784,856 research outputs found

    Sand to Root Transfer of PAHs and PCBs by Carrots Grown on Sand with Pure Substances and Biosolids Amended Sand

    Get PDF
    A study on behaviour of trace organic compounds (Polycyclic Aromatic Hydrocarbons, PAH, and Polychlorinated Biphenyls, PCB) in a sand-plant system has been carried out, with the reclamation of wastewater treatment plant biosolids for agriculture in mind. Carrot plants (Daucus carota) were grown on soilless culture (sand), to provide optimal transfer conditions, in plant containers inside a temperature regulated greenhouse. There were two types of experiment. The trace organic compounds have initially been introduced as pure substances. A second experiment has been carried out under the same conditions, but using biosolids. Plant development has been unaffected by the presence of the pure substances and the biosolids. The transfer of the trace organic compounds has been followed in the peel, the core and the leaves of the carrot plants. Results obtained are expressed as fluxes of the trace organic compounds into the plant. The results clearly show that trace organic compounds accumulate in the carrot peel

    Organic compounds in hydraulic fracturing fluids and wastewaters: A review

    Get PDF
    High volume hydraulic fracturing (HVHF) of shale to stimulate the release of natural gas produces a large quantity of wastewater in the form of flowback fluids and produced water. These wastewaters are highly variable in their composition and contain a mixture of fracturing fluid additives, geogenic inorganic and organic substances, and transformation products. The qualitative and quantitative analyses of organic compounds identified in HVHF fluids, flowback fluids, and produced waters are reviewed here to communicate knowledge gaps that exist in the composition of HVHF wastewaters. In general, analyses of organic compounds have focused on those amenable to gas chromatography, focusing on volatile and semi-volatile oil and gas compounds. Studies of more polar and non-volatile organic compounds have been limited by a lack of knowledge of what compounds may be present as well as quantitative methods and standards available for analyzing these complex mixtures. Liquid chromatography paired with high-resolution mass spectrometry has been used to investigate a number of additives and will be a key tool to further research on transformation products that are increasingly solubilized through physical, chemical, and biological processes in situ and during environmental contamination events. Diverse treatments have been tested and applied to HVHF wastewaters but limited information has been published on the quantitative removal of individual organic compounds. This review focuses on recently published information on organic compounds identified in flowback fluids and produced waters from HVHF

    A method of isolating organic compounds present in water

    Get PDF
    Water sample is passed through a column containing macroreticular resin, which absorbs only nonionic organic compounds. These compounds are selectively separated using aqueous eluents of varying pH, or completely exuded with small amount of an organic eluent

    A new metalation complex for organic synthesis and polymerization reactions

    Get PDF
    Organometallic complex of N,N,N',N' tetramethyl ethylene diamine /TMEDA/ and lithium acts as metalation intermediate for controlled systhesis of aromatic organic compounds and polymer formation. Complex of TMEDA and lithium aids in preparation of various organic lithium compounds

    Analysis of volatile organic compounds

    Get PDF
    An apparatus and method are described for reproducibly analyzing trace amounts of a large number of organic volatiles existing in a gas sample. Direct injection of the trapped volatiles into a cryogenic percolum provides a sharply defined plug. Applications of the method include: (1) analyzing the headspace gas of body fluids and comparing a profile of the organic volatiles with standard profiles for the detection and monitoring of disease; (2) analyzing the headspace gas of foods and beverages and comparing the profile with standard profiles to monitor and control flavor and aroma; and (3) analyses for determining the organic pollutants in air or water samples

    From stellar nebula to planets: the refractory components

    Full text link
    We computed the abundance of refractory elements in planetary bodies formed in stellar systems with solar chemical composition by combining models for chemical composition and planet formation. We also consider the formation of refractory organic compounds, which have been ignored in previous studies on this topic. We used the commercial software package HSC Chemistry in order to compute the condensation sequence and chemical composition of refractory minerals incorporated into planets. The problem of refractory organic material is approached with two distinct model calculations: the first considers that the fraction of atoms used in the formation of organic compounds is removed from the system (i.e. organic compounds are formed in the gas phase and are nonreactive); and the second assumes that organic compounds are formed by the reaction between different compounds that had previously condensed from the gas phase. Results show that refractory material represents more than 50 wt % of the mass of solids accreted by the simulated planets, with up to 30 wt % of the total mass composed of refractory organic compounds. Carbide and silicate abundances are consistent with C/O and Mg/Si elemental ratios of 0.5 and 1.02 for the Sun. Less than 1 wt % of carbides; pyroxene and olivine in similar quantities are formed. The model predicts planets that are similar in composition to those of the Solar system. It also shows that, starting from a common initial nebula composition, a wide variety of chemically different planets can form, which means that the differences in planetary compositions are due to differences in the planetary formation process. We show that a model in which refractory organic material is absent from the system is more compatible with observations. The use of a planet formation model is essential to form a wide diversity of planets in a consistent way.Comment: 18 pages, 29 figures. Accepted for publication in A&

    Microbial ecosystem constructed in water for successful organic hydroponics

    Get PDF
    Conventional hydroponics systems generally use only chemical fertilisers, not organic ones, since there are no microbial ecosystems present in such systems to mineralise organic compounds to inorganic nutrients. Addition of organic compounds to the hydroponic solution generally has phytotoxic effects and causes poor plant growth. We developed a novel hydroponic culture method using organic fertiliser. A microbial ecosystem was constructed in hydroponic solution by regulating the amounts of organic fertiliser and soil, with moderate aeration. The microbial ecosystem mineralised organic nitrogen to nitrate-nitrogen via ammonification and nitrification. A 97.6% efficiency of nitrate-nitrogen generation from the organic nitrogen in the organic fertiliser was achieved. The culture solution containing the microbial ecosystem was usable as a hydroponic solution. Vegetable plants grew well in our organic hydroponics system under continuous addition of organic fertiliser, and the yield and quality approximated those of vegetables grown by conventional hydroponics

    Organic atmospheric particulate material

    Get PDF
    Carbonaceous compounds comprise a substantial fraction of atmospheric particulate matter (PM). Particulate organic material can be emitted directly into the atmosphere or formed in the atmosphere when the oxidation products of certain volatile organic compounds condense. Such products have lower volatilities than their parent molecules as a result of the fact that adding oxygen and/or nitrogen to organic molecules reduces volatility. Formation of secondary organic PM is often described in terms of a fractional mass yield, which relates how much PM is produced when a certain amount of a parent gaseous organic is oxidized. The theory of secondary organic PM formation is outlined, including the role of water, which is ubiquitous in the atmosphere. Available experimental studies on secondary organic PM formation and molecular products are summarized

    Food waste materials appear efficient and low-cost adsorbents for the removal of organic and inorganic pollutants from wastewater

    Get PDF
    In recent studies, the adsorption capacity of several food waste materials has been assessed by performing adsorption experiments in heterogeneous operating conditions. In a latest study, the efficiency of such food waste materials for the removal of metals and metalloids from complex multi-element solutions was evaluated in homogeneous experimental conditions, which allowed comparing the adsorption capacities of the individual adsorbents. Considering the high efficiency of the examined low-cost adsorbents for the removal of inorganic pollutants, preliminary studies were conducted in our lab for assessing the potential of the investigated food waste materials to adsorb volatile organic compounds from a real polluted matrix of leachate. Some recent studies have shown the efficiency of low cost materials for the removal of industrial organic dyes, polycyclic aromatic hydrocarbons and phenolic compounds. However, the food waste adsorbents’ efficiency for the removal of volatile organic compounds was not investigated. Our preliminary studies showed good adsorption capacities of the examined food waste materials for aliphatic and aromatic hydrocarbons. Therefore, it is worth to carry out further studies about volatile organic compounds’ removal by food waste adsorbents
    • …
    corecore