∨, and ¬ to some atomic sentences. Each
atomic sentence is a comparison (=, <, �, >, and � operators allowed) between two quantities of the following:

• A constant (a real number);
• A function giving the number of bends of an edge in Γ ;
• A function giving the X-, Y -, or Z-coordinate of a node or a bend in Γ .

Throughout this section, the target problem is assumed to be as follows:

Problem: TARGET PROBLEM

Instance: A graph G = (V ,E) and a constraint γ on the drawing of G.
Question: Does a non-intersecting 3D drawing of G exist such that γ evaluates to true?

The 3SAT problem is as follows:
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Fig. 2. The basic structure of an instance of the target problem.

Problem: 3-SATISFIABILITY (3SAT)
Instance: A set of clauses {c1, c2, . . . , cm}, each containing three literals from a set of Boolean variables {v1, v2,

. . . , vn}.
Question: Can truth values be assigned to the variables so that each clause contains at least one true literal?

Observe that in the 3SAT definition the three variables contributing to the same clause can be assumed to be
different, since multiple occurrences can be trivially eliminated.

Given a 3SAT instance φ, the 3SAT reduction framework specifies how to build an instance Iφ = (Gφ, γφ) of the
target problem such that φ admits a solution if and only if Iφ does. Gφ = (Vφ,Eφ) is composed of different types of
gadgets connected together. The bounding boxes of the gadgets are depicted in Fig. 2, while the interior components
are not shown and depend on the specific target problem. The three basic gadgets are the following.

Variable gadget. Instance Iφ has a variable gadget Vi for each Boolean variable vi of φ. Fig. 2 shows the variable
gadgets as tall vertical blocks placed in a row along the Y -axis so that if i < j then variable gadget Vi has
lower Y -coordinates than variable gadget Vj .

Clause gadget. Instance Iφ has one clause gadget Ci for each clause ci = lh ∨ lj ∨ lk of φ. Clause gadgets are repre-
sented in Fig. 2 as small cubes. Denoted with vh, vj , and vk the variables of literals lh, lj , and lk , respectively,
and assumed that h < j < k, clause gadget Ci is placed directly in front of the variable gadget Vj .

Joint gadget. For each clause ci = lh ∨ lj ∨ lk of φ, Iφ has two joint gadgets Ji,h and Ji,k , depicted in Fig. 2 as flat
blocks placed in front of the variable gadgets Vh and Vk , respectively.

In order to use the 3SAT reduction framework for the NP-hardness proof of a specific target problem a complete
specification must be provided, where a specification for the 3SAT reduction framework is defined as follows.

• Construction rules describing how, starting from an instance φ of the 3SAT problem, variable gadgets, joint
gadgets, and clause gadgets are built and connected together and an instance Iφ = (Gφ, γφ) of the target problem
is obtained.

• For each variable gadget Vi a partition of the non-intersecting drawings of Gφ satisfying the constraint γφ into
two sets, denoted TVi

and FVi
.

• For each joint gadget Ji,k a partition of the non-intersecting drawings of Gφ satisfying the constraint γφ into two
sets, denoted TJi,k

and FJi,k
.

Intuitively, drawings in TVi
are those drawings that are meant to correspond to a true value for variable vi , while

drawings in FVi
are meant to correspond to a false value for variable vi . Analogously, drawings in TJi,k

are such that
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Ji,k is transmitting a true value from the variable gadget Vk to the clause gadget Ci , while drawings in TJi,k
are such

that Ji,k is transmitting a false value to Ci .
A specification is said to be compliant if, for any 3SAT instance φ, the following four statements hold.

Statement 1. Given an instance φ of 3SAT problem, the corresponding instance Iφ = (Gφ, γφ) of the target problem
can be constructed in polynomial time.

Statement 2. If a non-intersecting drawing of Gφ = (Vφ,Eφ) satisfying γφ exists, then it belongs to TJi,h
(TJi,k

) if and
only if it belongs to TVh

(TVk
).

Statement 3. For each clause ci = lh ∨ lj ∨ lk , where lh (lj , lk , respectively) is the positive or the negative literal of
variable vh (vj , vk , respectively), and for each non-intersecting drawing Γ of Gφ = (Vφ,Eφ) satisfying γφ at least
one of the following conditions holds:

(1) Γ ∈ TJi,h
and lh is the positive literal of vh;

(2) Γ ∈ FJi,h
and lh is the negative literal of vh;

(3) Γ ∈ TVj
and lj is the positive literal of vj ;

(4) Γ ∈ FVj
and lj is the negative literal of vj ;

(5) Γ ∈ TJi,k
and lk is the positive literal of vk ;

(6) Γ ∈ FJi,k
and lk is the negative literal of vk .

Statement 4. Consider a truth assignment to the variables v1, . . . vn satisfying φ. The set
⋂n

i=1 Ai , where Ai = TVi
if

vi is true and Ai = FVi
if vi is false, is non-empty.

Theorem 1. Given a target problem, whose instance is a graph G = (V ,E) and a constraint γ expressed with respect
to its nodes and edges, if it admits a compliant specification for the 3SAT reduction framework, then finding a non-
intersecting 3D orthogonal drawing of G satisfying the constraint γ is NP-hard.

Proof. First, we show that a 3SAT instance φ admits a solution if and only if Gφ admits a non-intersecting drawing
satisfying γφ . Consider a non-intersecting drawing Γ of Gφ = (Vφ,Eφ) satisfying γφ . Determine an assignment of
truth values to the Boolean variables that satisfies φ by taking vi = true if Γ ∈ TVi

and vi = false if Γ ∈ FVi
. In fact,

because of Statements 2 and 3 we have that each clause ci = lh ∨ lj ∨ lk has at least one true literal and thus φ is
satisfied. Conversely, consider an assignment of truth values to the Boolean variables that satisfies φ. Statement 4
guarantees the existence of a drawing of Gφ satisfying γφ . The proof is completed by considering that 3SAT is NP-
complete [9] and by showing that instance Iφ = (Gφ, γφ) can be obtained in polynomial time, which is guaranteed by
Statement 1. �
4. Fixing the shape and searching for coordinates

In this section we consider the SHAPE GRAPH REALIZATION problem, that is the problem of finding a non-
intersecting drawing for a graph whose orthogonal shape is fixed. We first prove the following lemma.

Lemma 1. SHAPE GRAPH REALIZATION is in NP.

Proof. Given an instance I = (G,γ ) of the SHAPE GRAPH REALIZATION problem, the search for a 3D orthogonal
drawing of G = (V ,E) satisfying γ can be restricted to orthogonal grid drawings. Further, we can restrict to those
drawings where each axis-orthogonal plane intersecting the drawing contains a node or a bend. Since the number
of nodes and bends in any 3D drawing satisfying γ can be easily computed, an upper bound for the sides of the
bounding box of such drawings can be obtained. This gives an upper bound for the maximum length λ of any axis-
aligned segment of the edges. A non-deterministic Turing machine can be devised that assigns all possible integer
lengths between one and λ to the edge segments and then checks in polynomial time if a non-intersecting drawing is
produced. �



146 M. Patrignani / Journal of Discrete Algorithms 6 (2008) 140–161
Fig. 3. (a) A drawing of the variable gadget Vi belonging to TVi
and (b) a drawing belonging to FVi

. (c) Nodes n′
j

, n′′
j

, n′
k

, and n′′
k

are inserted in
order to transmit the geometric constraints to the clause gadgets of clauses cj and ck , respectively.

In the remaining part of this section we show that SHAPE GRAPH REALIZATION is NP-hard. Therefore, the fol-
lowing theorem holds.

Theorem 2. SHAPE GRAPH REALIZATION is NP-complete.

We prove that SHAPE GRAPH REALIZATION is NP-hard by using the framework introduced in Section 3 in order to
reduce an instance of 3SAT to an instance of SHAPE GRAPH REALIZATION. In the following sections it is shown how
the variable gadgets (Section 4.1), joint gadgets (Section 4.2), and clause gadgets (Section 4.3) are built. Section 4.4
contains the hardness proof.

4.1. The variable gadget

The heart of the variable gadget Vi , depicted in Fig. 3, is the path n1
z−−→ n2

z−−→ n3
y+−→ n4

z+−→ n5
y−→ n6

z−−→
n7

z−−→ n8, whose nodes lie on the same X-plane. Further, the path n1
x−−→ n9

y−→ n10
x+−→ n11

y+−→ n12
x−−→ n7 con-

strains nodes n1 and n7 to share the same Z-plane. Analogously, path n2
x−−→ n13

y−→ n14
x+−→ n15

y+−→ n16
x−−→ n8

constrains nodes n2 and n8 to share the same Z-plane. We define TVi
as the set of non-intersecting drawings of Gφ

satisfying the direction constraints and such that n1 >y n7 (as in Fig. 3(a)). Analogously, we define FVi
as the set

of non-intersecting drawings of Gφ satisfying the direction constraints and such that n1 <y n7 (as in Fig. 3(b)). The
following lemma guarantees that TVi

and FVi
form a bipartition of the non-intersecting drawings of Gφ satisfying the

direction constraints.

Lemma 2. For each i = 1, . . . , n, any non-intersecting drawing of Gφ = (Vφ,Eφ) satisfying the direction constraints
either belongs to TVi

or to FVi
.

Proof. Since in any drawing of Gφ we have that n1 =x n7 and n1 =z n7, if the drawing is non-intersecting, then either
n1 >y n7 or n1 <y n7, which is exactly what is requested by the definition of TVi

or FVi
, respectively. �

For each clause cj of the 3SAT formula in which the variable participates we insert a node n′
j between nodes n1

and n2 and a node n′′
j between nodes n7 and n8. In any drawing Γ of Gφ satisfying the direction constraints, nodes n′

j

and n′′
j have the same relative position with respect to the Y -axis as n1 and n7, i.e., n′

j >y n′′
j if Γ ∈ TVi

and n′
j <y n′′

j

if Γ ∈ FVi
. Suitable edges attached to the nodes n′

j and n′′
j along the protruding lines shown in Fig. 3(c) transmit the

above constraints from Vi to the clause gadget Cj (possibly via joint gadget Ji,j ). Note that nodes n′
j and n′′

j need not
lie in the same Z-plane.
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Fig. 4. (a) A drawing of the joint gadget Ji,h belonging to TJi,h
and (b) a drawing belonging to FJi,h

.

4.2. The joint gadget

Given a clause ci = lh ∨ lj ∨ lk , the joint gadget Ji,k can be obtained from the reflected image with respect to the
Y -axis of the joint gadget Ji,h. Thus, in the following we will only describe the joint gadget Ji,h, which is depicted

in Fig. 4 and composed of two cycles α = n1
y+−→ n2

x−−→ n3
y−→ n4

x+−→ n5
y−→ n6

x+−→ n7
y+−→ n8

x−−→ n1, and

α′ = n′
1

y−→ n′
2

x+−→ n′
3

y+−→ n′
4

x−−→ n′
5

y+−→ n′
6

x−−→ n′
7

y−→ n′
8

x+−→ n′
1. Nodes n1 and n′

1 are connected by a path

n1
z−−→ n′′

1
z−−→ n′

1 while nodes n5 and n′
5 are connected by the path n5

z−−→ n′′
5

z−−→ n′
5.

We define TJi,h
as the set of non-intersecting drawings of Gφ satisfying the direction constraints and such that

n′′
5 <x n′′

1 (as in Fig. 4(a)). Analogously, we define FJi,h
as the set of non-intersecting drawings of Gφ satisfying the

direction constraints and such that n′′
5 >x n′′

1 (as in Fig. 4(b)).

Lemma 3. For each i = 1, . . . ,m, any non-intersecting drawing of Gφ = (Vφ,Eφ) satisfying the direction constraints
either belongs to TJi,h

or to FJi,h
.

Proof. Suppose for a contradiction that Γ is a non-intersecting drawing of Gφ and that Γ does not belong to TJi,h

nor to FJi,h
. In Γ we have that n′′

5 =x n′′
1, which implies that n1, n′

1, n5, and n′
5 lie in the same X-plane. Three are

the cases: (i) if n′′
5 >y n′′

1 then n5 intersects edge (n1, n2); (ii) if n′′
5 <y n′′

1 then n′
1 intersects edge (n′

5, n
′
6); and (iii) if

n′′
5 =y n′′

1 then n5 overlaps with n1 and n′
5 overlaps with n′

1. In all three cases we have a contradiction. �
The following lemma shows how a geometric constraint on the relative position of nodes n′′

5 and n′′
1 with respect

to the X-axis has an effect on their relative position with respect to the Y -axis in any non-intersecting drawing of the
joint gadget.

Lemma 4. In any non-intersecting drawing of Gφ = (Vφ,Eφ) satisfying the direction constraints either n′′
5 >y n′′

1 and
n′′

5 <x n′′
1 or n′′

5 <y n′′
1 and n′′

5 >x n′′
1 .

Proof. A drawing without intersections of the joint gadget where n′′
5 >y n′′

1 and n′′
5 <x n′′

1 is shown in Fig. 5(a).
Analogously, a drawing without intersections of the joint gadget where n′′

5 <y n′′
1 and n′′

5 >x n′′
1 is shown in Fig. 5(d).

From Fig. 5(b) it is easy to see that if n′′
5 >y n′′

1 and n′′
5 >x n′′

1 then α necessarily intersects. Analogously, from Fig. 5(c)
it is easy to see that if n′′

5 <y n′′
1 and n′′

5 <x n′′
1 then α′ necessarily intersects. �

4.3. The clause gadget

The clause gadget is depicted in Fig. 6. Its main component is the path α = n1
y+−→ n2

x−−→ n3
y−→ n4

x+−→ n5
y+−→

n6
x+−→ n7, whose nodes lie on the same Z-plane. Attached to α are the paths n′

1
z−−→ n1

z−−→ n′′
1, n′

2
z−−→ n2

z−−→ n′′
2,

n′ z−−→ n6
z−−→ n′′, and n′′′ x+−→ n′ z−−→ n7

z−−→ n′′ x+−→ n8
y+−→ n9

x−−→ n′′.
6 6 7 7 7 2
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Fig. 5. The joint gadget admits a drawing without intersection if and only if n′′
5 >y n′′

1 and n′′
5 <x n′′

1 (a) or n′′
5 <y n′′

1 and n′′
5 >x n′′

1 (d).

Fig. 6. Clause gadget Ci for clause ci = lh ∨ lj ∨ lk when lh , lj , and lk are the positive literals of the variables vh , vj , and vk , respectively.
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Fig. 7. The first four cases used in the proof of Lemma 5.

The following lemma holds:

Lemma 5. Clause gadget Ci admits a drawing without intersections if and only if n1 <x n6 or n1 >y n6 or n′′′
7 <x n′

2.

Proof. Figs. 7 and 8 show that α admits a drawing without intersections if at least one of the three following conditions
holds: n1 <x n6 (as shown in Figs. 7(a), 7(b), 7(c), and 7(d)), n1 >y n6 (as shown in Figs. 7(a), 7(b), 8(a), and 8(b)),
or n′′′

7 <x n′
2 (as shown in Figs. 7(a), 7(c), 8(a), and 8(c)).

Conversely, suppose that n6 �x n1, n1 �y n6, and n′′′
7 �x n′

2 (as depicted in Figs. 6 and 8(d)). We have that α

necessarily intersects. In fact, condition n′′′
7 �x n′

2 implies n′
7 >x n′

2, which in turn implies n7 >x n2, or, equivalently,

n1 <x n7. Also, because of path n′′
7

x+−→ n8
y+−→ n9

x−−→ n′′
2, we have n′′

7 <y n′′
2, which implies n6 <y n2. An intersec-

tion between edges n1
y+−→ n2 and n6

x+−→ n7 follows from n6 �x n1 <x n7 and n1 �y n6 <y n2 and from the fact that
the nodes of α lie on the same Z-plane. �
4.4. The hardness proof

We now describe how the various gadgets are connected together, and we show that the whole construction is a
compliant specification for the 3SAT reduction framework.

Joint gadget Ji,h is connected to both variable gadget Vh and clause gadget Ci . In particular, n′
i of Vh is connected

to n′′
5 of Ji,h with the edge n′

i

x+−→ n′′
5 and n′′

i of Vh is connected to n′′
1 of Ji,h with the edge n′′

i

x+−→ n′′
1 (see Fig. 6).

Due to the above described connections the following lemma holds:

Lemma 6. Statement 2 holds; that is, for any 3SAT instance φ, if a non-intersecting drawing of Gφ = (Vφ,Eφ) exists
such that the edges have the prescribed shape, then it belongs to TJi,h

if and only if it belongs to TVh
.
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Fig. 8. Four cases used in the proof of Lemma 5.

Proof. The statement follows by considering that n′′
1 and n′′

5 of Ji,h share their Y -coordinates with n′′
i and n′

i of Vh,
respectively, and by applying Lemma 4. �

Each clause gadget Ci , corresponding to clause ci = lh ∨ lj ∨ lk , is connected to joint gadget Ji,h, variable gadget
Vj , and joint gadget Ji,k as follows (see also Fig. 6):

• If lh is the positive (negative) literal of variable vh, we attach nodes n′′
1 and n′′

5 of the joint gadget Ji,h to nodes n′′
6

and n′′
1 (n′′

1 and n′′
6), respectively.

• If lj is the positive (negative) literal of variable vj , we attach nodes n′
i and n′′

i of the variable gadget Vj to n′
1 and

n′
6 (n′

6 and n′
1), respectively.

• If lk is the positive (negative) literal of variable vk , we attach nodes n′′
1 and n′′

5 of the joint gadget Ji,k to nodes n′
2

and n′′′
7 (n′′′

7 and n′
2), respectively.

Lemma 7. Statement 3 holds; that is, for each clause ci = lh ∨ lj ∨ lk and for each non-intersecting drawing Γ of
Gφ = (Vφ,Eφ) such that the edges have the prescribed shape, at least one of the following conditions holds:

(1) Γ ∈ TJi,h
and lh is the positive literal of vh;

(2) Γ ∈ FJi,h
and lh is the negative literal of vh;

(3) Γ ∈ TVj
and lj is the positive literal of vj ;

(4) Γ ∈ FVj
and lj is the negative literal of vj ;

(5) Γ ∈ TJi,k
and lk is the positive literal of vk ;

(6) Γ ∈ FJi,k
and lk is the negative literal of vk .
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Proof. Due to Lemma 5 each clause gadget Ci admits a drawing without intersections if and only if: (i) n1 <x n6,
or (ii) n1 >y n6, or (iii) n′′′

7 <x n′
2. Considering the connection rules described above these three conditions can be

rewritten as:

(i) In Ji,h{
n′′

5 <x n′′
1 if lh is the positive literal of vh,

n′′
1 <x n′′

5 otherwise.

(ii) In Vj {
n′

i >y n′′
i if lj is the positive literal of vj ,

n′′
i >y n′

i otherwise.

(iii) In Ji,k{
n′′

1 <x n′′
5 if lkis the positive literal of vk,

n′′
5 <x n′′

1 otherwise.

Recalling the definitions of true and false variable gadget and true and false joint gadget, the six conditions of the
statement follow. �
Lemma 8. Statement 4 holds; that is, if φ admits a solution, then Gφ = (Vφ,Eφ) admits a non-intersecting drawing
whose edges have the prescribed shape.

Proof. Consider a truth assignment satisfying φ. If variable vi is true (false) we can use the true (false) drawing of
variable gadget Vi depicted in Fig. 3(a) (Fig. 3(b)). Also, given a clause ci = lh ∨ lj ∨ lk , if variable vh is true (false)
we can use the true (false) drawing of variable gadget Ji,h depicted in Fig. 4(a) (Fig. 4(b)). If variable vk is true (false)
the case is analogous to the one of variable vh. In order to draw the clause gadget Ci without intersection a suitable
drawing can be selected between the ones depicted in Figs. 7(a)–(d) and 8(a)–(c). �

Now we can prove the following lemma.

Lemma 9. SHAPE GRAPH REALIZATION is NP-hard.

Proof. The proof is based on the fact that a compliant specification can be found for the 3SAT reduction framework
introduced in Section 3. Lemmas 6, 7, and 8 prove that Statements 2, 3, and 4 hold, respectively. Also, given a 3SAT
instance φ, the corresponding SHAPE GRAPH REALIZATION instance Iφ can be built in polynomial time (Statement 1
holds). Therefore, the construction rules described in Sections 4.1, 4.2, and 4.3 correspond to a compliant specification
for the 3SAT reduction framework, and Theorem 1 applies. �
5. Fixing the coordinates and searching for a shape

In this section we tackle the reverse problem with respect to the one addressed in Section 4, that is, the problem
of finding a routing for the edges when the position of the nodes is fixed. We first show in Section 5.1 that 0-, 1-,
and 6-BEND ROUTING are feasible and then in Section 5.2 that 2-BEND ROUTING is NP-hard. It is easy to show the
following lemma.

Lemma 10. N -BEND ROUTING is in NP.

Proof. First note that a graph admits a 3D orthogonal drawing with nodes at prescribed positions if and only if it
admits an orthogonal grid drawing such that each pair of nodes have the same relative position with respect to the
X-, Y -, and Z-axis as the one prescribed. It follows that in order to search for a solution of N -BEND ROUTING we
may restrict to consider orthogonal drawings on the three-dimensional grid, searching for one that has the nodes in
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the same relative position. Analogously to the proof of Lemma 1, we restrict to those drawings where each axis-
orthogonal plane intersects at least a node or a bend. An upper bound for the bounding box of such drawings can
be computed by considering that an N -bend drawing of a graph of maximum degree six has at most 3n × N bends,
where n is the number of vertices of the graph. Therefore, if the graph admits an N -bend drawing, then it admits one
in a bounding box whose sides span n(3N + 1) grid planes. A non-deterministic Turing machine could generate all
grid drawings of the graph within the computed bounding box and then check in polynomial time whether each pair
of nodes has the same relative position as the one specified by the 2-BEND ROUTING instance. �

Due to Lemma 10 and due to the NP-hardness of 2-BEND ROUTING which is proved in Section 5.2 (Lemma 19 of
Section 5.2.5) the following theorem holds.

Theorem 3. 2-BEND ROUTING is NP-complete.

5.1. Feasibility of 0-, 1-, and 6-BEND ROUTING

First, we consider the problem of routing edges when zero bends are allowed.

Lemma 11. 0-BEND ROUTING can be answered in O(|V |2) time.

Proof. A 0-bend drawing exists if and only if: (i) each pair of adjacent nodes share two coordinates and (ii) no two
edges intersect. The first condition can be checked in linear time. Since the number of edges in bounded-degree graph
is O(|V |), the second condition can be checked in O(|V |2) time. �

Second, we tackle the analogous problem where one bend per edge is allowed.

Lemma 12. 1-BEND ROUTING can be answered in O(|V |2) time.

Proof. Suppose all adjacent nodes share at least a coordinate. This is a necessary condition for the existence of a
1-bend drawing and can be checked in linear time. We reduce 1-BEND ROUTING to 2SAT, the version of the SAT
problem in which each clause has exactly two literals. An instance of 2SAT can be solved in linear time in the size of
the formula [1] providing a solution for the corresponding instance of 1-BEND ROUTING.

For each edge ei we introduce the Boolean variable vi . If ei joins a pair of nodes sharing two coordinates, then
ei admits a single route, labeled with the direct literal vi of variable vi . Otherwise, if ei joins two nodes that share
a single coordinate, then ei can be routed in two different ways, that we arbitrarily label vi and vi . Intuitively, when
vi = true, the route labeled vi is used by the 1-bend drawing, while when vi = false the route labeled vi is used
instead. We construct the formula of the 2SAT problem as follows. For any route labeled vi for which vi does not
exist, we introduce clause (vi ∨vi), whose purpose is to make sure that such a route is chosen for edge ei . For any pair
of intersecting routes (vh, vk) ((vh, vk), (vh, vk), respectively) we introduce clause (vh ∨ vk) ((vh ∨ vk), (vh ∨ vk),
respectively), whose purpose is to make sure that the two intersecting routes are not simultaneously chosen for eh

and ek . We impose that all the constraints are simultaneously satisfied by considering the Boolean “and” of all the
clauses. Since each clause has two literals, we have mapped the 1-BEND ROUTING instance to a 2SAT formula.
The graph admits a non-intersecting drawing with one bend per edge maximum and with the nodes at the specified
positions if and only if the 2SAT formula admits a solution. Since the number of clauses introduced is O(|V |2), the
statement follows. �

We show that 6-BEND ROUTING can always be answered in the affirmative, by producing an algorithm that
computes a non-intersecting 6-bend drawing of a graph G = (V ,E) with nodes at prescribed positions. The drawing
algorithm, that runs in O(|V | log |V |) time, takes advantage of the relative coordinates scenario [26], where it is
possible to insert an axis-perpendicular plane in the drawing in constant time. X-, Y -, and Z-planes are kept into three
double linked lists called X-, Y -, and Z-list, respectively. Nodes and bends are not explicitly given coordinates, but
are linked to the X-, Y -, and Z-plane that contains them. An axis-perpendicular plane can be inserted in the drawing
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Fig. 9. (a) Inserting an orthogonal plane in a drawing in the relative coordinates scenario. (b) If two perpendicular planes are inserted the grid line
common to the two planes does not intersect any node or edge of the drawing.

Fig. 10. The insertion of an edge from ns to nt with six bends.

in constant time by locally changing the corresponding list. Hence, the X-, Y -, and Z-list contains the X-, Y -, and Z-
planes sorted based on their coordinates. Therefore, any algorithm based on this approach runs in �(|V | log |V |) time.
Our algorithm starts by sorting the nodes in ascending order according to their X-, Y -, and Z-coordinates. Second,
a drawing where only the nodes are present is built. Finally, edges are added one at a time, routing them without
introducing intersections by using the same construction rule described in the proof of Lemma 19 of [33].

In order to insert an edge in the drawing without introducing intersections, consider the operation of inserting a
plane perpendicular to the Y -axis (see Fig. 9(a)). After the insertion, no node or edge will lay on the newly inserted
plane, although some edges may perpendicularly intersect the plane. Now consider a second insertion of a plane
perpendicular to the Z-axis (see Fig. 9(b)). After this second insertion, the X-parallel grid line that is common to both
the two inserted planes is not intersected by any edge or node of the drawing. The algorithm uses this strategy of plane
insertion in order to create the space to route each edge from the source node to the target node.

Suppose that edges e1, e2, . . . , ei−1 have been inserted and that edge ei needs to be added to the drawing, connecting
node ns to node nt . Consider the most unfavorable case in which ns and nt lay on different X-, Y -, and Z-planes and
suppose ei enters ns along the As -axis and enters nt along the At -axis. The route from ns to nt uses three grid lines l1,
l2, and l3, introduced with the technique described above. Line l1 is orthogonal to the As -axis, l3 is orthogonal to both
the At -axis and l1, and l2 is orthogonal to both l1 and l3. Also, l1 intersects l2 and l2 intersects l3. Further, l1 (l3) is
such that ns (nt ) can be attached to it with a path of two segments of length one that are orthogonal with respect to
each other and with respect to l1 (l3). Fig. 10 shows how edge ei could be drawn in the case in which nt >x>y<z ns ,
node ns has no edge leaving in direction y+ and node nt has no edge leaving in direction y–. Observe that, at most
four planes need to be inserted in the drawing in order to create the three non-intersected grid lines needed for the new
edge to be routed.
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Since all other cases can be analogously handled by inserting at most six bends for each edge, the following lemma
holds.

Lemma 13. There exists an algorithm that computes in O(|V | log |V |) time an orthogonal drawing with nodes at
prescribed positions and with a maximum of 6 bends per edge.

By virtue of Lemma 13, 6-BEND ROUTING can always be answered in the affirmative in constant time.

5.2. 2-BEND ROUTING is NP-hard

In this section we use the 3SAT reduction framework in order to show that 2-BEND ROUTING is NP-hard. Namely,
Sections 5.2.1, 5.2.2, 5.2.3, and 5.2.4 contain the construction rules for the 2-BEND ROUTING instance Iφ corre-
sponding to a given 3SAT instance φ, while Section 5.2.5 shows that the described rules correspond to a compliant
specification for the 3SAT reduction framework and provides the NP-hardness proof.

5.2.1. The basic gadget
The basic gadget (see Fig. 11) is used as a building block of several parts of the 2-BEND ROUTING instance.

Fig. 11(a) shows its nodes and how they are connected, while Fig. 11(b) shows nodes prescribed positions. The basic
gadget is composed of ten nodes. Node n1 is connected to the three nodes n2, n3 and n4. Analogously, node n5 is
connected to the three nodes n6, n7 and n8. Nodes n1 and n5 are connected both with the single edge (n1, n5) and
with the path of three edges (n1, n1,5), (n1,5, n5,1) and (n5,1, n5).

As for nodes prescribed positions, they are such that:

• n1 <x<y<z n2 =x=y<z n3 =x=y<z n4,
• n1 =x>y>z n1,5 =x>y>z n5,1 =x>y>z n5, and
• n5 <x>y>z n6 =x=y>z n7 =x=y>z n8.

Fig. 11(b) shows also some lines and points to help understanding the node prescribed positions and their mutual
relationships. Points pt,1,pt,2 and pt,3 are defined as follows. Point pt,1 has the same coordinates of n1,5 with the

Fig. 11. (a) The basic gadget is composed of ten nodes, joined by ten edges. In (b) the prescribed node positions are represented.



M. Patrignani / Journal of Discrete Algorithms 6 (2008) 140–161 155
Fig. 12. (a) A true drawing and (b) a false drawing of the basic gadget. In (c) it is shown the schematic representation of the basic gadget that is
used in the remaining part of the paper.

exception of the Z-coordinate which is shared with n1. Point pt,2 has the same coordinates of n1 with the exception
of the Y -coordinate which is shared with n5. Point pt,3 has the same coordinates of n5,1 with the exception of the y

coordinate which is shared with n5. Analogously, nodes pf,1,pf,2 and pf,3 can be defined by replacing n1 with n5
and n1,5 with n5,1.

Lemma 14. In any non-intersecting 2-bend drawing of the basic gadget, edge (n1, n5) has exactly one bend placed
either in pt,2 or in pf,2.

Proof. Since n1 and n5 share the same X-plane, but do not share any axis-parallel line, edge (n1, n5) must lie on the
X-plane in order to be drawn with a maximum of two bends. Also, due to the prescribed positions of nodes n2, n3, and
n4 with respect to node n1, the three directions x+, y+, and z+ of n1 are used by edges (n1, n2), (n1, n3), and (n1, n4)

(not necessarily in this order, see Figs. 12(a) and 12(b)). Analogously, the three directions x+, z–, and y– of n5 are
used by edges (n5, n6), (n5, n7), and (n5, n8). It follows that edge (n1, n5) must use the y– or z– direction of node
n1 and the y+ or z+ direction of node n5. Due to the path of three edges (n1, n1,5), (n1,5, n5,1) and (n5,1, n5), edge
(n1, n5) cannot be routed with two bends, but must have a single bend placed in such a way to share its z coordinate
with n1 and its Y -coordinate with n5 (point pt,2), or to share its z coordinate with n5 and its Y -coordinate with n1
(point pf,2). �

Given a 2-bend drawing of the basic gadget, we call true the basic gadget when it is drawn with the bend of edge
(n1, n5) placed in pt,2 (see Fig. 11(a)) and false the basic gadget when it is drawn with the bend of edge (n1, n5)

placed in pf,2 (see Fig. 11(b)). Also, in what follows we use the graphic representation of the basic gadget shown
in Fig. 11(c), where the nodes n1, n2, n3, n4, and n1,5 are replaced by their bounding box, and analogously for the
nodes n5, n6, n7, n8, and n5,1. In this representation only edge (n1, n5) is shown, and it is assumed to have its bend
in pt,2.

Lemma 15. In any non-intersecting 2-bend drawing of the basic gadget such that the internal points of the segments
pt,1pt,2 and pt,2pt,3 are not used by any edge of the gadget, segments pf,1pf,2 and pf,2pf,3 are used by edge (n1, n5).
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5.2.2. The variable gadget
The variable gadget Vi is composed of a single basic gadget. Given a variable gadget Vi , we define as TVi

(FVi
)

the set of non-intersecting 2-bend drawings of Gφ = (Vφ,Eφ) such that the basic gadget is true (false). Lemma 14
guarantees that sets TVi

and FVi
correspond to a bipartition of the non-intersecting 2-bend drawings of Gφ .

5.2.3. The joint gadget
Fig. 13 shows how basic gadgets can be interleaved together. In fact, a basic gadget can be suitably rotated with

respect to another basic gadget, and node positions can be chosen in such a way that if one basic gadget is true the
other also need to be true. In particular, a variable gadget Vi can be intersected by a suitable number of basic gadgets,
one for each clause in which the variable vi participates, in order to transfer the geometric constraints determined by
the drawing of Vi to the clause gadgets.

Given a clause ci = lh ∨ lj ∨ lk , where lh (lj , lk , respectively) is a literal of the variable vh (vj , vk , respectively)
and h < j < k, the joint gadget Ji,k is the reflected image with respect to the Y -axis of the joint gadget Ji,h. Thus, in
the following we only describe the joint gadget Ji,h, which is depicted in Fig. 14 and built by interleaving four basic
gadgets B1,B2,B3, and B4 as follows. B1 intersects the variable gadget (not shown in Fig. 14(a)). B2 is placed on an
orthogonal plane as shown in Fig. 14(a). B3 intersects only B2 and is placed on a plane orthogonal to the first two (see

Fig. 13. Four basic gadgets interleaved in such a way that in any 2-bend drawing of them they are all true or all false.

Fig. 14. Joint gadget Ji,h is composed of four interleaved basic gadgets.
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Fig. 15. The clause Ci for clause ci = lh ∨ lj ∨ lk in the case in which lh , lj and lk are negative literals: if the three variables vh , vh and vk are
true, there is no way of adding edge (n1, n2) with at most two bend.

Fig. 14(b)). Finally, B4 is placed on a plane parallel to the first one and intersects B3 only as shown in Fig. 14(c). We
define TJi,h

(FJi,h
) as the set of non-intersecting 2-bend drawings of Gφ satisfying γφ such that B4 is true (false).

5.2.4. The clause gadget
The clause Ci for clause ci = lh ∨ lj ∨ lk is shown in Fig. 15. It is composed of two nodes n1 and n2 placed at the

opposite vertices of a cube. The two nodes are joined by edge (n1, n2) (not shown in Fig. 15). In any 2-bend drawing
of the clause gadget edge (n1, n2) uses one of the four vertical edges of the cube. The basic gadget B4 of joint gadgets
Ji,h and Ji,k and the basic gadget coming from Vj suitably intersect the vertical edges of the cube such that only if
one literal is true the clause gadget admits a non-intersecting drawing.

5.2.5. The hardness proof
By using Lemmas 14 and 15 it is easy to show the following lemma.

Lemma 16. Statement 2 holds; that is, if a non-intersecting 2-bend drawing of Gφ satisfying exists with nodes at the
prescribed positions, then it belongs to TJi,h

if and only if it belongs to TVh
.

Lemma 17. Statement 3 holds; that is, for each clause ci = lh ∨ lj ∨ lk and for each non-intersecting drawing Γ of
Gφ = (Vφ,Eφ) with the nodes at the prescribed positions, at least one of the following conditions holds:

(1) Γ ∈ TJi,h
and lh is the positive literal of vh;

(2) Γ ∈ FJi,h
and lh is the negative literal of vh;

(3) Γ ∈ TVj
and lj is the positive literal of vj ;

(4) Γ ∈ FVj
and lj is the negative literal of vj ;

(5) Γ ∈ TJi,k
and lk is the positive literal of vk ;

(6) Γ ∈ FJi,k
and lk is the negative literal of vk .

Proof. There is a way to route edge (n1, n2) with only two bends only if one of the four vertical edges of the cube of
clause gadget Ci is not intersected by a basic gadget. If a drawing Γ of Gφ satisfying γφ exists, and edge (n1, n2) is
routed with two bends, one of the edges is not blocked, and one of the six conditions in the statement is verified. �
Lemma 18. Statement 4 holds; that is, if φ admits a solution, then Gφ = (Vφ,Eφ) admits a non-intersecting drawing
with nodes at the prescribed positions.
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Problem N = 0 N = 1 N = 2 N = 3 N = 4 N = 5 N � 6

N -BEND ROUTING O(n2) O(n2) NP-hard Unknown Trivial

N -BEND GRID ROUTING O(n2) O(n2) NP-hard Conjectured NP-hard

Fig. 16. Complexity of three-dimensional routing problems.

Proof. Consider a truth assignment satisfying φ. If variable vi is true (false) we can use the true (false) drawing of
variable gadget Vi depicted in Fig. 12(a) (Fig. 12(b)). Also, for each clause ci = lh ∨ lj ∨ lk , at least one of its literals
is true. This implies that one of the vertical edges of the clause gadget Ci is not blocked, and edge (n1, n2) can be
routed with two bends without intersection. �
Lemma 19. 2-BEND ROUTING is NP-hard.

Proof. The proof is based on the fact that a compliant specification can be found for the 3SAT reduction framework
introduced in Section 3. Lemmas 16, 17, and 18 prove that Statements 2, 3, and 4 hold, respectively. Since the 2-
BEND ROUTING instance Iφ corresponding to a 3SAT instance φ can be built in polynomial time, Statement 1 also
holds. Therefore, the construction rules described in Sections 5.2.1, 5.2.2, 5.2.3, and 5.2.4 correspond to a compliant
specification for the 3SAT reduction framework, and Theorem 1 applies. �
6. Discussion and open problems

This paper shows that SHAPE GRAPH REALIZATION is NP-hard, while the reverse problem, N -BEND ROUTING,
is polynomial or even trivial for some values of N . This asymmetry may explain why most three-dimensional drawing
algorithms in the literature determine edge shapes as a consequence of node relative positions and not vice-versa.

Fig. 16 summarizes the complexity of N -BEND ROUTING problems. We signal as open the problems determining
the complexity of 3-, 4-, and 5-BEND ROUTING.

Fig. 16 also compares N -BEND ROUTING with N -BEND GRID ROUTING, the analogous problem where nodes
and bends are restricted to have integer coordinates. Observe that the proof that 2-BEND ROUTING is NP-complete,
provided in Section 5, implies that 2-BEND GRID ROUTING is NP-complete too. Further, the O(|V |2) algorithms
described in Section 5.1 to compute 0- and 1-bend drawings can be used also to compute 0- and 1-bend grid drawings.
On the contrary, the proof that 6-BEND ROUTING is feasible heavily relies on the relative coordinates scenario of [26]
and cannot be modified to show the feasibility of 6-BEND GRID ROUTING in the integer-coordinates setting. Hence,
an interesting open problem is the following: What is the complexity of N -BEND GRID ROUTING? We conjecture
that this problem is NP-hard for any N greater than 2.

The 3SAT reduction framework offers a way to reprove NP-hardness for problems already known to be hard. For
example, consider the problem of deciding whether a graph admits a 0-bend drawing. Such a problem was shown to
be NP-complete in [16] by extending to the three-dimensions the original reduction used in [21] for the analogous
bidimensional problem.

A proof based on the 3SAT reduction framework uses gadgets analogous to those used to prove the NP-hardness
of SHAPE GRAPH REALIZATION in Section 4 and may be constructed as follows. Consider all 0-bend drawings
of a cube graph, i.e., a graph of eight nodes and twelve edges that can be drawn as a cube. All such drawings
correspond, up to rotations and mirrorings, to the same shape graph. It is not difficult to prove that a graph composed
by cube graphs attached together side-by-side has the same property. Further, given a shape graph, for example the
one depicted in Fig. 17(a), it is possible to construct a graph composed by cube graphs attached side-by-side, as the
one depicted in Fig. 17(b), which admits a 0-drawing if and only if the starting shape graph is realizable. Based on
these considerations, a compliant specification for the 3SAT reduction framework can be defined by using gadgets
and construction rules analogous to those described in Section 4. Fig. 17(c), for example, shows the construction of a
variable gadget analogous to that depicted in Fig. 3(a). These same constructions could be used to show that SHAPE

GRAPH REALIZATION is NP-hard even when restricted to triconnected graphs.
Finally, observe that the 3SAT reduction framework could be extended to different versions of the SAT problem

known to be NP-complete. For example, some problems may be more easier to map to a NOT-ALL-EQUAL-3SAT
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Fig. 17. (a) A shape graph. (b) A construction that admits a 0-drawing if and only if the shape graph represented in (a) is realizable. (c) The variable
gadget that can be used to show that finding a drawing without bends is NP-hard (compare with Fig. 3(a)).

instance rather than to a 3SAT instance. As another example, since PLANAR-3SAT is NP-complete, the 3SAT re-
duction framework could assume the 3SAT instance to be planar. This may offer a way to prove NP-hardness of
problems restricted to planar graphs, which are excluded by the current constructions (it suffice having three variables
occurring together in three clauses of the 3SAT formula to construct an instance of the target problem that contains a
subdivision of K3,3 and is, hence, non-planar).

In the remaining part of this section, we discuss the impact of the results described in this paper on the two problem
that we consider the most intriguing of the field, namely, the characterization of realizable orthogonal shapes and the
existence of 2-bend drawings for every graph of maximum degree six.

6.1. Characterization of realizable orthogonal shapes

With respect to the problem of characterizing realizable orthogonal shapes, deciding whether a shape graph is
realizable is shown here to be NP-complete. Of course, the problem of characterizing realizable orthogonal shapes
remains open, although we now know that in the general case it implies a heavy computation.

As a consequence of the complexity of the SHAPE GRAPH REALIZATION problem in the general case, in any
hypothetical 3D drawing process in which the definition of the shape of the drawing is followed by the actual compu-
tation of its coordinates, the first step should be very carefully conceived in order for the second step to be efficiently
computable. In fact, focusing on peculiar classes of shape graphs seems to be an obliged strategy for practical applica-
tions. Are there non-trivial families of shape graph for which the SHAPE GRAPH REALIZATION problem is feasible?
In particular, is there a “universal” set of shape graphs such that any graph is represented and such that the SHAPE

GRAPH REALIZATION problem is guaranteed to be polynomial and to have a positive answer?

6.2. Existence of 2-bend drawings

With respect to the problem of determining if a graph of degree six always admits a 2-bend drawing, this paper
shows the NP-completeness of two problems related with finding such drawings. Namely, it is NP-complete when
node positions are fixed (Section 5) and it is NP-complete when edge shapes are fixed (Section 4). The two analogous
problems restricted to integer coordinates retain the same complexity. Some other 3D drawing problems involving the
number of the bends are known to be NP-hard, as, for example, deciding whether a graph admits a 2-bend drawing
when vertices are placed on the diagonal of a cube [35].
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The number of NP-hard problems related with the computation of a 2-bend drawing raises the following question:
What is the complexity of finding a 2-bend drawing of a graph? If finding such a drawing was also NP-hard, then any
attempt to prove that such a drawing always exists should produce an algorithm for an intractable problem, which is
hard to conceive without resorting to an enumerative approach (which, in turn, assumes the existence of a solution).
However both the conception of such an algorithm and the description of a graph not admitting a 2-bend drawing
appear to be elusive goals.
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