94,090 research outputs found

    Spectral methods for orthogonal rational functions

    Full text link
    An operator theoretic approach to orthogonal rational functions on the unit circle with poles in its exterior is presented in this paper. This approach is based on the identification of a suitable matrix representation of the multiplication operator associated with the corresponding orthogonality measure. Two different alternatives are discussed, depending whether we use for the matrix representation the standard basis of orthogonal rational functions, or a new one with poles alternatively located in the exterior and the interior of the unit circle. The corresponding representations are linear fractional transformations with matrix coefficients acting respectively on Hessenberg and five-diagonal unitary matrices. In consequence, the orthogonality measure can be recovered from the spectral measure of an infinite unitary matrix depending uniquely on the poles and the parameters of the recurrence relation for the orthogonal rational functions. Besides, the zeros of the orthogonal and para-orthogonal rational functions are identified as the eigenvalues of matrix linear fractional transformations of finite Hessenberg and five-diagonal matrices. As an application of this operator approach, we obtain new relations between the support of the orthogonality measure and the location of the poles and parameters of the recurrence relation, generalizing to the rational case known results for orthogonal polynomials on the unit circle. Finally, we extend these results to orthogonal polynomials on the real line with poles in the lower half plane.Comment: 62 page

    Orthogonal rational functions and rational modifications of a measure on the unit circle

    Get PDF
    AbstractIn this paper we present formulas expressing the orthogonal rational functions associated with a rational modification of a positive bounded Borel measure on the unit circle, in terms of the orthogonal rational functions associated with the initial measure. These orthogonal rational functions are assumed to be analytic inside the closed unit disc, but the extension to the case of orthogonal rational functions analytic outside the open unit disc is easily made. As an application we obtain explicit expressions for the orthogonal rational functions associated with a rational modification of the Lebesgue measure

    Multipoint Schur algorithm and orthogonal rational functions: convergence properties, I

    Full text link
    Classical Schur analysis is intimately connected to the theory of orthogonal polynomials on the circle [Simon, 2005]. We investigate here the connection between multipoint Schur analysis and orthogonal rational functions. Specifically, we study the convergence of the Wall rational functions via the development of a rational analogue to the Szeg\H o theory, in the case where the interpolation points may accumulate on the unit circle. This leads us to generalize results from [Khrushchev,2001], [Bultheel et al., 1999], and yields asymptotics of a novel type.Comment: a preliminary version, 39 pages; some changes in the Introduction, Section 5 (Szeg\H o type asymptotics) is extende

    The linear pencil approach to rational interpolation

    Full text link
    It is possible to generalize the fruitful interaction between (real or complex) Jacobi matrices, orthogonal polynomials and Pade approximants at infinity by considering rational interpolants, (bi-)orthogonal rational functions and linear pencils zB-A of two tridiagonal matrices A, B, following Spiridonov and Zhedanov. In the present paper, beside revisiting the underlying generalized Favard theorem, we suggest a new criterion for the resolvent set of this linear pencil in terms of the underlying associated rational functions. This enables us to generalize several convergence results for Pade approximants in terms of complex Jacobi matrices to the more general case of convergence of rational interpolants in terms of the linear pencil. We also study generalizations of the Darboux transformations and the link to biorthogonal rational functions. Finally, for a Markov function and for pairwise conjugate interpolation points tending to infinity, we compute explicitly the spectrum and the numerical range of the underlying linear pencil.Comment: 22 page

    Some classical multiple orthogonal polynomials

    Get PDF
    Recently there has been a renewed interest in an extension of the notion of orthogonal polynomials known as multiple orthogonal polynomials. This notion comes from simultaneous rational approximation (Hermite-Pade approximation) of a system of several functions. We describe seven families of multiple orthogonal polynomials which have he same flavor as the very classical orthogonal polynomials of Jacobi, Laguerre and Hermite. We also mention some open research problems and some applications

    An extension of the associated rational functions on the unit circle

    Get PDF
    A special class of orthogonal rational functions (ORFs) is presented in this paper. Starting with a sequence of ORFs and the corresponding rational functions of the second kind, we define a new sequence as a linear combination of the previous ones, the coefficients of this linear combination being self-reciprocal rational functions. We show that, under very general conditions on the self-reciprocal coefficients, this new sequence satisfies orthogonality conditions as well as a recurrence relation. Further, we identify the Caratheodory function of the corresponding orthogonality measure in terms of such self-reciprocal coefficients. The new class under study includes the associated rational functions as a particular case. As a consequence of the previous general analysis, we obtain explicit representations for the associated rational functions of arbitrary order, as well as for the related Caratheodory function. Such representations are used to find new properties of the associated rational functions.Comment: 27 page

    Diagonals of rational functions and selected differential Galois groups

    Get PDF
    International audienceWe recall that diagonals of rational functions naturally occur in lattice statistical mechanics and enumerative combinatorics. In all the examples emerging from physics, the minimal linear differential operators annihilating these diagonals of rational functions have been shown to actually possess orthogonal or symplectic differential Galois groups. In order to understand the emergence of such orthogonal or symplectic groups, we analyze exhaustively three sets of diagonals of rational functions, corresponding respectively to rational functions of three variables, four variables and six variables. We impose the constraints that the degree of the denominators in each variable is at most one, and the coefficients of the monomials are 0 or   ±1,\;\pm 1, so that the analysis can be exhaustive. We find the minimal linear differential operators annihilating the diagonals of these rational functions of three, four, five and six variables. We find that, even for these sets of examples which, at first sight, have no relation with physics, their differential Galois groups are always orthogonal or symplectic groups. We discuss the conditions on the rational functions such that the operators annihilating their diagonals do not correspond to orthogonal or symplectic differential Galois groups, but rather to generic special linear groups
    corecore