16,526 research outputs found

    Current localisation and redistribution as the basis of discontinuous current controlled negative differential resistance in NbOx

    Get PDF
    In-situ thermo-reflectance imaging is used to show that the discontinuous, snap-back mode of current-controlled negative differential resistance (CC-NDR) in NbOx-based devices is a direct consequence of current localization and redistribution. Current localisation is shown to result from the creation of a conductive filament either during electroforming or from current bifurcation due to the super-linear temperature dependence of the film conductivity. The snap-back response then arises from current redistribution between regions of low and high current-density due to the rapid increase in conductivity created within the high current density region. This redistribution is further shown to depend on the relative resistance of the low current-density region with the characteristics of NbOx cross-point devices transitioning between continuous and discontinuous snap-back modes at critical values of film conductivity, area, thickness and temperature, as predicted. These results clearly demonstrate that snap-back is a generic response that arises from current localization and redistribution within the oxide film rather than a material-specific phase transition, thus resolving a long-standing controversy.Comment: 21 Page

    Schottky-Barrier-Induced Asymmetry in the Negative-Differential-Resistance Response of Nb/NbOx/Pt Cross-Point Devices

    Get PDF
    The negative differential resistance (NDR) response of Nb/NbOx/Pt cross-point devices is shown to have a polarity dependence due to the effect of the metal/oxide Schottky barriers on the contact resistance. Three distinct responses are observed under opposite polarity testing: bipolar S-type NDR, bipolar snap-back NDR, and combined S-type and snap-back NDR, depending on the stoichiometry of the oxide film and device area. In-situ thermoreflectance imaging is used to show that these NDR responses are associated with strong current localisation, thereby justifying the use of a previously developed two-zone, core shell thermal model of the device. The observed polarity dependent NDR responses, and their dependence on stoichiometry and area, are then explained by extending this model to include the effect of the polarity dependent contact resistance. This study provides an improved understanding of the NDR response of metal/oxide/metal structures and informs the engineering of devices for neuromorphic computing and non-volatile memory applications.This work is partly funded by an Australian Research Council (ARC) Linkage Project (LP150100693) and Varian Semiconductor Equipment/Applied Material

    Emergent phases in graphene flat bands

    Full text link
    Electronic correlations in two-dimensional materials play a crucial role in stabilising emergent phases of matter. The realisation of correlation-driven phenomena in graphene has remained a longstanding goal, primarily due to the absence of strong electron-electron interactions within its low-energy bands. In this context, magic-angle twisted bilayer graphene has recently emerged as a novel platform featuring correlated phases favoured by the low-energy flat bands of the underlying moir\'e superlattice. Notably, the observation of correlated insulators and superconductivity has garnered significant attention, leading to substantial progress in theoretical and experimental studies aiming to elucidate the origin and interplay between these two phases. A wealth of correlated phases with unprecedented tunability was discovered subsequently, including orbital ferromagnetism, Chern insulators, strange metallicity, density waves, and nematicity. However, a comprehensive understanding of these closely competing phases remains elusive. The ability to controllably twist and stack multiple graphene layers has enabled the creation of a whole new family of moir\'e superlattices with myriad properties being discovered at a fast pace. Here, we review the progress and development achieved so far, encompassing the rich phase diagrams offered by these graphene-based moir\'e systems. Additionally, we discuss multiple phases recently observed in non-moir\'e multilayer graphene systems. Finally, we outline future opportunities and challenges for the exploration of hidden phases in this new generation of moir\'e materials

    Filamentary Threshold Switching In Niobium Oxides

    Get PDF
    Two-terminal metal/oxide/metal (MOM) structures exhibit characteristic resistance changes, including non-volatile memory and volatile threshold switching responses when subjected to electrical stress (i.e., voltage or current stimuli), which are of interest as active elements in non-volatile memory arrays and neuromorphic computing. Recently, the threshold switching response in MOM devices based on vanadium oxides and niobium oxides have attracted particular attention due to their simple structure and reliability. Interestingly, specific phases of these oxides (e.g., VO2, NbO2 etc.) exhibit a metal-insulator transition (MIT) which causes dramatic changes in their intrinsic properties, including electrical and thermal conductivities, and often arguably reported as the dominant cause of the observed threshold switching response. While this response has been extensively studied for VO2, but the low transition temperature (~ 340K) limits their use only to low temperature microelectronics applications. In contrast, NbO2 has a much higher transition temperature ~ 1070 K, and NbO2 and other NbOx phases have drawn recent attention due to their reliable threshold switching characteristics. The resistance changes in MOM structures are often initiated by a one-step electroforming process that forms a filamentary conduction path. Knowledge about the structure, composition and spatial distribution of these filaments is essential for a full understanding of filamentary resistive/threshold-switching and for effective modelling and optimisation of associated devices. Additionally, NbOx-based devices exhibit a wide range of resistive and threshold switching responses that critically depend on operating condition, composition and device geometry. Thus, a proper understanding of these factors is important for achieving reliable switching with desired characteristics. This thesis focuses on understanding the electroforming process and subsequent threshold switching responses in NbOx by employing different techniques, including electrical testing, and thermo-reflectance imaging. At first, a simple means of detecting and spatially mapping conductive filaments in metal/oxide/metal cross-point devices is introduced and the utility of this technique is demonstrated to identify distinct modes of electroforming in low- and high-conductivity NbOx films. After that, the role of metal/oxide interface reactions on the post-forming characteristics of reactive-metal/Nb2O5/Pt devices is demonstrated. Specifically, devices are shown to exhibit stable threshold switching under negative bias but the response under positive bias depends on the choice of metal. Then, the threshold-switching and current-controlled negative differential resistance (NDR) characteristics of cross-point devices fabricated from undoped Nb2O5 and Ti-doped Nb2O5 are compared. In particular it is shown that doping offers an effective means of engineering the device response. Based on temperature dependent current-voltage characteristics and lumped-element modelling, these effects are attributed to doping-induced reductions in the device resistance and its rate of change with temperature. Finally, the physical origin of the discontinuous 'snapback' NDR is investigated. Specifically, it is shown that the snapback response is a direct consequence of current localisation and redistribution within the oxide film. Furthermore, it is demonstrated that material and device dependencies are consistent with predictions of a two-zone parallel memristor model of NDR which is based on a non-uniform current distribution after electroforming. These results advance the current understanding of threshold switching response in amorphous NbOx films, and provide a strong basis for engineering devices with specific NDR characteristics. Significantly, these results also resolve a long-standing controversy about the origin of the snapback response which has been a subject of considerable debate

    Electric Field- And Current-Induced Electroforming Modes in NbOx

    Get PDF
    Electroforming is used to initiate the memristive response in metal/oxide/metal devices by creating a filamentary conduction path in the oxide film. Here, we use a simple photoresist-based detection technique to map the spatial distribution of conductive filaments formed in Nb/NbOx/Pt devices, and correlate these with current-voltage characteristics and in situ thermoreflectance measurements to identify distinct modes of electroforming in low- and high-conductivity NbOx films. In low-conductivity films, the filaments are randomly distributed within the oxide film, consistent with a field-induced weakest-link mechanism, while in high-conductivity films they are concentrated in the center of the film. In the latter case, the current-voltage characteristics and in situ thermoreflectance imaging show that electroforming is associated with current bifurcation into regions of low and high current density. This is supported by finite element modeling of the current distribution and shown to be consistent with predictions of a simple core-shell model of the current distribution. These results clearly demonstrate two distinct modes of electroforming in the same material system and show that the dominant mode depends on the conductivity of the film, with field-induced electroforming dominant in low-conductivity films and current bifurcation-induced electroforming dominant in high-conductivity films.This work was partly funded by the Australian Research Council (ARC) and Varian Semiconductor Equipment/ Applied Materials through an ARC Linkage Project Grant: LP150100693

    Hemispheric Laterality and Cognitive Style

    Get PDF
    The purpose of the present study was to determine the nature and degree of relationship between cerebral hemispheric style and several traditional dimensions of cognitive style. A large battery of laterality preference, cognitive style, verbal and nonverbal ability, and selected additional tests was administered to 97 (52 female, 45 male) right-handed undergraduate volunteers, with subsequent analysis of relationships among the measures by simple correlation, factor analysis, and multiple regression methods. Laterality measures included the Zenhausern, Verbalizer-Visualizer Questionnaire, and a lateral eye movement observation measure. Data analyses utilized individual laterality test scores as well as a composite laterality index. Eleven cognitive style tests were administered, including measures of field independence, distractibility, complexity, flexibility, and other dimensions. Additional tests administered included measures of verbal and visual synthesizing ability, anxiety, repression-sensitization, and social desirability. The main findings of the study were as follows: (1) Intercorrelations of the cognitive style measures were generally very low, ranging from .00 to -.54; (2) Only one cognitive style factor reliably emerged, accounting for about 10% of the common cognitive style test variance. This factor was called Open vs. Closed-Mindedness and was defined primarily by Dogmatism, Rigidity, and Ambiguity Tolerance scores; (3) Maximum multiple prediction of individual and composite laterality scores from individual cognitive style tests, cognitive style factor scores, and additional scores accounted for 11% to 25% of laterality variance; (4) Sex differences were nonsignificant on all measures with the following exceptions: Females performed the Stroop Test more quickly, were narrower categorizers on the Category Width Scale, and obtained higher trait anxiety scores than males. General conclusions drawn were that hemispheric and cognitive style, as measured in the present study, are largely unrelated, and that individuals manifest considerable diversity in cognitive style. The findings caution against oversimplification and overgeneralization in reference to both hemispheric and cognitive style and their interrelationship. Low intercorrelations of measures within both domains do call into question the adequacy of available tests of these constructs and suggest the need for further test development based upon current neuropsychological knowledge
    corecore