38 research outputs found

    Interactively animating crumpling paper

    No full text
    International audienceWe present the first method in computer graphics to animate sheets of paper at interactive rates while automatically generating a plausible set of sharp features when the sheet is crumpled. Our hybrid, geometric and physical, model is based on a high-level understanding of the physical constraints that act on real sheets of paper, and of their geometric counterparts. This understanding enables us to use an adaptive mesh carefully representing the main geometric features of paper in terms of singular points and developability

    Interactively animating crumpling paper

    Get PDF
    International audienceWe present the first method in computer graphics to animate sheets of paper at interactive rates while automatically generating a plausible set of sharp features when the sheet is crumpled. Our hybrid, geometric and physical, model is based on a high-level understanding of the physical constraints that act on real sheets of paper, and of their geometric counterparts. This understanding enables us to use an adaptive mesh carefully representing the main geometric features of paper in terms of singular points and developability

    Beyond developable: computational design and fabrication with auxetic materials

    Get PDF
    We present a computational method for interactive 3D design and rationalization of surfaces via auxetic materials, i.e., flat flexible material that can stretch uniformly up to a certain extent. A key motivation for studying such material is that one can approximate doubly-curved surfaces (such as the sphere) using only flat pieces, making it attractive for fabrication. We physically realize surfaces by introducing cuts into approximately inextensible material such as sheet metal, plastic, or leather. The cutting pattern is modeled as a regular triangular linkage that yields hexagonal openings of spatially-varying radius when stretched. In the same way that isometry is fundamental to modeling developable surfaces, we leverage conformal geometry to understand auxetic design. In particular, we compute a global conformal map with bounded scale factor to initialize an otherwise intractable non-linear optimization. We demonstrate that this global approach can handle non-trivial topology and non-local dependencies inherent in auxetic material. Design studies and physical prototypes are used to illustrate a wide range of possible applications

    Pouch Motors: Printable Soft Actuators Integrated with Computational Design

    Get PDF
    We propose pouch motors, a new family of printable soft actuators integrated with computational design. The pouch motor consists of one or more inflatable gas-tight bladders made of sheet materials. This printable actuator is designed and fabricated in a planar fashion. It allows both easy prototyping and mass fabrication of affordable robotic systems. We provide theoretical models of the actuators compared with the experimental data. The measured maximum stroke and tension of the linear pouch motor are up to 28% and 100 N, respectively. The measured maximum range of motion and torque of the angular pouch motor are up to 80° and 0.2 N, respectively. We also develop an algorithm that automatically generates the patterns of the pouches and their fluidic channels. A custom-built fabrication machine streamlines the automated process from design to fabrication. We demonstrate a computer-generated life-sized hand that can hold a foam ball and perform gestures with 12 pouch motors, which can be fabricated in 15 min.National Science Foundation (U.S.) (1240383)National Science Foundation (U.S.) (1138967)United States. Department of Defens

    Origamizer: A Practical Algorithm for Folding Any Polyhedron

    Get PDF

    An end-to-end approach to self-folding origami structures

    Get PDF
    This paper presents an end-to-end approach to automate the design and fabrication process for self-folding origami structures. Self-folding origami structures are robotic sheets composed of rigid tiles and joint actuators. When they are exposed to heat, each joint folds into a preprogrammed angle. Those folding motions transform themselves into a structure, which can be used as body of 3-D origami robots, including walkers, analog circuits, rotational actuators, and microcell grippers. Given a 3-D model, the design algorithm automatically generates a layout printing design of the sheet form of the structure. The geometric information, such as the fold angles and the folding sequences, is embedded in the sheet design. When the sheet is printed and baked in an oven, the sheet self-folds into the given 3-D model. We discuss, first, the design algorithm generating multiple-step self-folding sheet designs, second, verification of the algorithm running in O(n 2 ) time, where n is the number of the vertices, third, implementation of the algorithm, and finally, experimental results, several self-folded 3-D structures with up to 55 faces and two sequential folding steps
    corecore