104 research outputs found

    Knuth-Bendix Completion with Modern Termination Checking, Master\u27s Thesis, August 2006

    Get PDF
    Knuth-Bendix completion is a technique for equational automated theorem proving based on term rewriting. This classic procedure is parametrized by an equational theory and a (well-founded) reduction order used at runtime to ensure termination of intermediate rewriting systems. Any reduction order can be used in principle, but modern completion tools typically implement only a few classes of such orders (e.g., recursive path orders and polynomial orders). Consequently, the theories for which completion can possibly succeed are limited to those compatible with an instance of an implemented class of orders. Finding and specifying a compatible order, even among a small number of classes, is challenging in practice and crucial to the success of the method. In this thesis, a new variant on the Knuth-Bendix completion procedure is developed in which no order is provided by the user. Modern termination-checking methods are instead used to verify termination of rewriting systems. We prove the new method correct and also present an implementation called Slothrop which obtains solutions for theories that do not admit typical orders and that have not previously been solved by a fully automatic tool

    Formalizing Knuth-Bendix Orders and Knuth-Bendix Completion

    Get PDF
    We present extensions of our Isabelle Formalization of Rewriting that cover two historically related concepts: the Knuth-Bendix order and the Knuth-Bendix completion procedure. The former, besides being the first development of its kind in a proof assistant, is based on a generalized version of the Knuth-Bendix order. We compare our version to variants from the literature and show all properties required to certify termination proofs of TRSs. The latter comprises the formalization of important facts that are related to completion, like Birkhoff\u27s theorem, the critical pair theorem, and a soundness proof of completion, showing that the strict encompassment condition is superfluous for finite runs. As a result, we are able to certify completion proofs

    AC-KBO Revisited

    Get PDF
    Equational theories that contain axioms expressing associativity and commutativity (AC) of certain operators are ubiquitous. Theorem proving methods in such theories rely on well-founded orders that are compatible with the AC axioms. In this paper we consider various definitions of AC-compatible Knuth-Bendix orders. The orders of Steinbach and of Korovin and Voronkov are revisited. The former is enhanced to a more powerful version, and we modify the latter to amend its lack of monotonicity on non-ground terms. We further present new complexity results. An extension reflecting the recent proposal of subterm coefficients in standard Knuth-Bendix orders is also given. The various orders are compared on problems in termination and completion.Comment: 31 pages, To appear in Theory and Practice of Logic Programming (TPLP) special issue for the 12th International Symposium on Functional and Logic Programming (FLOPS 2014

    A Modular Associative Commutative (AC) Congruence Closure Algorithm

    Get PDF

    Constrained completion: Theory, implementation, and results

    Get PDF
    The Knuth-Bendix completion procedure produces complete sets of reductions but can not handle certain rewrite rules such as commutativity. In order to handle such theories, completion procedure were created to find complete sets of reductions modulo an equational theory. The major problem with this method is that it requires a specialized unification algorithm for the equational theory. Although this method works well when such an algorithm exists, these algorithms are not always available and thus alternative methods are needed to attack problems. A way of doing this is to use a completion procedure which finds complete sets of constrained reductions. This type of completion procedure neither requires specialized unification algorithms nor will it fail due to unorientable identities. We present a look at complete sets of reductions with constraints, developed by Gerald Peterson, and the implementation of such a completion procedure for use with HIPER - a fast completion system. The completion procedure code is given and shown correct along with the various support procedures which are needed by the constrained system. These support procedures include a procedure to find constraints using the lexicographic path ordering and a normal form procedure for constraints. The procedure has been implemented for use under the fast HIPER system, developed by Jim Christian, and thus is quick. We apply this new system, HIPER- extension, to attack a variety of word problems. Implementation alternatives are discussed, developed, and compared with each other as well as with the HIPER system. Finally, we look at the problem of finding a complete set of reductions for a ternary boolean algebra. Given are alternatives to attacking this problem and the already known solution along with its run in the HIPER-extension system --Abstract, page iii

    On ground word problem of term equation systems

    Get PDF
    We give semi-decision procedures for the ground word problem of variable preserving term equation systems and term equation systems. They are natural improvements of two well known trivial semi-decision procedures. We show the correctness of our procedures
    • …
    corecore