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Abstract

In this paper we present formulas expressing the orthogonal rational functions associated with a rational
modification of a positive bounded Borel measure on the unit circle, in terms of the orthogonal rational
functions associated with the initial measure. These orthogonal rational functions are assumed to be analytic
inside the closed unit disc, but the extension to the case of orthogonal rational functions analytic outside the
open unit disc is easily made. As an application we obtain explicit expressions for the orthogonal rational
functions associated with a rational modification of the Lebesgue measure.
c© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Given a positive bounded Borel measure µ on the unit circle, Godoy et al. [3] derived
formulas, in determinant form, expressing the orthogonal polynomials (OPs) associated with
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the polynomial modification µ̃ of the measure µ on the unit circle in terms of the OPs associated
with µ. Suppose dµ̃ is given by

dµ̃ = |pm(z)|
2dµ, z = eiθ ,

where pm(z) is a polynomial of degree m, and let φn(z; µ̃) denote the OP of degree n associated
with µ̃. Then these derivations are based on the fact that pm(z)φn(z; µ̃) is again a polynomial,
but now of degree m + n, so that a relation exists between φn(z; µ̃) and φm+n(z;µ), the OP of
degree m + n associated with µ.

Later on, Godoy et al. [4] derived formulas for OPs and rational modifications of a positive
bounded Borel measure on a compact set of the complex plane (including the unit circle).
Suppose now that dµ̃ is given by

dµ̃ =
dµ

|pm(z)|2
, z = eiθ ,

where pm(z) has no zeros on the unit circle. Then clearly φn(z; µ̃)/pm(z) is not necessarily a
polynomial of degree n−m. Hence, the derivations in [4] are different from those in [3]. Instead,
they are based on the so-called functions of the second kind.

Orthogonal rational functions (ORFs) analytic inside the closed unit disc are a generalisation
of OPs on the unit circle in such a way that the OPs return if all the poles are at infinity (see
e.g. [2, p. 1]). The aim of this paper is to generalise the results for OPs and polynomial and
rational modifications of a measure on the unit circle to the case of ORFs. The main difference
between OPs and ORFs is that for the latter, polynomial and rational modification of a measure
on the unit circle can be treated simultaneously, in a similar way as has been done in [3]. This
due to the fact that a rational function multiplied with, or divided by, a polynomial is obviously
again a rational function.

Although the ORFs are assumed to be analytic inside the closed unit disc, the results obtained
in this paper can easily be extended to the case of ORFs analytic outside the open unit disc with
the aid of [8].

The outline of this paper is as follows. After giving the necessary theoretical preliminaries in
Section 2, Section 3 contains the main result with respect to ORFs and rational modifications
of a measure on the unit circle. This result is highly elegant, mathematically, but it is hardly
useful for computational purposes. Hence, Section 4 deals with computing the monic orthogonal
rational functions (MORFs) associated with the rational modifications of a measure on the
unit circle through the MORFs associated with the initial measure. Finally, in Section 5 we
derive expressions for the ORFs and MORFs associated with the rational modification µ̃ of the
Lebesgue measure µ on the unit circle, given by

dµ̃(z) =

∣∣∣∣ z − γ

1− βz

∣∣∣∣2 dµ(z), |γ | ≤ 1 and |β| < 1,

or equivalently

dµ̃(θ) =
(1− r)2 + 4r sin2 ( θ−t

2

)∣∣1− βeiθ
∣∣2 dθ, r ∈ [0, 1], t ∈ R and |β| < 1,

where γ = reit and β are parameters that can be chosen freely.
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2. Preliminaries

The field of complex numbers will be denoted by C. For the real line we use the symbol R
and for the positive real line R+ = {z ∈ R : z ≥ 0}. Furthermore, we will use the blackboard
N to represent the set of natural numbers. The unit circle, the open and closed unit disc will be
denoted respectively by

T = {z ∈ C : |z| = 1}, D = {z ∈ C : |z| < 1} and O = D ∪ T.

If a subset Y of X is omitted from the set X , this will be represented by XY , e.g. CR = C \ R
and D0 = D \ {0}.

Let Pn denote the space of polynomials of degree less than or equal to n. Then we define the
substar conjugate and the super-c conjugate of a function pn(z) ∈ Pn respectively as

pn∗(z) = pn(1/z) and pc
n(z) = pn(z),

and the superstar transformation as

p∗n(z) = zn pn∗(z).

Note that pn∗(z) = pn(z) if z ∈ T, and that pc
n(z) = pn(z) if z ∈ R.

Suppose a sequence of complex numbers A = {α1, α2, . . .} ⊂ D is given and define the
Blaschke factors

ζk(z) := ζαk (z) = ηαk

z − αk

1− αk z
, ηαk =


αk

|αk |
, αk 6= 0

1, αk = 0,
k = 1, 2, . . . , (1)

and the Blaschke products1

B0(z) ≡ 1, Bk(z) = Bk−1(z)ζk(z), k = 1, 2, . . . ; (2)

see e.g. [2, pp. 42–43]. Then the space of rational functions with poles in {1/α1, . . . , 1/αn} is
defined as

Ln = span{B0(z), . . . , Bn(z)}.

In the special case of all αk = 0, the factor in (1) becomes ζk(z) = z and the products in (2)
become Bk(z) = zk . Define

π0(z) ≡ 1, πk(z) =
k∏

j=1

(1− α j z), k = 1, 2, . . . ,

then we may write equivalently

Bk(z) = νk
π∗k (z)

πk(z)
, νk =

k∏
j=1

ηα j ∈ T

and

Ln = {pn/πn : pn ∈ Pn}.

1 The factors and products are named after Wilhelm Blaschke, who introduced these for the first in [1].
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Further, we let L−1 = {0} and L0 = C to be the trivial subspaces.
The definitions for the substar conjugate and the super-c conjugate of a function fn(z) ∈ Ln

are the same as before, for the polynomial case, but the superstar transformation is now defined
as

f ∗n (z) = Bn(z) fn∗(z).

Let µ be a positive bounded Borel measure on the unit circle. Orthonormalising the basis
{B0(z), . . . , Bn(z)} with respect to this measure µ and inner product

〈 f, g〉 =
1

2π

∮
T

f (z)g∗(z)dµ(z)

we obtain the orthonormal rational functions (ORFs) {ϕ0(z;µ), . . . , ϕn(z;µ)}. Explicit
expressions for the so-called Takenaka–Malmquist basis (see [5,6]), which is a basis of ORFs
on the unit circle with respect to the Lebesgue measure (dµ(z) = dz

iz ), are well known. These are
given by

ϕ0(z;µ) ≡ 1 and ϕn(z;µ) = ηαn

√
1− |αn|

2 zBn−1(z)

1− αnz
, n ≥ 1.

We denote the leading coefficient of ϕn(z;µ), i.e. the coefficient of Bn(z) in the expansion
of ϕn(z;µ) with respect to the basis {B0(z), . . . , Bn(z)}, by κn = ϕ∗n (αn;µ). In the remainder
of this paper, we will assume that κn ∈ R+0 . With this leading coefficient, we define the monic
orthogonal rational functions (MORFs) associated with the sequence A and the measure µ as
φn(z;µ) = κ−1

n ϕn(z;µ), e.g. for the Lebesgue measure this gives

φ0(z;µ) ≡ 1 and φn(z;µ) = ηαn (1− |αn|
2)

zBn−1(z)

1− αnz
, n ≥ 1. (3)

The reproducing kernel for Ln associated with the measure µ is given by

kn(z, w;µ) =
n∑

k=0

ϕk(z;µ)ϕk(w;µ). (4)

The following Christoffel–Darboux relation has been proved in [2, Thm. 3.1.3] for n ≥ 1:

kn(z, w;µ) =
ϕ∗n+1(z;µ)ϕ

∗

n+1(w;µ)− ϕn+1(z;µ)ϕn+1(w;µ)

1− ζn+1(z)ζn+1(w)

= κ2
n+1

φ∗n+1(z;µ)φ
∗

n+1(w;µ)− φn+1(z;µ)φn+1(w;µ)

1− ζn+1(z)ζn+1(w)
. (5)

The earlier definitions with respect to the sequence of complex numbers A, can be repeated
for other sequences. Suppose a sequence Bm = {β1, . . . , βm} ⊂ D is given and let C = Bm∪A =
{δ1, δ2, . . .} ⊂ D with

δk =

{
βk, k ≤ m
αk−m, k > m.

Then we denote the Blaschke factors and Blaschke products associated with the sequence
C respectively as ζ̃k(z) := ζδk (z) and B̃k(z). The space of rational functions with poles in
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1/δ1, . . . , 1/δm+n

}
is then defined as

L̃m+n = span{B̃0(z), . . . , B̃m+n(z)}

and orthonormalising this basis with respect to µ on the unit circle, we obtain the
ORFs {ϕ̃0(z;µ), . . . , ϕ̃m+n(z;µ)} and MORFs {φ̃0(z;µ), . . . , φ̃m+n(z;µ)} with φ̃k(z;µ) =
κ̃−1

k ϕ̃k(z;µ) for k = 0, . . . ,m + n. Finally, the reproducing kernel for L̃m+n associated with
the measure µ will be denoted by k̃m+n(z, w;µ).

3. Rational modifications of a measure on the unit circle

Let µm be a positive bounded Borel measure on the unit circle, given by

dµm = |Am(z)|
2dµ, m ∈ N0, (6)

where Am(z) ∈ L̃m \ L̃m−1. For z ∈ T it holds that

|z − a|2 = |1− az|2, ∀a ∈ C,

and hence, without loss of generality we can assume Am(z) has all its zeros γk , for k = 1, . . . ,m,
in O.

Next, let ϕn(z;µm) (respectively φn(z;µm)) represent the ORF (respectively MORF)
associated with the sequence A and the measure µm on the unit circle. Define χn as

χ0 = A∗m(βm), χn = A∗m(αn), n ≥ 1. (7)

Then it holds that

φ̃m+n(z;µ)−
Am(z)

χn
φn(z;µm) ∈ L̃m+n−1. (8)

Let us now consider the orthogonal decomposition

L̃m+n−1 = Am Ln−1 ⊕
[
Am Ln−1

]⊥m+n−1
µ

, (9)

where {k̃m+n−1(z, γi ;µ)}
m
i=1 is a basis for the space

[
Am Ln−1

]⊥m+n−1
µ

if γi 6= γ j for i 6= j (we
give a proof of this statement in the Appendix). We then have the following theorem.

Theorem 1. Let µm be a rational modification of the positive bounded Borel measure µ on
the unit circle, given by (6), where Am(z) ∈ L̃m is a rational function with simple zeros
{γ1, . . . , γm} ⊂ O. Let φn(z;µm) denote the MORF associated with the sequence A =

{α1, . . . , αn} ⊂ D and the measure µm . Similarly, let φ̃m+n(z;µ) denote the MORF associated
with the sequence C = {β1, . . . , βm, α1, . . . , αn} ⊂ D and the measure µ. Then it holds that

Am(z)

χn
φn(z;µm)

=
1

det K

∣∣∣∣∣∣∣∣∣
φ̃m+n(z;µ) k̃m+n−1(z, γ1;µ) . . . k̃m+n−1(z, γm;µ)

φ̃m+n(γ1;µ) k̃m+n−1(γ1, γ1;µ) . . . k̃m+n−1(γ1, γm;µ)
...

...
. . .

...

φ̃m+n(γm;µ) k̃m+n−1(γm, γ1;µ) . . . k̃m+n−1(γm, γm;µ)

∣∣∣∣∣∣∣∣∣ , (10)
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where χn is given by (7), k̃m+n−1(z, w;µ) denotes the reproducing kernel for L̃m+n−1, and the
matrix K is given by

K = [k̃m+n−1(γi , γ j ;µ)]
m
i, j=1. (11)

Proof. With the decomposition given by (9) it follows from (8) that there exists a unique
sequence of complex numbers {Λm+n−1,0, . . . ,Λm+n−1,n−1, λm+n−1,1, . . . , λm+n−1,m} so that

φ̃m+n(z;µ)−
Am(z)

χn
φn(z;µm)

=

n−1∑
k=0

Λm+n−1,k Am(z)φk(z;µm)+

m∑
j=1

λm+n−1, j k̃m+n−1(z, γ j ;µ).

Because {Am(z)φk(z;µm)}
n−1
k=0 forms an orthogonal basis for the space Am Ln−1 with respect to

the measure µ, it holds that Λm+n−1,k = 0 for k = 0, . . . , n − 1. Furthermore, for z = γi we get
that

φ̃m+n(γi ;µ) =

m∑
j=1

λm+n−1, j k̃m+n−1(γi , γ j ;µ), i = 1, . . . ,m,

so thatλm+n−1,1
...

λm+n−1,m

 = K−1

 φ̃m+n(γ1;µ)
...

φ̃m+n(γm;µ)

 ,
with K given by (11). Consequently, we have that

Am(z)

χn
φn(z;µm)

= φ̃m+n(z;µ)− [k̃m+n−1(z, γ1;µ) . . . k̃m+n−1(z, γm;µ)]K
−1

 φ̃m+n(γ1;µ)
...

φ̃m+n(γm;µ)

 ,
which can also be written in determinant form, as in (10). �

Remark 2. From the previous theorem, together with Eq. (5), it follows that φn(z;µm) can be
computed only by means of φ̃m+n(z;µ).

Remark 3. If the zeros of Am(z) are not simple, i.e. if for i = 1, . . . , j it holds that γi has
multiplicity mi with

∑ j
i=1 mi = m, then there exists a new basis for

[
Am Ln−1

]⊥m+n−1
µ

given by
 ∂k k̃m+n−1(z, w;µ)

∂wk

∣∣∣∣∣
w=γi

mi−1

k=0


j

i=1

. (12)

This way, Theorem 1 can be generalised to the case of multiple zeros.
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4. Computing the MORFs for the rational modifications

Eq. (10) is highly elegant, mathematically, but it is hardly useful for computational purposes.
Therefore, it will be more interesting to compute φn(z;µm) by means of computing intermediate
MORFs, using the minimum possible number of terms from the sequence {φ̃n(z;µ)}. As a
consequence of Theorem 1 we have the following corollary.

Corollary 4. Let the sequences of complex numbers A = {α1, . . . , αn} ⊂ D and C =
{β, α1, . . . , αn} ⊂ D be given. Suppose µ̃ is given by

dµ̃ =

∣∣∣∣ z − γ

1− βz

∣∣∣∣2 dµ, γ ∈ O.

Let φn(z; µ̃) denote the MORF associated with the sequence A and the measure µ̃. Similarly, let
φ̃n+1(z;µ) denote the MORF associated with the sequence C and the measure µ. Then it holds
for n ≥ 1 that(

z − γ

1− βz

)
φn(z; µ̃) = ηβ

1− γαn

1− βαn

[
φ̃n+1(z;µ)−

φ̃n+1(γ ;µ)

k̃n(γ, γ ;µ)
k̃n(z, γ ;µ)

]
,

where k̃n(z, w;µ) denotes the reproducing kernel for the space of rational functions L̃n ,
associated with the measure µ.

Remark 5. If n = 0, it is easily verified with the aid of (4) and Theorem 1, with m = 1, that

φ0(z; µ̃) = ηβ

(
1− γ β

1− |β|2

)(
1− βz

z − γ

)(
φ̃1(z;µ)− φ̃1(γ ;µ)

)
≡ 1.

So, in remainder we will restrict ourselves to the case in which n ≥ 1.

From Eq. (5) it follows that

(1− γ z)k̃n(z, γ ;µ) = κ̃
2
n+1

1− αnγ

1− |αn|
2 (1− αnz)

×

[
φ̃∗n+1(z;µ)φ̃

∗

n+1(γ ;µ)− φ̃n+1(z;µ)φ̃n+1(γ ;µ)
]
.

Consequently, we have that

(1− γ z)(z − γ )

1− βz
φn(z; µ̃) = χn(1− γ z)φ̃n+1(z;µ)

+χnυn(1− αnz)
[
φ̃n+1(z;µ)φ̃n+1(γ ;µ)− φ̃

∗

n+1(z;µ)φ̃
∗

n+1(γ ;µ)
]
, (13)

where

χn = ηβ
1− γαn

1− βαn
and υn = κ̃

2
n+1

(
1− αnγ

1− |αn|
2

)
φ̃n+1(γ ;µ)

k̃n(γ, γ ;µ)
. (14)

With this, we can prove the following theorems.
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Theorem 6. Let a sequence of complex numbers A = {α1, . . . , αn} ⊂ D and C =

{β, α1, . . . , αn} ⊂ D be given. Suppose µ̃ is given by

dµ̃ =

∣∣∣∣ z − γ

1− βz

∣∣∣∣2 dµ, γ ∈ T.

Let φn(z; µ̃) denote the MORF associated with the sequence A and the measure µ̃. Similarly, let
φ̃n+1(z;µ) denote the MORF associated with the sequence C and the measure µ. Then it holds
that

(z − γ )2

1− βz
φn(z; µ̃) =

ηβ
1−γαn
1−βαn∣∣∣∣φ̃n+1(γ ;µ) φ̃∗n+1(γ ;µ)

φ̃′n+1(γ ;µ) φ̃∗′n+1(γ ;µ)

∣∣∣∣
×

∣∣∣∣∣∣∣∣
(z − γ )φ̃n+1(z;µ) φ̃n+1(z;µ) φ̃∗n+1(z;µ)

0 φ̃n+1(γ ;µ) φ̃∗n+1(γ ;µ)(
1− αnz

1− αnγ

)
φ̃n+1(γ ;µ) φ̃′n+1(γ ;µ) φ̃∗′n+1(γ ;µ)

∣∣∣∣∣∣∣∣ , (15)

where φ̃′ represents the derivative of φ̃.

Proof. If γ ∈ T, it holds that

φ̃n+1(γ ;µ) = B̃n+1∗(γ )φ̃
∗

n+1(γ ;µ) and φ̃∗n+1(γ ;µ) = B̃n+1∗(γ )φ̃n+1(γ ;µ).

Hence, it follows that

(z − γ )2

1− βz
φn(z; µ̃) = χn(z − γ )φ̃n+1(z;µ)

− γχnυn(1− αnz)B̃n+1∗(γ )

∣∣∣∣ φ̃n+1(z;µ) φ̃∗n+1(z;µ)
φ̃n+1(γ ;µ) φ̃∗n+1(γ ;µ)

∣∣∣∣ .
Dividing by (z − γ ) we get that

z − γ

1− βz
φn(z; µ̃) = χnφ̃n+1(z;µ)

− γχnυn(1− αnz)B̃n+1∗(γ )

∣∣∣∣∣∣
φ̃n+1(z;µ)− φ̃n+1(γ ;µ)

z − γ

φ̃∗n+1(z;µ)− φ̃
∗

n+1(γ ;µ)

z − γ
φ̃n+1(γ ;µ) φ̃∗n+1(γ ;µ)

∣∣∣∣∣∣ .
When z tends to γ , we find that

γ υn B̃n+1∗(γ ) =
φ̃n+1(γ ;µ)

(1− αnγ )

∣∣∣∣φ̃′n+1(γ ;µ) φ̃∗
′

n+1(γ ;µ)

φ̃n+1(γ ;µ) φ̃∗n+1(γ ;µ)

∣∣∣∣ ,
so that

(z − γ )2

1− βz
φn(z; µ̃) = χn(z − γ )φ̃n+1(z;µ)
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+
χn(1− αnz)φ̃n+1(γ ;µ)

(1− αnγ )

∣∣∣∣φ̃n+1(γ ;µ) φ̃∗n+1(γ ;µ)

φ̃′n+1(γ ;µ) φ̃∗′n+1(γ ;µ)

∣∣∣∣
∣∣∣∣ φ̃n+1(z;µ) φ̃∗n+1(z;µ)
φ̃n+1(γ ;µ) φ̃∗n+1(γ ;µ)

∣∣∣∣ . (16)

Finally, note that (16) is equivalently with (15), which ends the proof. �

Theorem 7. Let a sequence of complex numbers A = {α1, . . . , αn} ⊂ D and C =

{β, α1, . . . , αn} ⊂ D be given. Suppose µ̃ is given by

dµ̃ =

∣∣∣∣ z − γ

1− βz

∣∣∣∣2 dµ, γ ∈ D.

Let φn(z; µ̃) denote the MORF associated with the sequence A and the measure µ̃. Similarly, let
φ̃n+1(z;µ) denote the MORF associated with the sequence C and the measure µ. Then it holds
that

(1− γ z)(z − γ )

1− βz
φn(z; µ̃) =

ηβ
1−γαn
1−βαn∣∣∣∣∣φ̃n+1(γ ;µ) φ̃∗n+1(γ ;µ)

φ̃∗n+1 (γ ;µ) φ̃n+1 (γ ;µ)

∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣
(1− γ z)φ̃n+1(z;µ) (1− αnz)φ̃n+1(z;µ) (1− αnz)φ̃∗n+1(z;µ)(
1− |γ |2

1− αnγ

)
φ̃n+1(γ ;µ) φ̃n+1(γ ;µ) φ̃∗n+1(γ ;µ)

0 φ̃∗n+1 (γ ;µ) φ̃n+1 (γ ;µ)

∣∣∣∣∣∣∣∣∣ . (17)

Proof. Define an and bn respectively as

an = υnφ̃n+1(γ ;µ) and bn = −υnφ̃
∗

n+1(γ ;µ), (18)

where υn is given by (14). Eq. (13) can then be rewritten as

(1− γ z)(z − γ )

1− βz

φn(z; µ̃)

χn
= (1− γ z)φ̃n+1(z;µ)

+ an(1− αnz)φ̃n+1(z;µ)+ bn(1− αnz)φ̃∗n+1(z;µ). (19)

For z = γ ∈ D we get that

0 = (1− |γ |2)φ̃n+1(γ ;µ)+ an(1− αnγ )φ̃n+1(γ ;µ)+ bn(1− αnγ )φ̃
∗

n+1(γ ;µ).

On the other hand, because |υn| <∞, it follows from (18) that

0 = anφ̃
∗

n+1 (γ ;µ)+ bnφ̃n+1 (γ ;µ). (20)

Consequently, it holds that∣∣∣∣∣∣∣∣∣
Rn(z) (1− αnz)φ̃n+1(z;µ) (1− αnz)φ̃∗n+1(z;µ)

−

(
1− |γ |2

1− αnγ

)
φ̃n+1(γ ;µ) φ̃n+1(γ ;µ) φ̃∗n+1(γ ;µ)

0 φ̃∗n+1 (γ ;µ) φ̃n+1 (γ ;µ)

∣∣∣∣∣∣∣∣∣ = 0, (21)
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where

Rn(z) =
(1− γ z)(z − γ )

1− βz

φn(z; µ̃)

χn
− (1− γ z)φ̃n+1(z;µ).

Finally, note that (21) is equivalent with (17), which ends the proof. �

Note that

φ̃∗n+1 (γ ;µ) =
φ̃n+1

(
1
γ
;µ
)

B̃n+1

(
1
γ

) and φ̃n+1 (γ ;µ) =
φ̃∗n+1

(
1
γ
;µ
)

B̃n+1

(
1
γ

) ,

so that Eq. (20) becomes

0 =
1

B̃n+1

(
1
γ

) (anφ̃n+1

(
1
γ
;µ

)
+ bnφ̃

∗

n+1

(
1
γ
;µ

))
.

Furthermore, if γ 6∈ C, this is equivalent with

0 = anφ̃n+1

(
1
γ
;µ

)
+ bnφ̃

∗

n+1

(
1
γ
;µ

)
, (22)

which is the same equation we would get when evaluating Eq. (19) in z = 1/γ for γ 6∈ C. Thus,
basically Eq. (20) means that the multiplicity of 1/γ as a zero or pole of the right hand side of
(19) equals the multiplicity of 1/γ as a zero or pole of the left hand side of (19). Hence, we have
proved the following corollary.

Corollary 8. Let a sequence of complex numbers A = {α1, . . . , αn} ⊂ D and C =

{β, α1, . . . , αn} ⊂ D be given. Suppose µ̃ is given by

dµ̃ =

∣∣∣∣ z − γ

1− βz

∣∣∣∣2 dµ, γ ∈ DC .

Let φn(z; µ̃) denote the MORF associated with the sequence A and the measure µ̃. Similarly, let
φ̃n+1(z;µ) denote the MORF associated with the sequence C and the measure µ. Then it holds
that

(1− γ z)(z − γ )

1− βz
φn(z; µ̃) =

ηβ
1−γαn
1−βαn∣∣∣∣∣∣

φ̃n+1(γ ;µ) φ̃∗n+1(γ ;µ)

φ̃n+1

(
1
γ
;µ

)
φ̃∗n+1

(
1
γ
;µ

) ∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣∣
(1− γ z)φ̃n+1(z;µ) (1− αnz)φ̃n+1(z;µ) (1− αnz)φ̃∗n+1(z;µ)(
1− |γ |2

1− αnγ

)
φ̃n+1(γ ;µ) φ̃n+1(γ ;µ) φ̃∗n+1(γ ;µ)

0 φ̃n+1

(
1
γ
;µ

)
φ̃∗n+1

(
1
γ
;µ

)
∣∣∣∣∣∣∣∣∣∣
. (23)

Note that although Eq. (22) does not hold for γ ∈ C, Eq. (23) does in a limiting sense.
Nevertheless, it is clear that Eq. (17) is much more interesting for γ ∈ D, due to the fact that
each value in the determinants is finite at any time.

Finally, the following corollary is easily verified with the aid of Theorem 7.
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Corollary 9. Let a sequence of complex numbers A = {α1, . . . , αn} ⊂ D and C =

{β, α1, . . . , αn} ⊂ D be given. Suppose µ̃ is given by

dµ̃ =

∣∣∣∣ z − γ

1− βz

∣∣∣∣2 dµ, γ ∈ D.

Let φn(z; µ̃) denote the MORF associated with the sequence A and the measure µ̃. Similarly, let
φ̃n+1(z;µ) denote the MORF associated with the sequence C and the measure µ.

(a) If γ is a zero of φ̃n+1(z;µ), i.e. if φ̃n+1(γ ;µ) = 0, then it holds that

φn(z; µ̃) = ηβ
1− γαn

1− βαn

(
1− βz

z − γ

)
φ̃n+1(z;µ). (24)

(b) If γ = αn , it holds that

φn(z; µ̃) =
ηβ

1−|αn |
2

1−βαn

1− |φ̃n+1(αn;µ)|2

(
1− βz

z − αn

)

×

[
φ̃n+1(z;µ)− φ̃n+1(αn;µ)φ̃

∗

n+1(z;µ)
]
. (25)

5. An application

If the measure µ on the unit circle is absolutely continuous, then we have with z = eiθ that

dµ(z) = µ′(z)dz = w(θ)dθ.

Hence,

1
2π

∮
T

f (z)dµ(z) =
1

2π

∮
T

f (z)µ′(z)dz =
1

2π

∫ 2π

0
f
(

eiθ
)
w(θ)dθ.

So, as an application, let us consider the Lebesgue measure w(θ) = 1 = izµ′(z) on the unit
circle and the rational modification given by

w(θ, β, reit ) =
(1− r)2 + 4r sin2 ( θ−t

2

)∣∣1− βeiθ
∣∣2 =

(1+ r2)− 2r cos(θ − t)∣∣1− βeiθ
∣∣2 ,

where r ∈ [0, 1], t ∈ R and |β| < 1. Or equivalently,

µ̃′(z, β, γ ) =

∣∣∣∣ z − γ

1− βz

∣∣∣∣2 µ′(z), γ = reit .

Example 10. First, let us consider the case where t = 0 and r = 1, i.e.

w(θ, β) = w(θ, β, 1) and µ̃′(z, β) = µ̃′(z, β, 1).

Then we have that

1
2π

∫ 2π

0
w(θ, β)dθ =

1
2iπ

∮
T

∣∣∣∣ z − 1

1− βz

∣∣∣∣2 dz

z
=
−1
2iπ

∮
T

(z − 1)2

z(z − β)(1− βz)
dz
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= −

[
Res

(
(z − 1)2

z(z − β)(1− βz)
, 0
)
+ Res

(
(z − 1)2

z(z − β)(1− βz)
, β

)]
=

2(1−R{β})

1− |β|2
≡

1

ϕ2
0(z; µ̃)

.

For n > 0 it follows from (3) that

φ̃n+1(z;µ) = ηαn (1− |αn|
2)

z B̃n(z)

1− αnz
, B̃n(z) = ζβ(z)Bn−1(z),

φ̃∗n+1(z;µ) =
1− |αn|

2

1− αnz
,

φ̃n+1(1;µ) = ηαn (1− |αn|
2)

B̃n(1)
1− αn

,

φ̃∗n+1(1;µ) =
1− |αn|

2

1− αn
,

φ̃′n+1(1;µ) = ηαn (1− |αn|
2)

B̃n(1)
1− αn

[
Qn−1 +

αn

1− αn

]
,

φ̃∗
′

n+1(1;µ) =
αn(1− |αn|

2)

(1− αn)2
,

where

Qn = 1+
B̃ ′n+1(1)

B̃n+1(1)
= 1+

1− |β|2

|1− β|2
+

n∑
k=1

1− |αk |
2

|1− αk |
2 ∈ R+0 .

The last equality here follows from [7, Lem. 3.3]. So we get that

φ̃n+1(1;µ)
1− αn

1∣∣∣∣φ̃n+1(1;µ) φ̃∗n+1(1;µ)
φ̃′n+1(1;µ) φ̃∗

′

n+1(1;µ)

∣∣∣∣ = −
1

(1− |αn|
2)Qn−1

,

and

(1− αnz)

∣∣∣∣φ̃n+1(z;µ) φ̃∗n+1(z;µ)
φ̃n+1(1;µ) φ̃∗n+1(1;µ)

∣∣∣∣ = ηαn (1− |αn|
2)2

1− αn

[
z B̃n(z)− B̃n(1)

]
.

Substitute this in (15) and simplify to find that

φn(z; µ̃) =
cn

(
an(1− βz)+ z(z−bn)(z−β)Bn−1(z)

1−αn z

)
(z − 1)2

, (26)

where

cn = ηαn (1− |αn|
2)
(1− αn)

(1− βαn)

[
Qn−1 +

αn
1−αn

Qn−1

]
,

an =
(1− β)

(1− β)

[ Bn−1(1)
1−αn

Qn−1 +
αn

1−αn

]
,
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bn = 1+
1

Qn−1 +
αn

1−αn

.

For ϕn(z; µ̃), the constant cn in (26) has to be replaced with dn = κncn . It holds that

1 = 〈ϕn, ϕn〉 = 〈κnφn, κn Bn〉 = κ
2
n 〈φn, Bn〉.

Furthermore, we have that

〈φn, Bn〉 = −
cn

2π i

(
an

∮
T

Bn∗(z)

z(z − β)
dz + ηαn

∮
T

(z − bn)

(z − αn)(1− βz)
dz

)
=

cnan

2π i

∮
T

Bn∗(z)

z(z − β)
dz − cnηαn

Res
(

(z − bn)

(z − αn)(1− βz)
, αn

)
= −

cnan

2π i

∮
T

Bc
n(z)

(1− βz)
dz + cnηαn

bn − αn

1− βαn

= 0+
|1− αn|

2

|1− βαn|
2
(1− |αn|

2)
Qn−1 +

αn
1−αn
+

1
1−αn

Qn−1

=
|1− αn|

2

|1− βαn|
2
(1− |αn|

2)
Qn

Qn−1
,

so that

κn =
|1− βαn|

|1− αn|

√
Qn−1

(1− |αn|
2)Qn

.

Let ρn and σn be defined respectively as

ρn = ηαn

(1− αn)(1− βαn)

|(1− αn)(1− βαn)|
∈ T

and

σn = Bn−1(1)
(1− β)2

|1− β|2
∈ T.

Then we find that the coefficients for ϕn(z;µ) are given by

dn = ρn

√
1− |αn|

2

Qn−1 Qn

[
Qn−1 +

αn

1− αn

]

dnan = ρn

√
1− |αn|

2

Qn−1 Qn

[
1

1− αn

]
σn

dnbn = ρn

√
1− |αn|

2

Qn−1 Qn

[
Qn−1 +

1
1− αn

]
.

Example 11. Next, let us consider the case where t = 0 and r ∈ [0, 1), i.e.

w(θ, β) = w(θ, β, r) and µ̃′(z, β) = µ̃′(z, β, r).
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Then we have that

1
2π

∫ 2π

0
w(θ, β)dθ =

1
2iπ

∮
T

∣∣∣∣ z − r

1− βz

∣∣∣∣2 dz

z
=

1
2iπ

∮
T

(z − r)(1− r z)

z(z − β)(1− βz)
dz

=

[
Res

(
(z − r)(1− r z)

z(z − β)(1− βz)
, 0
)
+ Res

(
(z − r)(1− r z)

z(z − β)(1− βz)
, β

)]
=
(1+ r2)− 2rR{β}

1− |β|2
≡

1

ϕ2
0(z; µ̃)

.

For n > 0 it follows from (3) that

φ̃n+1(z;µ) = ηαn (1− |αn|
2)

z B̃n(z)

1− αnz
, B̃n(z) = ζβ(z)Bn−1(z),

φ̃∗n+1(z;µ) =
1− |αn|

2

1− αnz
,

φ̃n+1(r;µ) = ηαn (1− |αn|
2)

r B̃n(r)

1− αnr
,

φ̃∗n+1(r;µ) =
1− |αn|

2

1− αnr
.

(27)

So we get that

−
1− r2

1− αnr

φ̃n+1(r;µ)∣∣∣∣∣φ̃n+1(r;µ) φ̃∗n+1(r;µ)

φ̃∗n+1(r;µ) φ̃n+1(r;µ)

∣∣∣∣∣
=

ηαn (1− αnr)r B̃n(r)

(1− |αn|
2)(1− αnr)qn−1(r)

,

where qn−1(r) is given by

qn−1(r) =
1− r2

|B̃n(r)|2

1− r2 ∈ R+0 ,

and

(1− αnz)

∣∣∣∣∣φ̃n+1(z;µ) φ̃∗n+1(z;µ)

φ̃∗n+1(r;µ) φ̃n+1(r;µ)

∣∣∣∣∣ = (1− |αn|
2)2

[
z B̃n(z)r B̃n(r)− 1

]
1− αnr

.

Substituting this in (17) and simplifying, we find that

φn(z; µ̃) =
cn

(
an(1− βz)+ z(z−bn)(z−β)Bn−1(z)

1−αn z

)
(z − r)(r z − 1)

, (28)

where

cn = ηαn (1− |αn|
2)

r − αn

(1− βαn)

[
qn−1(r)+

αn
r−αn

qn−1(r)

]
,

an =
(r − β)

(1− βr)

[ r Bn−1(r)
r−αn

qn−1(r)+
αn

r−αn

]
,
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bn = 1+
1−αn
r−αn
− (1− r)qn−1(r)

qn−1(r)+
αn

r−αn

.

Note that |B̃n(1)| = 1, so that

lim
r→1

qn−1(r) =
1
2

lim
r→1

1− r2
|B̃n(r)|2

1− r
= 1+

1
2

[
d
dr
|B̃n(r)|

2
]

r=1

= 1+R{B̃ ′n(1)B̃n(1)} = 1+R

{
B̃ ′n(1)

B̃n(1)

}
= Qn−1.

Hence, for r tending to 1, the expression for the MORFs in Example 10 are recovered.
Again, for ϕn(z; µ̃), the constant cn in (28) has to be replaced with dn = κncn . In a similar

way as in Example 10, we now find that

κn =
|1− βαn|

|r − αn|

√√√√ qn−1(r)

(1− |αn|
2)
(

qn−1(r)+
1−|αn |2

|r−αn |2

) .
So, let ρn and σn be defined respectively as

ρn = ηαn

(r − αn)(1− βαn)

|(r − αn)(1− βαn)|
∈ T

and

σn = r Bn−1(r)

(
r − β

1− βr

)
∈ D.

Then we find that the coefficients for ϕn(z;µ) are given by

dn = ρn

√√√√ 1− |αn|
2

qn−1(r)
(

qn−1(r)+
1−|αn |2

|r−αn |2

) [qn−1(r)+
αn

r − αn

]

dnan = ρn

√√√√ 1− |αn|
2

qn−1(r)
(

qn−1(r)+
1−|αn |2

|r−αn |2

) [ 1
r − αn

]
σn

dnbn = ρn

√√√√ 1− |αn|
2

qn−1(r)
(

qn−1(r)+
1−|αn |2

|r−αn |2

) [rqn−1(r)+
1

r − αn

]
.

Remark 12. The case in which r ∈ [0, 1) and r ∈ C ∪ {0}, requires some extra attention. If
r = r1 ∈ {0, β, α1, . . . , αn−1}, it follows from (27) that φ̃n+1(r1;µ) = 0. Hence, using Eq. (24)
we find that

φn(z; µ̃) = ân
z(z − β)Bn−1(z)

(z − r1)(1− αnz)
,

where

ân = ηαn (1− |αn|
2)

1− r1αn

1− βαn
.
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Note that qn−1(r1) = (1− r2
1 )
−1, so that it is not difficult to verify that

lim
r→r1

cn = r1ân, lim
r→r1

cnan = 0, lim
r→r1

cnbn = ân

and

lim
r→r1

κn =
|1− βαn|

|1− r1αn|

1√
1− |αn|

2
.

On the other hand, if r = αn 6∈ {0, β, α1, . . . , αn−1}, it follows from (25) that

φn(z; µ̃) = b̂n
ĉn(1− βz)− z(z − β)Bn−1(z)

(z − αn)(αnz − 1)
,

where

b̂n =
ηαn (1− α

2
n)

2

(1− βαn)(1− α2
n |B̃n(αn)|2)

and ĉn =
(αn − β)αn Bn−1(αn)

(1− βαn)
.

Note that qn−1(αn) =
1−α2

n |B̃n(αn)|
2

1−α2
n

, so that now it is not difficult either to verify that

lim
r→αn

cn = αn b̂n, lim
r→αn

cnan = b̂n ĉn, lim
r→αn

cnbn = b̂n

and

lim
r→αn

κn =
|1− βαn|

(1− α2
n)

3/2

√
1− α2

n |B̃n(αn)|2.

Finally, the expression of ϕn(z; µ̃) for the more general case of γ ∈ O can be found, using
the following theorem.

Theorem 13 (Rotated Weight Function). Let the weight function µ̃′ be given by

µ̃′(z, β, reit ) =
1
iz

∣∣∣∣∣ z − reit

1− βz

∣∣∣∣∣
2

, r ∈ [0, 1],

and denote µ̃′(z, β, r) by µ̃′(z, β). Furthermore, let φ̃A,n (z, β) represent the rational function
with poles in A = {1/α1, . . . , 1/αn}, orthonormal on the unit circle with respect to the
weight function µ̃′(z, β, reit ), and let φB,n (u, ω) represent the rational function with poles
in B = {1/β1, . . . , 1/βn}, orthonormal on the unit circle with respect to the weight function
µ̃′(u, ω). Then it holds that

φ̃A,n (z, β) = φB,n (u, ω)

iff u = e−it z, ω = e−itβ and B = e−it A.

Proof. We have that

µ̃′(z, β, reit )dz =

∣∣∣∣∣ z − reit

1− βz

∣∣∣∣∣
2

dz

iz

=

∣∣∣∣∣ eit u − reit

1− eitωeit u

∣∣∣∣∣
2

d(eit u)

ieit u
, u = e−it z, ω = e−itβ,
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=

∣∣∣∣ u − r

1− ωu

∣∣∣∣2 du

iu
= µ̃′(u, ω)du.

Hence, it holds that φB,n (u, ω) is a rational function with poles u = 1/βk , for k = 1, . . . , n,
orthonormal on the unit circle with respect to the weight function µ̃′(z, β, reit ). Moreover, if
B = e−it A, it follows that φB,n (u, ω) has poles in z = 1/αk , for k = 1, . . . , n. Hence, there
exists a unimodular constant γn so that

φA,n (z, β) = γnφB,n (u, ω) .

Finally, if the leading coefficients of φA,n (z, β) and φB,n (u, ω) are supposed to be positive real,
then it holds that γn = 1 due to the fact that ζβk (u) = ζαk (z) for k = 1, . . . , n. �

Appendix

Theorem 14. The sequence of rational functions given by (12) forms a basis for the space[
Am Ln−1

]⊥m+n−1
µ

. Let j and mi be as defined before in Remark 3. Then, the sequence

{k̃m+n−1(z, γi ;µ)}
m
i=1 (for the special case in which all the zeros are simple) is recovered by

setting j = m and mi = 1.

Proof. First, notice that for a fixed k and i we have that

gi,k(z) :=
∂k k̃m+n−1(z, w;µ)

∂wk

∣∣∣∣∣
w=γi

=

m+n−1∑
l=0

ϕ̃l(z;µ)
dk ϕ̃l(w;µ)

dwk

∣∣∣∣∣
w=γi

=

m+n−1∑
l=0

ϕ̃l(z;µ)

(
dk ϕ̃l(w;µ)

dwk

)∣∣∣∣∣
w=γi

=

m+n−1∑
l=0

ϕ̃l(z;µ)ϕ̃
(k)
l (γi ;µ),

where ϕ̃(k)l represents the kth derivative of ϕ̃l . Hence, gi,k(z) ∈ L̃m+n−1 for every i = 1, . . . , j
and k = 0, . . . ,mi − 1.

Next, suppose f (z) is an arbitrary function in L̃m+n−1 ∩ Am Ln−1, and of the form

f (z) =
m+n−1∑

l=0

fl ϕ̃l(z;µ).

We then have for every i = 1, . . . , j and k = 0, . . . ,mi − 1 that

〈
gi,k(z), f (z)

〉
=

〈
m+n−1∑

l=0

ϕ̃l(z;µ)ϕ̃
(k)
l (γi ;µ),

m+n−1∑
l=0

fl ϕ̃l(z;µ)

〉

=

m+n−1∑
l=0

fl ϕ̃
(k)
l (γi ;µ) = f (k)(γi ) = 0.

Consequently, gi,k(z) ∈
[
Am Ln−1

]⊥m+n−1
µ

for every i = 1, . . . , j and k = 0, . . . ,mi − 1.
Finally, assume the rational functions gi,k(z), with i = 1, . . . , j and k = 0, . . . ,mi − 1, are

linear dependent, i.e. suppose there exist constants ai,k , not all equal to zero, so that

j∑
i=1

mi−1∑
k=0

ai,k gi,k(z) ≡ 0.
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It then follows that

0 ≡
j∑

i=1

mi−1∑
k=0

ai,k

(
m+n−1∑

l=0

ϕ̃l(z;µ)ϕ̃
(k)
l (γi ;µ)

)

=

m+n−1∑
l=0

ϕ̃l(z;µ)

(
j∑

i=1

mi−1∑
k=0

ai,k ϕ̃
(k)
l (γi ;µ)

)
=

m+n−1∑
l=0

bl ϕ̃l(z;µ),

where

bl =

j∑
i=1

mi−1∑
k=0

ai,k ϕ̃
(k)
l (γi ;µ). (29)

Since the ORFs ϕ̃l are linear independent, it must hold that

bl = 0 for every l ∈ {0, . . . ,m + n − 1}. (30)

Consider now the m × m square matrix

B =


ϕ̃0(γ1;µ) . . . ϕ̃

(m1−1)
0 (γ1;µ) . . . ϕ̃0(γ j ;µ) . . . ϕ̃

(m j−1)
0 (γ j ;µ)

ϕ̃1(γ1;µ) . . . ϕ̃
(m1−1)
1 (γ1;µ) . . . ϕ̃1(γ j ;µ) . . . ϕ̃

(m j−1)
1 (γ j ;µ)

... . . .
... . . .

... . . .
...

ϕ̃m−1(γ1;µ) . . . ϕ̃
(m1−1)
m−1 (γ1;µ) . . . ϕ̃m−1(γ j ;µ) . . . ϕ̃

(m j−1)
m−1 (γ j ;µ)

 .
From (29)–(30) and the fact that not every ai,k equals zero, we should have that det B = 0. This
implies that there exist constants cl , not all equal to zero for l = 0, . . . ,m − 1, and a rational
function

h(z) =
m−1∑
l=0

cl ϕ̃l(z;µ) ∈ L̃m−1,

so that h(k)(γi ) = 0 for every i = 1, . . . , j and k = 0, . . . ,mi − 1. But this can only be the
case if h(z) ≡ 0. Due to the fact that the ORFs ϕ̃l are linear independent, we have that h(z) ≡ 0
iff cl = 0 for l = 0, . . . ,m − 1. Clearly, this is a contradiction, which means that the rational
functions gi,k(z) are linear independent. �
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