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Highlights  19 

• GC and GC-MS are key analytical techniques used for organic chemical analysis 20 

• BTEX, acetate, and acetone are the most frequently analyzed organic compounds  21 

• Diverse halogenated organic compounds have been detected in flowback fluids 22 

• Organic additives have been used to infer environmental contamination  23 

• Development of new standards and standard methods for quantification are needed 24 

 25 

26 



 

3 | P a g e  
 

3 

Abstract 26 

 High volume hydraulic fracturing (HVHF) of shale to stimulate the release of natural gas 27 

produces a large quantity of wastewater in the form of flowback fluids and produced water. 28 

These wastewaters are highly variable in their composition and contain a mixture of fracturing 29 

fluid additives, geogenic inorganic and organic substances, and transformation products. The 30 

qualitative and quantitative analyses of organic compounds identified in HVHF fluids, flowback 31 

fluids, and produced waters are reviewed here to communicate knowledge gaps that exist in the 32 

composition of HVHF wastewaters. In general, analyses of organic compounds have focused on 33 

those amenable to gas chromatography, focusing on volatile and semi-volatile compounds oil 34 

and gas compounds. Studies of more polar and non-volatile organic compounds have been 35 

limited by a lack of knowledge of what compounds may be present as well as quantitative 36 

methods and standards available for analyzing these complex mixtures. Liquid chromatography 37 

paired with high-resolution mass spectrometry has been used to investigate a number of additives 38 

and will be a key tool to further research on transformation products that are increasingly 39 

solubilized through physical, chemical, and biological processes in situ and during 40 

environmental contamination events. Diverse treatments have been tested and applied to HVHF 41 

wastewaters but limited information has been published on the quantitative removal of individual 42 

organic compounds. This review focuses on recently published information on organic 43 

compounds identified in flowback fluids and produced waters from HVHF. 44 

45 
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1. Introduction 45 

 Shale gas extraction via high volume hydraulic fracturing (HVHF) has resulted in the use 46 

of 116 billion liters of fluids annually from 2012-2014 and yielded similar volumes of flowback 47 

and produced waters (Kondash and Vengosh, 2015). These fluids contain a complex mixture of 48 

inorganic and organic compounds used as additives (Elsner and Hoelzer, 2016; Stringfellow et 49 

al., 2014) as well as compounds extracted from the shale itself including salts, metals, 50 

radionuclides, oil and gas compounds, and natural organic matter (NOM) (Abualfaraj et al., 51 

2014; Chapman et al., 2012; Engle and Rowan, 2014). Understanding these complex fluid 52 

mixtures is essential for understanding efficacy of additives, fluid treatment options for reuse in 53 

future HVHF jobs or discharge, and threats to the natural environment and human exposure. 54 

 The identification and quantification of individual organic compounds among the 55 

complex mixture of additives, oil and gas compounds, NOM, and transformation products 56 

requires diverse sample preparation and analytical techniques (Ferrer and Thurman, 2015a). 57 

Mass spectral techniques provide data of variable confidence ranging from having only the exact 58 

masses of interest to having confirmed structures by reference standards (Schymanski et al., 59 

2014). Gas chromatography paired with mass spectrometry has been traditionally used to 60 

identify hydrophobic oil and gas hydrocarbons found in produced waters (Ferrer and Thurman, 61 

2015a; Maguire-Boyle and Barron, 2014; Orem et al., 2014; Strong et al., 2013), and can be used 62 

to quantify many of the compounds in HVHF fluids and wastewaters of known toxicity (Elliott 63 

et al., 2017). Liquid chromatography paired with mass spectrometry has been shown to be useful 64 

in identifying many of the more hydrophilic organic compounds used in HVHF additives such as 65 

ethoxylated surfactants (Ferrer and Thurman, 2015a, 2015b; Getzinger et al., 2015; Hoelzer et 66 

al., 2016), but further method development requires overcoming analytical barriers such as the 67 
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complex high salinity matrix. Analytical methods for describing unknown shale extracts and 68 

transformation products will require higher resolution techniques such as two dimensional gas 69 

chromatography with time of flight mass spectrometry (GC×GC-TOF-MS) (Hoelzer et al., 70 

2016), liquid chromatography with time of flight mass spectrometry (LC-TOF-MS) (Ferrer and 71 

Thurman, 2015b; Thurman et al., 2014), and Fourier transform ion cyclotron resonance mass 72 

spectrometry (FT-ICR-MS), each requiring laborious data analysis and interpretation. Time of 73 

flight mass spectrometry can provide sufficiently high resolution that exact masses can be 74 

combined with GC or LC to determine unknown molecular formulas and structures with 75 

relatively high confidence in the absence of standards, especially when combined with 76 

fragmentation spectra (Ferrer and Thurman, 2015b; Marshall and Hendrickson, 2008; Thurman 77 

et al., 2014). Ultrahigh resolution FT-ICR-MS allows for direct determination of the assigned 78 

molecular formula based on the exact mass alone but provides no direct details on molecular 79 

structure (Marshall and Hendrickson, 2008) unless paired with MS-MS techniques. However, 80 

large numbers of possible isomers at higher masses make this approach challenging, but this 81 

challenge might be partially overcome by using LC.  82 

 Organic compounds observed in these fluids have been characterized by their mobility, 83 

persistence, toxicity, and frequency of use to understand the level of concern for human exposure 84 

via groundwater (Rogers et al., 2015). However, the combination of multiple organic 85 

compounds, inorganic compounds, and multiple phases complicates modeling the behavior of 86 

these organic compounds in the natural environment. Experimental and field studies are needed 87 

to address questions of mobility, persistence, and toxicity of HVHF fluid additives, geogenic 88 

organic compounds, and potential transformation products.  89 
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 A number of studies have worked to identify analytical methods and quantify organic 90 

compounds in HVHF fluids, flowback fluids, and produced waters, and describe how these 91 

compounds are transformed within diverse environments. However, these studies have yet to be 92 

synthesized to provide a holistic perspective on the processes controlling organic compounds 93 

within these fluids. This review aims to synthesize existing literature on organic compounds 94 

quantitatively and qualitatively identified in HVHF fluids, flowback fluids and produced waters. 95 

Additionally, this review focuses on the distribution of HVHF associated organic compounds 96 

during environmental contamination and their use as tracers of contamination, the removal 97 

efficiencies of specific organic compounds during wastewater treatment, and makes 98 

recommendations for future research. 99 

 100 

2. Hydraulic Fracturing Fluid Additives 101 

 The majority of organic additives included in HVHF fluid have been described by class 102 

and their frequency of use (Elsner and Hoelzer, 2016; Rogers et al., 2015). Additionally, lists of 103 

additives are publicly available through the website FracFocus (fracfocus.org) and are 104 

summarized in the EPA hydraulic fracturing study report (U.S. EPA, 2016). Organic compounds 105 

are used at every stage in the HVHF process: 1) mixing of the base fluid including solvent and 106 

surfactants, 2) as cross linkers and breakers, 3) clay stabilizers, 4) corrosion, scale, and 5) 107 

biofouling inhibitors (Elsner and Hoelzer, 2016; Stringfellow et al., 2014). Alcohols are the 108 

dominant organic class used in a number of functions including as solvents (methanol, 109 

isopropanol, ethanol), surfactants (ethylene glycol, ethoxylated alcohols and phenols) and 110 

corrosion inhibitors (propargyl alcohol) (Elsner and Hoelzer, 2016). Polymers are also used in a 111 

large number of processes including as gelling agents, friction reducers, proppant coatings, 112 
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corrosion and scale inhibitors (Elsner and Hoelzer, 2016). Many synthetic polymers and 113 

biopolymers are readily biodegraded, although their monomers may be of environmental concern 114 

(Elsner and Hoelzer, 2016; Stringfellow et al., 2014). Hydrocarbons, as light and heavy 115 

petroleum distillate mixtures and individual compounds (naphthalene, tetradecane, limonene), 116 

are an additional dominant class of additives, used primarily as solvents (Elsner and Hoelzer, 117 

2016). 118 

 Of the remaining additives, some are specifically added to be reactive. For example, 119 

strong oxidants are used as biocides (infrequently) (Kahrilas et al., 2015) and as breakers (77% 120 

of surveyed well disclosure lists) (Elsner and Hoelzer, 2016). Glutaraldehyde and 121 

dibromonitrilopropionamide are the dominant biocides used (27% and 24%, respectively) and 122 

behave by reacting with specific function groups (thiol, amino, sulfhydryl) and destroying 123 

protein function (Kahrilas et al., 2015; Maillard, 2002). Breakers are used to “break” polymers 124 

and reduce surface tension of the fluid, allowing flowback fluids to return to the surface. These 125 

breakers and biocides may react not only with their targets, but also on the other organic 126 

compounds present as additives or from geogenic sources and result in unknown transformation 127 

products (Hoelzer et al., 2016; Luek et al., 2017; Maguire-Boyle and Barron, 2014). 128 

3. Flowback and Produced Waters 129 

 Specific organic compounds have been analyzed both qualitatively and quantitatively in 130 

more than 238 flowback and produced water samples from hydraulically fractured shale gas 131 

wells in published literature (Table 1, Fig. 1). These analyses have focused on both oil and gas 132 

related compounds (e.g., hydrocarbons, benzene, toluene, ethylbenzene and xylene [BTEX]), 133 

small organic acids related to microbial degradation, and other additives. Confidence in 134 

identification of organic compounds is variable, with some compounds identified quantitatively 135 
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using standards while others rely on spectral libraries or match of exact mass due to a lack of 136 

standards and standardized methods (Schymanski et al., 2014). The use of quantitative 137 

techniques (q), standards (s), or spectral libraries (l) is indicated in Table 1 by publication and 138 

technique. 139 

 Seventy percent of the samples analyzed for organic compounds have been collected 140 

from the Marcellus shale basin, which makes up ~37% of unconventional natural gas production 141 

but less than 0.01% of oil production (Drilling Productivity Report, 2017). Gas chromatography 142 

has been used extensively in these studies for volatile and semi-volatile organic compound 143 

(VOC, SVOC) analyses (Table 1). Ion chromatography (IC) has also been used to analyze small 144 

organic acids (Akob et al., 2015; Lester et al., 2013). High resolution LC-TOF-MS has been used 145 

to investigate specific additives, focusing mostly on samples from Weld County, Colorado in the 146 

Denver-Julesberg basin (Ferrer and Thurman, 2015b; Rosenblum et al., 2016; Thurman et al., 147 

2014). Organic analyses have also been performed on samples collected from the Barnett shale 148 

(Maguire-Boyle and Barron, 2014; Thurman et al., 2014), the Wolfcamp and Cline shales in the 149 

Permian basin (Khan et al., 2016), New Albany shale (Orem et al., 2014), an unknown formation 150 

in Texas (Thacker et al., 2015), a single sample from each of the Eagle Ford, Fayetteville, 151 

Burket, and unspecified formations in Pennsylvania, Nevada, and Louisiana. 152 

 153 
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 154 

Figure 1. Summary of flowback and produced water samples analyzed to date for organic 155 
compounds in 18 studies given in Table 1. a) by basin b) fluid age c) analytical technique and d) 156 
number of publications by analytical technique.  157 
 158 
 159 
Table 1. Published reports and peer-reviewed literature analyzing organic compounds in shale 160 
gas flowback and produced waters. qquantitative; scompared to standards; lcompared to spectral 161 
library ^sample origins not precisely specified and up to 5 may overlap with samples reported by 162 
Lester et al., 2015; Rosenblum et al., 2016. *MBA, methyl blue active substances (for anionic 163 
surfactants). 164 

Basin/Shale 
Gas 
Formation 
(state)# 

Fluid Type (time of 
sampling) 

Analytical Method for Organic 
Compound Identification 
(targeted classes) 

Number 
of 
Samples 

Source 

Marcellus (PA), 
Burket (PA) 

Produced (5 months - 
38 months) 

GC-MS (VOCsq,s,  
IC (organic acids) 

13 (Akob et al., 2015) 

Marcellus (PA) Flowback and 
Produced  

GC (alkenes, alkanes, acetatel), 
LC-TOF-MS (ethxoylated 
surfactants) 

31 (Cluff et al., 2014) 

Denver-
Julesberg (CO)  

Flowback and 
Produced 

LC-TOF-MS (gels, surfactants, 
biocidess) 

22^ (Ferrer and 
Thurman, 2015b) 
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Marcellus (PA, 
WV) 

Flowback (Day 1, 5, 
14) Produced (Day 90) 

GC-MS (VOCs, SVOCs, 
pesticidesq,s) GC-ECD (PCBsq,s) 
GC-FID (ethylene glycolq,s) 

78 (Hayes, 2009) 

Fayetteville 
(AR) 

Flowback (Week 0-3) 
Produced (Week 50) 

GC-FID (VOCsq,s), GC-MS 
(SVOCs), GCxGC-FID and 
GCxGC-TOF-MS (SVOCs) 

6 (Hoelzer et al., 
2016) 

Permian- 
Wolfcamp, 
Cline (TX) 

Produced (Day 130-
441) 

GCxGC-TOF-MS (VOCsq,s,l, 
SVOCsq,s,l) 

8 (Khan et al., 2016) 

Marcellus 
(WV), Denver-
Julesberg (CO), 
Utica (OH), 
ND, PA, WV 

Flowback, Produced, 
Compression liquids 

FT-ICR-MS (dissolved ionizable 
(ESI-) organics) 

16 (Luek et al., 2017) 

Denver-
Julesberg (CO)  

Flowback composite 
(unknown timing) 

IC (acetic acidq), GC-MS (VOC, 
SVOCq,s) LC-TOF-MS (trace 
organic chemicals) 

1 (Lester et al., 2015) 

Marcellus (PA) Flowback HPLC (organic acidsq) 3 (Murali Mohan et 
al., 2013b) 

Marcellus (PA), 
Eagle Ford 
(TX), Barnett 
(NM) 

Produced (unknown) GC-MS (aliphatic, aromatic, resin, 
asphaltenes, halogenatedl) 

3 (Maguire-Boyle and 
Barron, 2014) 

Marcellus (PA) 
New Albany 
(IN, KY) 

Flowback and 
Produced (time series) 

GC-MS (PAHs, , aromatic amines, 
phenols, heterocyclic and other 
aromatic & aliphatic compounds, 
phthalates, fatty acidsq,s,l), HPLC 
(volatile fatty acidsq) 

Unknow
n (>14) 

(Orem et al., 2014) 

Denver-
Julesberg (CO)  

Produced (Unknown) LC-TOF-MS (polyethylene 
glycols), GC-FID (total petroleum 
hydrocarbons) 

4 (Rosenblum et al., 
2016) 

Marcellus 
(Greene 
County, PA) 

Produced water (18 
months) 

GCxGC-TOF-MS (aliphatic, 
cycloaliphatic, and aromatic 
compounds, and PAHs) 

1 (Strong et al., 2013) 

Unknown (TX) Unknown GC-MS (VOCsq,l, SVOCs), 
LCMS-IT-TOF (surfactant), IC 
(organic acidsq) 

3 (Thacker et al., 
2015) 

Denver-
Julesberg (CO), 
Barnett (TX), 
PA, NV, LA  

Flowback and 
Produced 

LC-TOF-MS (ethoxylated 
surfactantss) 

12^ (Thurman et al., 
2014) 

Marcellus (PA) Flowback, Produced 
and 
Flowback/Produced 
Mixture 

GC-FID (acetic acid, ethylene 
glycol, 1,2-propanediolq,s) HPLC 
(citric acidq,s) 

10 (Wolford, 2011)  

Marcellus (WV) Flowback (Day 0, 7, 
14, 35) 

Unreported, listed as EPA certified 
labs 

13 (Ziemkiewicz, 2013) 

Marcellus (WV) Flowback  GC-MS (VOCsq,s) GC-FID 
(petroleum hydrocarbonsq,s) MBA* 
(surfactantsq,s) 

13 (Ziemkiewicz and 
He, 2015) 

3.1 Organic Additives 165 
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 A number of known and suspect additives have been identified in flowback and produced 166 

waters, although not all studies had access to the corresponding list of additives or the HVHF 167 

fluid alone prior to injection (Cluff et al., 2014; Hayes, 2009; Hoelzer et al., 2016; Lester et al., 168 

2015; Orem et al., 2014; Rosenblum et al., 2016; Strong et al., 2013; Thacker et al., 2015; 169 

Wolford, 2011). Quantitative analyses for known organic additives are still limited by a lack of 170 

standards and standard methods and many compounds can only be putatively identified. Several 171 

surfactants/dispersants have been identified including ethoxylated alcohols (Cluff et al., 2014; 172 

Lester et al., 2015; Thurman et al., 2014), ethoxylated phenols (Orem et al., 2014), glycols 173 

(Hayes, 2009; Orem et al., 2014; Robert Wolford, 2011; Rosenblum et al., 2016), alkyl amines 174 

(Thacker et al., 2015), cocamide compounds (Ferrer and Thurman, 2015b; Thacker et al., 2015), 175 

2-butoxyethanol (Thacker et al., 2015), and bulk anionic surfactants (as methyl blue active 176 

substances) (Ziemkiewicz and He, 2015). Of these surfactants, only ethylene glycol and 177 

propylene glycol were reported quantitatively and neither of these studies appear in the peer 178 

reviewed literature (Hayes, 2009; Wolford, 2011). The biocides alkyl dimethyl benzyl 179 

ammonium chloride, glutaraldehyde, and hexahydro-1,3,5-trimethyl-1,3,5-triazine-2-thione have 180 

been detected but only the latter was quantified (Ferrer and Thurman, 2015b; Orem et al., 2014). 181 

The triazine biocide was initially detected in flowback at very high levels (1.5 mg L-1) but 182 

returned to very low levels (10 µg L-1) within one week of well operation (Orem et al., 2014). 183 

Phthalates have been identified in several flowback and produced water samples (Hayes, 2009; 184 

Hoelzer et al., 2016; Lester et al., 2015; Maguire-Boyle and Barron, 2014; Orem et al., 2014). In 185 

quantitative analyses of phthalates, di-n-octyl-phthalate peaked in Marcellus shale early 186 

flowback (5600 µg L-1) and rapidly declined (Orem et al., 2014), but no clear pattern was 187 

observed in nineteen Marcellus shale well time series for diethyl phthalate, di-n-butyl phthalate, 188 
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di-n-octyl-phthalate, or bis-(2-ethylhexyl) phthalate (Hayes, 2009).  189 

 Citric acid, used for iron control, was reported in Marcellus flowback samples at high 190 

concentrations (9, 53, and 70 mg L-1) but was not identified in any produced water samples 191 

within the same study (Wolford, 2011). 2,2,4-trimethyl-1,3,-pentanediol (solvent) and tridecane 192 

(fuel component) were also traced in a Marcellus shale well across flowback and produced 193 

waters, and while both peaked around the second day of flowback, both remained above 200 µg 194 

L-1 in produced waters (Orem et al., 2014). The gelling agent guar gum was analyzed for but 195 

neither detected nor quantified in twenty-two Denver-Julesberg flowback and produced water 196 

samples (Ferrer and Thurman, 2015b). Bisphenol F and 2-butoxy ethanol were reported in a 197 

Texas produced water sample (Thacker et al., 2015), and a number of other additives have been 198 

reported non-quantitatively in several shale plays including a dioctadecyl ester of phosphate 199 

(lubricant), and some fluorinated organic compounds (possible flowpath tracers) (Hoelzer et al., 200 

2016; Maguire-Boyle and Barron, 2014). 201 

 202 

3.2 Geogenic organic compounds from additives and/or shale 203 

 Ultrahigh resolution mass spectrometry has been used to identify more than 30,000 204 

organic compounds in shale oil.20,22 Although shale gas is more aged than shale oil and likely 205 

contains fewer organic compounds, interactions of the fracturing fluid with shale likely extracts a 206 

very large number of geogenic organic compounds from both oil and gas producing wells. 207 

Combined with a number of petrogenic additives such as petroleum distillates, kerosene, BTEX, 208 

mixed alkanes, and naphthalenes, many geogenic compounds may be present in any given 209 

flowback fluid or produced water. Indeed, more than a thousand geogenic organic compounds 210 

have been identified in flowback and produced waters using GC-FID, GC-MS, and GCxGC-211 
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TOF-MS (Hoelzer et al., 2016; Maguire-Boyle and Barron, 2014; Orem et al., 2014; Strong et 212 

al., 2013), but only twenty four of these compounds have been reported quantitatively above the 213 

limit of detection in the peer reviewed literature (Akob et al., 2015; Lester et al., 2015; 214 

Ziemkiewicz and He, 2015; Ziemkiewicz, 2013). Reported concentrations of these quantifiable 215 

organic compounds are given in supplemental online materials (Table S1, Figure S1), including 216 

data from two non-peer reviewed sources (Hayes, 2009; Wolford, 2011). Dissolved methane as 217 

well as other light gases including ethane, propane, and butane will not be discussed here as they 218 

are by default present in productive wells. Overall, extractable hydrocarbons decreased in 219 

concentration during flowback and were lowest in produced water in a large number of analyzed 220 

samples (Orem et al., 2014). In broad spectrum reports of organic compounds in flowback and 221 

produced waters using various types of gas chromatography, aliphatic compounds were the 222 

dominant class identified (Hoelzer et al., 2016; Maguire-Boyle and Barron, 2014; Orem et al., 223 

2014; Strong et al., 2013). Out of 986 compounds tentatively identified using GCxGC-TOF-MS 224 

in a Marcellus shale produced water, 61% of the identified compounds were aliphatic, and 24% 225 

were cycloaliphatic (Strong et al., 2013). Aromatic compounds represented 13% of the 226 

remaining compounds. PAHs accounted for 2% in this Marcellus shale produced water, and a 227 

substantial number of aromatic compounds and PAHs were also identified by other broad 228 

spectrum reports of organic compounds (Hoelzer et al., 2016; Maguire-Boyle and Barron, 2014; 229 

Orem et al., 2014). A new analytical technique has been developed for quantification of PAHs 230 

and other SVOCs in HVHF wastewater pairing solid-phase extraction with GC-MS (Regnery et 231 

al., 2016). 232 

 BTEX compounds were both the most frequently analyzed organic compounds in 233 

flowback and produced water and the most frequently detected organic compounds above 234 
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detection limits (Figure 2). In the Marcellus shale, BTEX concentrations were highest in 235 

flowback over the first 90 days, but were detectable at low concentrations in produced waters 236 

even several years after the initial HVHF event. Toluene, ethylbenzene, and xylene 237 

concentrations in flowback were up to two orders of magnitude lower than benzene quantified 238 

concurrently. Fayetteville, Burket, and Denver-Julesberg samples were only analyzed in early 239 

flowback and had similar levels to the Marcellus shale (Akob et al., 2016; Hoelzer et al., 2016; 240 

Lester et al., 2015). In the Permian basin, produced water after 130-441 days of operation had 241 

consistently high levels of benzene, toluene, and ethylbenzene, of hundreds of mg L-1, while 242 

xylenes concentration were three orders of magnitude lower, similar to Marcellus flowback 243 

(Khan et al., 2016). High BTEX concentrations found in the Permian could be associated with oil 244 

production compared to the generally dry Marcellus shale gas. A clear distinction was made in a 245 

side by side comparison of BTEX in a dry and a wet Marcellus shale gas; wet gas concentrations 246 

were two orders of magnitude higher for all ions than dry gas, peaking in wet gas seven days 247 

after HVHF (benzene= 375 µg L-1, toluene = 2,100 µg L-1, xylenes (m,p) = 2,400ug L-1) 248 

[ethylbenzene not reported] (Ziemkiewicz, 2013). 249 

 Aromatic compounds including polycyclic aromatic hydrocarbons have been 250 

quantitatively reported in a number of studies. Phenol, 2-methylphenol, 3&4-methylphenol, 2,4 251 

dimethylphenol, 2-methylnaphthalene, phenanthrene, and pyrene were all quantified in a 252 

composite Denver-Julesberg basin flowback sample (Lester et al., 2015) and in Marcellus shale 253 

flowback and produced waters (Hayes, 2009). 1,2,4-trimethylbenzene and isopropylbenzene 254 

were quantified in Fayetteville flowback fluids and Marcellus shale flowback and produced 255 

waters (Hoelzer et al., 2016). New Albany shale produced waters also frequently contained alkyl 256 

napthalenes, phenanthrenes, and pyrene (Orem et al., 2014). Alkylated benzenes and alkylated 257 
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naphthalenes were identified but not quantified in Barnett and Marcellus shales (Maguire-Boyle 258 

and Barron, 2014). Methyl phenol and dimethylphenol were detected in much higher 259 

concentrations in a composite flowback sample from the Denver-Julesberg basin than PAHs 260 

(150-830 ug L-1 vs. <10ug L-1) (Lester et al., 2015), but similar concentration ranges of both the 261 

phenolic and PAH compounds were observed in the Marcellus (Hayes, 2009). A number of 262 

oxygen containing resins/asphaltenes were identified in Marcellus, Barnett and Eagle Ford shale 263 

produced waters (Maguire-Boyle and Barron, 2014). 264 

 Polychlorinated biphenyls (PCBs) and pesticides were analyzed for the Hayes report 265 

(Hayes, 2009) in nineteen wells over the first ninety days after HVHF, but were only detected 266 

sporadically in very low concentrations and the report concluded that testing for these 267 

compounds in future wastewater analyses was unnecessary. These compounds have not been 268 

specifically targeted in any other study, and no evidence has been provided for a potential source 269 

for these compounds in fracturing additives. 270 
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 271 

Figure 2. Concentrations (log scale) of benzene (a), toluene (b), ethylbenzene (c), and xylene (d) 272 
in flowback and produced water samples by days after HVHF well completion from literature 273 
(Akob et al., 2015; Hayes, 2009; Hoelzer et al., 2016; Khan et al., 2016; Lester et al., 2015; 274 
Wolford, 2011; Ziemkiewicz, 2013; Ziemkiewicz and He, 2015). Open triangles indicate mean 275 
of 13 Marcellus samples (Ziemkiewicz and He, 2015), colored triangles represent individual data 276 
points. Fayetteville samples are shown on day 10 for comparison but were collected within the 277 
first three weeks (Hoelzer et al., 2016). Note: benzene and ethylbenzene are given on a different 278 
scale than toluene and xylenes. 279 
 280 

3.3 Transformation products of organic constituents 281 

 Transformations in HVHF fluids of organic compounds may occur through physico-282 

chemical or biological processes. Indeed, specific additives are designed to chemically transform 283 

and “break” polymers in the fracturing fluid to reduce surface tension before flowback begins 284 

(Stringfellow et al., 2014). Despite the use of biocides, high bacterial cell counts have been 285 

identified both in the injected fluids and in flowback and produced waters (Cluff et al., 2014; 286 
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Mohan et al., 2014; Murali Mohan et al., 2013a). Hence, a combination of physical, chemical 287 

and biologically mediated reactions ultimately drive the transformation of organic compounds in 288 

these fluids (Elsner and Hoelzer, 2016; Hoelzer et al., 2016).  289 

 A number of small organic acids are produced through microbial transformation under 290 

the anaerobic conditions frequently observed in HVHF wastewater via fermentation (Müller, 291 

2008). Small organic acids were analyzed in a handful of studies, although not all report 292 

quantitative results. Acetate was measured in seven studies (Figure 3), formate in three (Akob et 293 

al., 2015; Strong et al., 2013; Thacker et al., 2015), and citrate (Wolford, 2011), lactate, 294 

propionate, butyrate, and pyruvate (Akob et al., 2015) were each analyzed in one study. Acetate, 295 

propionate, and butyrate were measured in the Hayes dataset with high method detection limits 296 

(10mg L-1) but are not included due to questionable reliability (Hayes, 2009). Acetate and other 297 

organic acids are likely produced during the anaerobic degradation of additives and potentially 298 

geogenic substances as hydrocarbons are degraded to acetate under anaerobic conditions (e.g., 299 

Callbeck et al., 2013). Indeed, fermentative classes of bacteria capable of producing organic 300 

acids were identified in flowback samples where acetate was identified (Cluff et al., 2014; 301 

Murali Mohan et al., 2013b). Acetate concentrations were highest in flowback samples, 302 

presumably due to the high concentrations of degradable organic additives such as ethoxylates, 303 

guar gum, and glycols. The highest concentration of acetate observed (1600 mg L-1) was in a 304 

composite flowback sample, and was three times higher than the next highest sample and an 305 

order of magnitude higher than most flowback samples (Lester et al., 2015). Aeration of 306 

flowback fluid resulted in acetate decreasing below detection limits, which is not surprising as 307 

fermentation would no longer be occurring and any acetate previously produced would likely be 308 

readily mineralized in situ under aerobic conditions (Murali Mohan et al., 2013b). Produced 309 
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water samples contained much lower acetate concentrations. In 14 Marcellus shale produced 310 

water samples (Figure 3, Produced*), the mean acetate concentration was 10.6 mg L-1, but the 311 

range was not reported (Orem et al., 2014). In 16 other produced water samples, the mean acetate 312 

concentration was 7.0 mg L-1. Formate was not detected in two of the three studies in which it 313 

was analyzed, and in those where it was not detected acetate was also absent (Strong et al., 2013; 314 

Thacker et al., 2015). Butyrate was not detected in any of the 13 produced water samples it was 315 

analyzed in, but propionate, lactate, formate, and pyruvate were detected in produced water 316 

samples at low levels (<4 mg L-1 each) and acetate in slightly higher concentrations (mean 5.8 317 

mg L-1). These are indications for continued bacterial activity (Akob et al., 2015). 318 

 319 

 320 

Figure 3. Boxplot of acetate/acetic acid concentrations in quantified samples reported in literature (Akob et al., 321 
2015; Lester et al., 2015; Murali Mohan et al., 2013b; Orem et al., 2014; Strong et al., 2013; Thacker et al., 2015; 322 
Wolford, 2011). Box gives median and 25th and 75th percentiles, whisker represent 90th percentile, and individual 323 
points show outliers. Acetate values below detection for one produced and two HVHF wastewater samples were not 324 
included in the box plot (Strong et al., 2013; Thacker et al., 2015). Mixed is a combination of flowback and 325 
produced water (Wolford, 2011). Produced* represents mean of 14 samples reported by (Orem et al., 2014). 326 
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 327 

Figure 4. Acetone concentrations in flowback and produced water to 90 days compiled from literature values (Akob 328 
et al., 2015; Hayes, 2009; Hoelzer et al., 2016; Lester et al., 2015; Wolford, 2011; Ziemkiewicz, 2013; Ziemkiewicz 329 
and He, 2015). Acetone analyses were not performed on samples collected more than 90 days after HVHF well 330 
completion. 331 
 332 
 Acetone in flowback may originate from its use as an additive, may be a transformation 333 

product via anaerobic fermentation via pyruvate (Rosenfeld and Simon, 1950), or may be 334 

associated with both sources. Acetone concentrations were highly variable in flowback samples 335 

(most ND, median 90 µg L-1 in positive detections, mean of 1,060 µg L-1 in n=37 positive 336 

detections) and acetone was not measured in any samples after 90 days (Figure 4). The highest 337 

observed concentration was measured in a composite flowback sample (16,000 µg L-1) (Lester et 338 

al., 2015), and several other flowback samples had acetone concentrations ranging from 102 - 103 339 

µg L-1 (Hayes, 2009). Interestingly, in at least one supply water sample (used for mixing to make 340 

HVHF fluid), acetone concentrations were even higher than in flowback (Hayes, 2009), 341 

suggesting that this supply water was likely a recycled fluid that contained high levels of acetone 342 

as an additive or degradable organic additives that underwent fermentation to form acetone. In a 343 

simulated bioreactor “spill” of HVHF fluids, acetone was produced as a degradation product (see 344 

Section 4.2) (Kekacs et al., 2015). 345 

 19% of the 404 identified organic compounds in Fayetteville shale flowback fluid and 346 
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produced waters using GCxGC-TOF-MS were suspected to be formed through subsurface 347 

reactions (Hoelzer et al., 2016). Many of these compounds included carbonyl groups (Hoelzer et 348 

al., 2016) that may indicate degradation of geopolymers or hydrolysis products of delayed-349 

release acids used as breakers (Hoelzer et al., 2016; Orem et al., 2014, 2010). In Marcellus shale 350 

produced waters, 2,2,4-trimethyl-1,3-pentanediol was identified at high concentrations (130 - 351 

500 µg L-1) in flowback and remained at those concentrations in the produced waters even 234 352 

days after HVHF (Orem et al., 2014). This compound has not been identified as an additive 353 

previously, but a related compound, 2,2,4-trimethyl-1,3- pentanediol monoisobutyrate, has been 354 

used industrially as a solvent and may potentially be related to the source of this derivative 355 

(Orem et al., 2014). A direct transformation product of the known additive, azobis 356 

(isobutyronitrile), tetramethylsuccinonirile was identified by GCxGC-TOF-MS in Fayetteville 357 

shale produced waters (Hoelzer et al., 2016). Dimerization and trimerization of the frequently 358 

used biocide glutaraldehyde under the variable salinity, temperature, and pressure conditions 359 

reflecting a shale gas well has been tested under laboratory conditions (Kahrilas et al., 2016), but 360 

has not been observed in flowback and produced waters (Ferrer and Thurman, 2015b). 361 

Additionally, hydroxylated phenols identified in flowback fluids are likely degradation products 362 

of alkylphenol ethoxylate additives (Hoelzer et al., 2016).  363 

 A number of studies have putatively identified halogenated organic compounds in 364 

flowback and produced waters that are much more diverse than the limited number of known 365 

halogenated additives (Table 2). Perfluorinated organic compounds identified in the Eagle Ford 366 

shale produced waters were suggested to be tracers used for reservoir mapping (Maguire-Boyle 367 

and Barron, 2014). Methylene chloride is the only explicitly disclosed halogenated organic 368 

compound identified in flowback and produced waters, but four additional halogenated organic 369 
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compounds (chloromethyl propanoate, chloromethyl pentanoate, chloromethyl hexanoate, 370 

chloromethyl octanoate) identified by Hoelzer and colleagues are suspected HVHF additives 371 

(Hoelzer et al., 2016). Four studies have identified a number of additional halogenated organic 372 

compounds that are likely transformation products and several potential mechanisms for the 373 

formation of these compounds are hypothesized (Hayes, 2009; Hoelzer et al., 2016; Luek et al., 374 

2017; Maguire-Boyle and Barron, 2014). Maguire-Boyle and Barron (2014) identified the 375 

corresponding non-halogenated aliphatic compound for each halogenated compound and 376 

suggested that the halide salts or free halogens created during oxidative treatments could cause 377 

the observed halogenation (Maguire-Boyle and Barron, 2014). Similarly, Hoelzer and colleagues 378 

indicated radicalic substitution, nucleophilic substitution, and electrophilic addition in the 379 

presence of halides and free halogen species as the proposed halogenation mechanisms (Hoelzer 380 

et al., 2016). In streambed sediments downstream of a deep well injection facility, several 381 

halogenated organic compounds including 1,54-dibromotetrapentacontane were identified (Orem 382 

et al., 2017).  383 

 384 
Table 2. Halogenated organic compounds identified in flowback and produced waters. Italicized 385 
compounds are explicit and suspect fracturing fluid additives. Note: Compounds identified in 386 
Hayes (2009) rely on EPA methods with quantification using reference standards; Hoelzer et al., 387 
(2016) and Maguire-Boyle and Barron (2014) match ions using spectral libraries and report 388 
confidence in assignment in their supplemental materials. Halogenated chemical formulas in 389 
Luek et al., (2017) not included due to lack of structural information. 390 
 391 
Compound Molecular  

Formula 
Method Source 

Chloromethane CH3Cl GC/MS EPA Method 
SW846 8260B 

Hayes 2009 

Dichloromethane CH2Cl2 GC/MS EPA Method 
SW846 8260B 

Hayes 2009 

Dichloromethane CH2Cl2 GCxGC-TOF-MS Hoelzer et al., 2016 
Dichloromethane CH2Cl2 GC/MS Maguire-Boyle and Barron 2014 
Trichloromethane CHCl3 GC/MS Maguire-Boyle and Barron 2014 
Tetrachloroethene C2Cl4 GC/MS EPA Method 

SW846 8260B 
Hayes 2009 
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1,1-dichloroethane C2H4Cl2 GC/MS Maguire-Boyle and Barron 2014 
1,1'-oxybis[1,1]-dichloromethane C2H4Cl2O GC/MS Maguire-Boyle and Barron 2014 
Chloromethyl propanoate C4H7ClO2 GCxGC-TOF-MS Hoelzer et al., 2016 
bis(2-chloroethyl) ether C4H8Cl2O GC/MS EPA Method 

SW846 8260B 
Hayes 2009 

1-chloro-5-iodo-pentane C5H10ClI GCxGC-TOF-MS Hoelzer et al., 2016 
1,1-dimethyl-3-chloropropanol C5H11ClO GCxGC-TOF-MS Hoelzer et al., 2016 
Hexachlorobenzene C6Cl6 GC/MS EPA Method 

SW846 8270C 
Hayes 2009 

2-(chloromethyl) tetrahydropyran C6H11ClO GCxGC-TOF-MS Hoelzer et al., 2016 
2-chlorocyclohexanol C6H11ClO GCxGC-TOF-MS Hoelzer et al., 2016 
Chloromethyl pentanoate C6H11ClO2 GCxGC-TOF-MS Hoelzer et al., 2016 
1-chloro-3,3-dimethyl-butane C6H13Cl GCxGC-TOF-MS Hoelzer et al., 2016 
1,2,3-trichlorobenzene C6H3Cl3 GC/MS EPA Method 

SW846 8260B 
Hayes 2009 

1,2,4-trichlorobenzene C6H3Cl4 GC/MS EPA Method 
SW846 8260B 

Hayes 2009 

1,4-dichlorobenzene C6H4Cl2 GC/MS EPA Method 
624 

Hoelzer et al., 2016 

2,6-dichlorophenol C6H4Cl2O GC/MS EPA Method 
SW846 8270C 

Hayes 2009 

2,4-dichloro-5-oxo-2-hexenedioic 
acid 

C6H4Cl2O5 GC/MS Maguire-Boyle and Barron 2014 

Dichlorophenol C6H4ClO GC/MS EPA Method 
SW846 8260B 

Hayes 2009 

2,2-dichloro-3,6-dimethyl-1-Oxa-2-
silacyclohexa-3,5-diene 

C6H8Cl2OSi GC/MS Maguire-Boyle and Barron 2014 

3-chloro-1,1,2,2-tetramethyl-
cyclopropane 

C7H13Cl GCxGC-TOF-MS Hoelzer et al., 2016 

Chloromethyl hexanoate C7H14ClO2 GCxGC-TOF-MS Hoelzer et al., 2016 
Chloromethyl octanoate C9H17ClO2 GCxGC-TOF-MS Hoelzer et al., 2016 
1-chlorohexadecane C16H33Cl GC/MS Maguire-Boyle and Barron 2014 
1-chlorooctadecane C18H37Cl GC/MS Maguire-Boyle and Barron 2014 
Trichlorodocosylsilane C22H45Cl3Si GC/MS Maguire-Boyle and Barron 2014 
1-chloroheptacosane C27H55Cl GC/MS Maguire-Boyle and Barron 2014 
Bromomethane CH3Br GC/MS EPA Method 

SW846 8260B 
Hayes 2009 

Tribromomethane CHBr3 GC/MS EPA Method 
SW846 8260B 

Hayes 2009 

2-bromo-hexane C6H13Br GCxGC-TOF-MS Hoelzer et al., 2016 
1-bromo-2-methyl-cyclohexane C7H13Br GCxGC-TOF-MS Hoelzer et al., 2016 
4-bromoheptane C7H15Br GCxGC-TOF-MS Hoelzer et al., 2016 
2-piperidinone, N-[4-bromo-n-
butyl] 

C9H16BrNO GCxGC-TOF-MS Hoelzer et al., 2016 

2-bromo-
tricyclo[3.3.1.1(3,7)]decane 

C10H15Br GCxGC-TOF-MS Hoelzer et al., 2016 

3-bromo-cyclodecene C10H17Br GCxGC-TOF-MS Hoelzer et al., 2016 
4,5-dibromo-, (R*,R*)-decane C10H20Br2 GCxGC-TOF-MS Hoelzer et al., 2016 
1,12-dibromododecane C12H24Br2 GC/MS Maguire-Boyle and Barron 2014 
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14-bromo-1-tetradecene C14H27Br GC/MS Maguire-Boyle and Barron 2014 
1-bromopentadecane C15H31Br GC/MS Maguire-Boyle and Barron 2014 
7-bromomethyl-pentadec-7-ene C16H31Br GCxGC-TOF-MS Hoelzer et al., 2016 
1-bromohexadecane C16H33Br GC/MS Maguire-Boyle and Barron 2014 
1-bromooctadecane C18H37Br GC/MS Maguire-Boyle and Barron 2014 
1,54-dibromotetrapentacontane C54H108Br2 GC/MS Maguire-Boyle and Barron 2014 
3-iodo-propanoic acid, C3H5IO2 GCxGC-TOF-MS Hoelzer et al., 2016 
2-iodo-3-methyl-butane C5H11I GCxGC-TOF-MS Hoelzer et al., 2016 
5-iodopentan-2-one C5H9IO GCxGC-TOF-MS Hoelzer et al., 2016 
1-iodo-nonane C9H19I GCxGC-TOF-MS Hoelzer et al., 2016 
1-iodo-2-methylundecane C12H25I GCxGC-TOF-MS Hoelzer et al., 2016 
1-iodo-2-methylundecane C12H25I GC/MS Maguire-Boyle and Barron 2014 
1-iodo-tetradecane C14H29I GCxGC-TOF-MS Hoelzer et al., 2016 
Bromodichloromethane CHBrCl2 GCxGC-TOF-MS Hoelzer et al., 2016 
1,3-dioxolane, 2-(3-bromo-5,5,5-
trichloro-2,2-dimethylpentyl) 

C10H16BrCl3O2 GCxGC-TOF-MS Hoelzer et al., 2016 

1-bromo-11-iodoundecane C11H22BrI GC/MS Maguire-Boyle and Barron 2014 

4. Environmental Contamination 392 

4.1 Contamination Events 393 

 In the peer-reviewed literature, specific organic compounds have been identified in 394 

surface water, sediments, and groundwater and have been linked to recent HVHF activities 395 

(Cozzarelli et al., 2017; DiGiulio and Jackson, 2016a; Drollette et al., 2015; Gross et al., 2013; 396 

Hildenbrand et al., 2016, 2015; Kassotis et al., 2014; Llewellyn et al., 2015; Orem et al., 2017). 397 

These suspected contamination events were documented in the Bakken, Powder River Basin, 398 

Marcellus, Permian, Barnett, and Denver-Julesberg basins, and next to a deep well injection 399 

facility in West Virginia. The EPA has also published five “retrospective case studies” 400 

investigating the impacts of HVHF on drinking water sources in five different locations between 401 

2011-2013. (Retrospective Case Study in Killdeer, North Dakota: Study of the Potential Impacts 402 

of Hydraulic Fracturing on Drinking Water Resources, 2015, Retrospective Case Study in 403 

Northeastern Pennsylvania: Study of the Potential Impacts of Hydraulic Fracturing on Drinking 404 

Water Resources, 2015, Retrospective Case Study in Southwestern Pennsylvania Study of the 405 
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Potential Impacts of Hydraulic Fracturing on Drinking Water Resources, 2015, Retrospective 406 

Case Study in the Raton Basin, Colorado: Study of the Potential Impacts of Hydraulic 407 

Fracturing on Drinking Water Resources, 2015, Retrospective Case Study in Wise County, 408 

Texas: Study of the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources, 409 

2015). Organic analyses have focused on additives and oil and gas related compounds; inorganic 410 

tracers of HVHF including anions and metals have also been analyzed in these samples to 411 

understand the potential contamination events.  412 

 The only large volume surface spill of HVHF wastewaters (11.4 million liters) 413 

extensively analyzed for organic compounds and published in the literature occurred in Blacktail 414 

Creek in North Dakota (Bakken formation) in January of 2015. Streamwater water and stream 415 

bed sediment samples were collected in February and June of 2015 for a large number of organic 416 

and inorganic chemical analyses, biological, and toxicological analyses (Cozzarelli et al., 2017). 417 

SVOCs including 1,3,5-trimethylbenzene, 1,2,3,4-tetramethylbenzene, and 1-methylnaphthalene 418 

were quantified in unfiltered water samples in a location of an oily sheen downstream from the 419 

spill location. However, these compounds were absent from filtered water samples, suggesting 420 

that many of these organic compounds might have been particle-bound. Trace SVOCs were 421 

identified in streambed sediment below reporting limits, but the authors suggested that the spill 422 

pathway over 10s of meters of soil could have resulted in substantial sorption of hydrophobic 423 

organic compounds to soil prior to the spill entering the stream (Cozzarelli et al., 2017). Surface 424 

contamination of streamwaters and streambed sediments were also investigated outside of a deep 425 

well injection facility in West Virginia to determine if the large volumes of HVHF wastewater 426 

transported and unloaded on site resulted in contamination of the nearby environment (Akob et 427 

al., 2016; Orem et al., 2017). Extensive organic chemical analyses were performed targeting oil 428 
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and gas compounds, known HVHF chemical additives, disinfection by-products, and additional 429 

SVOCs including halogenated compounds (Orem et al., 2017). In streamwater, only tetra-hydro-430 

thiophene 1,1-dioxide, a compound used for cleaning natural gas, was consistently identified 431 

downstream of the facility. In sediments, a complex mixture of organic compounds was 432 

identified which included a number of halogenated organic compounds (trifluoracetate/alkanes 433 

and halogenated alkanes), some of which have been identified previously in HVHF fluids 434 

(Maguire-Boyle and Barron, 2014) and wastewaters while others are of unknown origin. 435 

Although the results are complex and indicate possible broader contamination in the region 436 

upstream of the facility, the distribution of organic compounds combined with inorganic analyses 437 

(Akob et al., 2016) indicated clear environmental contamination from the HVHF wastewater 438 

disposal facility.  439 

 The largest groundwater investigation to investigate the impacts of HVHF were 440 

performed using private and public groundwater wells from aquifers overlying the Permian 441 

(n=42 wells, multiple time points) and Barnett basins (n=550, n=100) (Fontenot et al., 2013; 442 

Hildenbrand et al., 2016, 2015). Samples in both basins were analyzed using GC-MS and 443 

headspace-gas chromatography (HS-GC) for a number of organic compounds identified in 444 

HVHF fluid as well as others associated with oil and gas development. BTEX compounds, 445 

chlorinated solvents (dichloromethane, chloroform), and low molecular weight alcohols were 446 

detected in a number of Barnett region samples, with only toluene and methanol distributions 447 

indicative of surface spills (Hildenbrand et al., 2015). Ethanol was found alongside high bromide 448 

concentrations, another tracer of HVHF wastewater (Hildenbrand et al., 2015). Permian basin 449 

groundwater wells were sampled at four time points, during which unconventional oil and gas 450 

development increased significantly (Hildenbrand et al., 2016). Following the initial time point, 451 



 

26 | P a g e  
 

26 

ethanol and dichloromethane elevated significantly at an additional time point, and a number of 452 

other organic compounds associated with oil and gas development and degradation (isopropyl 453 

alcohol, propargyl alcohol, acetaldehyde, cyclohexane, toluene, xylene, ethylbenzene) that were 454 

not present in the initial sampling campaign were identified (Hildenbrand et al., 2016). The 455 

authors ultimately concluded that their findings indicated the transient nature of potential 456 

contamination events in developed areas (Hildenbrand et al., 2016).  457 

 In northeastern Pennsylvania, groundwater samples were collected from private 458 

residential wells (9-231 m depth) and analyzed for GC-amenable compounds (Drollette et al., 459 

2015). Gas related organic compounds were detected in 9 of 59 wells and diesel related organic 460 

compounds were detect in 23 of 41 wells in highly variable concentrations (Drollette et al., 461 

2015). BTEX compounds were identified in 6 samples at trace levels below EPA drinking water 462 

maximum contaminant level recommendations (Drollette et al., 2015). The highest 463 

concentrations of observed organic compounds were identified within 1 km of a shale gas well as 464 

well as in close proximity to a well that caused an environmental health and safety violation. 465 

Based on geochemical fingerprinting tools, the authors concluded that the groundwater 466 

contamination was likely due to surface spills associated with HVHF activities rather than via 467 

subsurface contamination. Additionally, a disclosed additive, bis(2-ethylhexyl) phthalate, was 468 

identified in the same two samples with the highest diesel related organic compounds 469 

concentrations. Foaming was also observed in three residential drinking water wells in northern 470 

Pennsylvania located in close proximity to HVHF wells (Llewellyn et al., 2015). Commercial 471 

laboratories were unable to detect any compounds during this known contamination event other 472 

than methane that exceeded regulatory drinking water standards and recommendations, but 2-473 
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butoxyethanol was identified in the foaming waters using GCxGC-qTOF-MS. 2-butoxyethanol is 474 

an ingredient in the Airfoam HD additive frequently used during HVHF (Llewellyn et al., 2015).  475 

 In Weld County, CO, 218 groundwater samples were analyzed for BTEX following 77 476 

industry reported spills of oil or produced waters. Following remediation at several sites, 477 

benzene remained above the maximum contaminant limit for groundwater in 59% of sites, and 478 

above these levels outside of the remediation area in 37% of sites (Gross et al., 2013). In Garfield 479 

County, CO, groundwater samples were collected in a high density shale gas drilling region and 480 

analyzed for the endocrine disruption capacity (EDC) of the solid phase extracts of these fluids 481 

(Kassotis et al., 2014). In 39 samples, 89% of samples exhibited estrogenic activity, 41% anti-482 

estrogenic, 12% androgenic, and 46% anti-androgenic activity; significantly higher than nearby 483 

drilling sparse control sites. These high EDC activities were suspected to be related to 484 

groundwater contamination due to HVHF activities from any of the more than 100 known EDCs 485 

found in HVHF additives (Kassotis et al., 2014). 486 

 Following complaints of residents, the EPA investigated groundwater contamination in 487 

Pavilion, WY suspected to be associated with the HVHF of shallow gas wells through the 488 

installation of several shallow and deep groundwater monitoring wells (DiGiulio and Jackson, 489 

2016a; DiGiulio et al., 2011). Multiple phases of monitoring were performed beginning with 490 

existing residential and municipal wells, followed by shallow monitoring wells, and finally by 491 

two explicitly drilled deep monitoring wells (235 m, 295 m) (DiGiulio et al., 2011). Shallow 492 

wells had high levels of BTEX, diesel and gas related compounds, and other hydrocarbons, but 493 

ultimately were suspected of contamination by the use of surface unlined pits where fluids 494 

including diesel used for gas extraction were stored (DiGiulio and Jackson, 2016a). However, 495 

organic compounds identified in deep groundwater monitoring wells were different than those 496 
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identified in surface wells and a number of known synthetic organic compounds used for HVHF 497 

were identified (DiGiulio and Jackson, 2016a; DiGiulio et al., 2011). These included isopropanol 498 

(biocide, surfactant, breakers, foaming agents), nonylphenol and octylphenol (surfactants), 499 

diethylene glycol, triethylene glycol, tetraethylene glycol (solvent, foaming agent), 2-500 

butoxyethanol (gelling agent), and a suspected degradation product of possible undisclosed 501 

additives, tert-butyl alcohol (DiGiulio and Jackson, 2016a; DiGiulio et al., 2011). Aromatic 502 

solvent, diesel oil, heavy aromatic petroleum naphtha, toluene, xylene and petroleum raffinates 503 

(material remaining following extraction of specific petroleum products) were reported as 504 

fracturing fluid additives in the nearby well, and a number of compounds reflecting these 505 

additives were identified in the monitoring wells including BTEX, trimethylbenzenes, 506 

naphthalenes, and phenols (DiGiulio and Jackson, 2016a; DiGiulio et al., 2011). Diesel and gas 507 

related organic compounds in 23 of 28 nearby domestic well samples correlated with reports of 508 

foul odors (DiGiulio et al., 2011). Phthalates, acetone, 2-butanone, and 3-methyl-2-pentanone, 509 

benzoic acid, and other small organic acids were also identified in the groundwater samples. 510 

 In the EPA retrospective case studies (Retrospective Case Study in Killdeer, North 511 

Dakota: Study of the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources, 512 

2015, Retrospective Case Study in Northeastern Pennsylvania: Study of the Potential Impacts of 513 

Hydraulic Fracturing on Drinking Water Resources, 2015, Retrospective Case Study in 514 

Southwestern Pennsylvania Study of the Potential Impacts of Hydraulic Fracturing on Drinking 515 

Water Resources, 2015, Retrospective Case Study in the Raton Basin, Colorado: Study of the 516 

Potential Impacts of Hydraulic Fracturing on Drinking Water Resources, 2015, Retrospective 517 

Case Study in Wise County, Texas: Study of the Potential Impacts of Hydraulic Fracturing on 518 

Drinking Water Resources, 2015), a suite of organic compounds including VOCs, SVOCs, and 519 
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DRO and GRO compounds were analyzed in groundwater and surface water samples based on 520 

complaints of changes in water quality. In the Northeastern PA and Southwestern PA case 521 

studies (Marcellus shale), low level and sporadic detections of organic compounds including 522 

phthalates, toluene, benzene, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, chloroform, 523 

acetone, phenol, 2-butoxyethanol, and phthalates as well as DRO and GRO were suspected 524 

laboratory and field contaminants and inconsistent with contamination due to hydraulic 525 

fracturing activities due to a lack of other potential indicators such as chloride, TDS, Ba, or Sr 526 

(Retrospective Case Study in Northeastern Pennsylvania: Study of the Potential Impacts of 527 

Hydraulic Fracturing on Drinking Water Resources, 2015, Retrospective Case Study in 528 

Southwestern Pennsylvania Study of the Potential Impacts of Hydraulic Fracturing on Drinking 529 

Water Resources, 2015). Similarly, detections of these compounds as well as xylene in the 530 

Killdeer aquifer were presumed to be laboratory contaminants with the exception of tert-butyl 531 

alcohol (TBA) at two groundwater sites. At these sites, along the groundwater flowpath from a 532 

documented well blowout, TBA was elevated (975 µg L-1) and had a documented HVHF fluid 533 

source. TBA as well as chloride decreased over the four time points, consistent with the 534 

movement of a contaminant plume through the wells (U.S. EPA, 2015b). Acetate and formate, 535 

indicators of hydrocarbon degradation, were detected in 31% of wells and 10% of wells, 536 

respectively, in the sampled groundwaters (U.S. EPA, 2015b). In Wise County, TX (Barnett 537 

Shale), VOCs were detected, including tert-butyl alcohol, methyl tert-butyl ether, ethyl tert-butyl 538 

ether, tert-amyl methyl ether, m+p-xylene, o-xylene, 1,2,4-trimethylbenzene, and benzene; 539 

however, the sources of the compounds was considered unidentified because there were not 540 

repeated detections and no glycol ethers indicative of hydraulic fracturing (U.S. EPA, 2015e). In 541 

the Raton Basin, CO, (coal bed methane) a large number of organic chemicals were detected, 542 
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representing possible HVHF fluid additives, as well potential natural sources (U.S. EPA, 2015c). 543 

VOCs such as BTEX detected in this study were interpreted to originate from water-rock 544 

interactions or enhanced solubilization due to the solvent-like properties of the injection fluid 545 

(U.S. EPA, 2015c). Again, TBA was detected in some sites at high levels (maximum 1,310 µg L-546 

1), but the observation was interpreted as not necessarily representing contamination from a 547 

HVHF fluid event because neither TBA or its parent compounds were disclosed, and sufficient 548 

spatial data or adequate pre-HVHF controls did not exist (U.S. EPA, 2015c). 549 

 These studies and their critics bring up common issues in interpreting environmental data 550 

and associating the observations with a specific contamination source. First, in nearly all 551 

scenarios, relatively few baseline data exists for sampling locations as all extensive studies have 552 

been completed in response to perceived threats or changes. Baseline data for organic 553 

compounds are rarer than for inorganic ions and are completely absent for specific tracers that 554 

may be strong indicators of a HVHF source. Reference sites in the same geologic region are 555 

sometimes used as a control variable, but these are also susceptible to contamination from past 556 

events, especially considering shale gas regions are co-located in conventional oil and gas 557 

regions that have been drilled for longer time periods. Unfortunately, baseline data cannot 558 

retroactively be collected and this will continue to be a critical issue in interpreting data. A 559 

second common critique is of the observations of some compounds associated with HVHF, but 560 

an absence of others associated with HVHF (Connor et al., 2016; McHugh et al., 2016, 2014). 561 

Fontenot, Meik and colleagues responded in describing the role changing pH and redox 562 

conditions plays on dissolved metal concentrations (Fontenot et al., 2014; Meik et al., 2016). 563 

DiGiulio and Jackson responded by explaining that heterogeneity in itself is indicative of 564 

anthropogenic impact if groundwater samples are obtained from the same formation (DiGiulio 565 
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and Jackson, 2016b). Previous research has shown the differences in groundwater transport of 566 

contaminants based on the strength of their interaction with the geologic formation and soils, as 567 

reactive or nonreactive solutes (Brusseau, 1994; Burr et al., 1994; Mackay et al., 1986). 568 

Nonreactive solutes such as chloride will be transported faster than reactive organic compounds 569 

associated with HVHF fluids which may be retarded through interactions with the geologic 570 

formations and organic carbon present in these formations (Allen-King et al., 2002; Mackay et 571 

al., 1986). 572 

 573 

4.2 Simulated bioreactor “spills” 574 

 Two published studies have simulated spills of HVHF fluids at the bench scale under 575 

aerobic conditions. In each of these studies, a synthetic mixture of HVHF fluid additives was 576 

mixed with natural microbial communities and the organic additives quantified over 7-180 days. 577 

In an aerobic solution inoculated with an activated sludge microbial community, the overall 578 

dissolved organic carbon (DOC) content decreased by 52% in 6.5 days in freshwater and a 20 g 579 

L-1 saline solution. At higher salinities (40 g L-1 and 60 g L-1), DOC did not change significantly 580 

over the same time period. Acetone, a degradation product, increased by two orders of 581 

magnitude, and volatile additives such as naphthalene and benzene were rapidly decreased in 582 

concentration, likely due to volatilization (Kekacs et al., 2015). In the second study, varying 583 

combinations of fracturing fluid additives were mixed with agricultural soil and the in situ 584 

microbial community and their changes tracked to understand co-contaminant interactions over 585 

180 days (McLaughlin et al., 2016). The presence of glutaraldehyde biocide impeded the 586 

degradation of polyethylene glycol surfactants, and high salt levels also severely inhibited their 587 
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degradation. Polyacrylamide was not degraded over the duration of the experiment, but did react 588 

with the biocide glutaraldehyde (McLaughlin et al., 2016). 589 

 590 

5. Flowback and Produced Water Treatment  591 

 High total dissolved solids (TDS) create a significant challenge for the treatment of 592 

flowback and produced waters (Gregory et al., 2011; Kondash et al., 2017), hence wastewaters 593 

are frequently sent to Class II disposal wells (U.S. EPA, 2016). TDS varies by basin and 594 

increases over the lifetime of the well (Kondash et al., 2017); high levels of TDS limit direct 595 

reuse due to scaling problems and reduced effectiveness of friction reducers (Gregory et al., 596 

2011; Kamel and Shah, 2009). The fate of the treated effluent determines the type and amount of 597 

treatment required. The treatment for reuse in HVHF requires a different level of treatment (e.g., 598 

precipitation of scaling cations, disinfection, (Lester et al., 2015)) than other beneficial reuses or 599 

discharge to the environment (Estrada and Bhamidimarri, 2016; Gregory et al., 2011). High TDS 600 

formation produced waters, such as the Bakken or Marcellus, cannot be directly reused and TDS 601 

must be first reduced either by using dilution or treatment, which is in contrast to formations 602 

such as the Niobrara or Eagle Ford, that have much lower TDS (Kondash et al., 2017). 603 

 The wide variety of treatment methods used for flowback and produced waters have been 604 

reviewed previously (Drewes et al., 2009; Estrada and Bhamidimarri, 2016; Fakhru’l-Razi et al., 605 

2009; Gregory et al., 2011; U.S. EPA, 2016). Traditional oil and gas centralized waste treatment 606 

and municipal treatment facilities (no longer in use) have not been shown to sufficiently remove 607 

key contaminants from HVHF wastewaters prior to discharging to streams (Ferrar et al., 2013; 608 

Getzinger et al., 2015; Warner et al., 2013). Thermal distillation and crystallization technologies 609 

efficiently remove TDS but may be energy intensive, while membrane technologies such as 610 
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reverse osmosis, forward osmosis, and nanofiltration are prone to clogging and fouling and are 611 

more effective when combined with pre-treatment technologies (Coday et al., 2014; Estrada and 612 

Bhamidimarri, 2016; Gregory et al., 2011; Jang et al., 2017; Riley et al., 2016; Shaffer et al., 613 

2013).  614 

 Few individual organic compounds have been tracked through industrial treatment 615 

facilities, although any given treatment train could neglect a number of organic compounds, 616 

additives, and transformation products. The effectiveness of a given treatment method on organic 617 

compounds is frequently reported only for regulated hydrocarbons such as total oil and grease 618 

(Drewes et al., 2009), or other bulk measurements including dissolved organic carbon (DOC), 619 

chemical oxygen demand and 3D excitation-emission matrix fluorescence (e.g., Hickenbottom et 620 

al., 2013; Lobo et al., 2016; Riley et al., 2016).  621 

 Bench-scale experiments have examined the removal efficiencies of a number of organic 622 

compounds frequently found in HVHF wastewaters. Guar gum, a common HVHF additive likely 623 

to foul membranes, was effectively removed biologically (~90%) at low TDS using an activated 624 

sludge mixture (Lester et al., 2014). In a different synthetic HVHF wastewater, forward osmosis 625 

rejected >99.9% of oil while acetic acid rejection was much lower at only 82% (23 °C) and 74% 626 

(60 °C) (Zhang et al., 2014). More hydrophobic compounds, including alkanes and polycyclic 627 

aromatic hydrocarbons, were removed with 90-99% efficiency using forward osmosis (Bell et 628 

al., 2017). Powdered activated carbon (PAC) combined with coagulants were tested for removal 629 

efficiency of total petroleum hydrocarbons and polyethylene glycols from actual HVHF 630 

flowback and produced waters. PAC was shown to be effective at high doses (750 mg L-1, 1,000 631 

mg L-1 PAC) for polyethylene glycol removal in all cases and in three out of four wastewaters 632 

for total petroleum hydrocarbons (Rosenblum et al., 2016). However, these specific classes 633 
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represented only a fraction of the DOC, and much of the DOC was not removed (52-90%) using 634 

PAC (Rosenblum et al., 2016). 635 

 636 

6. Considerations and Future Research 637 

 Reviewing and synthesizing the literature on HVHF organic compounds remains 638 

challenging due to inconsistencies in reporting information such as age of fluids and sampling 639 

techniques (storage conditions, head-space free, etc.). Building on the suggested reporting 640 

parameters listed by Bibby and colleagues (2013): (1) shale play/formation (2) 641 

fracturing/stimulation approach (3) well age (4) water quality (bulk parameters, inorganics), we 642 

suggest reporting additional information helpful in interpreting organic analyses: (5) Sample 643 

location (well, separator, collection tank) (6) Sampling information (bottle type, head-space free, 644 

storage conditions and duration).  645 

 Gas chromatography paired with mass spectrometry has been the most frequently used 646 

technique for organic compound analysis of HVHF fluids and wastewaters. GC and GC-MS 647 

have a large number of standardized methods for VOCs and SVOCs including oil and gas 648 

compounds in HVHF fluids. Continued research on these compounds is critical in understanding 649 

basin to basin variability, differences in HVHF techniques, and quantifying many known toxic 650 

compounds (Elliott et al., 2017). Quantification using standard methods is essential for tracking 651 

the distribution of HVHF fluids and wastewaters when they accidentally enter the environment.  652 

 The Marcellus shale region is the dominant location of HVHF fluid samples analyzed for 653 

organic compounds, followed by the Denver-Julesberg basin. Although the Marcellus is the 654 

dominant shale gas producer, oil is not co-produced in this formation (Drilling Productivity 655 

Report, 2017), indicating a lower complexity background organic carbon pool compared to a 656 
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shale oil (Bae et al., 2010). Analysis of the Denver-Julesberg, Permian, and other co-producing 657 

gas and oil basins will inevitably differ in their distribution of geogenic organic compounds 658 

compared to gas-only basins. Future research should work to diversify basin coverage across gas, 659 

oil, and co-producing basins to understand the variability in geogenic signatures and diversity of 660 

HVHF fluid systems. Treatment goals and techniques also vary by basin and further 661 

investigation into the removal rates of specific organic compounds of interest is needed across 662 

treatment schemes developed across all basins (i.e., halogenated organic compounds, BTEX, 663 

known toxic additives).  664 

 DOC concentrations compared to concentrations of specific organic compounds show 665 

that a large portion of the organic carbon pool remains uncharacterized. Additional research 666 

needs to build on recent progress developing new analytical methods that can overcome the 667 

extremely complex high salinity matrix for known additives and identified transformation 668 

products in these fluids, particularly using LC-MS techniques. Continued research using 669 

alternative extraction methods and high-resolution non-targeted techniques will allow for the 670 

identification of the diverse transformation products in HVHF fluids and wastewaters during 671 

treatment as well as environmental contamination events. New standards must be made available 672 

for known additives, geogenic organic compounds, and newly identified transformation products 673 

to further progress in this field and gain a broad understanding of the fate of organic compounds 674 

in HVHF. 675 

 676 

7.0 Conclusions 677 

 Organic compounds are used as HVHF fluid additives and a number of these have been 678 

detected in these flowback and produced waters. Geogenic compounds and transformation 679 
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products from biotic and abiotic processes have also been identified in these wastewaters. BTEX, 680 

acetate, and acetone are the most frequently analyzed and detected organic compounds, and 681 

VOC and SVOCs are commonly analyzed. However, non-targeted techniques have highlighted 682 

the diversity of organic compounds that may be present in a given fluid for which new standards 683 

and analytical methods need to be developed. Organic chemical additives have been used in 684 

combination with inorganic chemical tracers to infer and track environmental contamination 685 

events. Further analytical development will benefit these investigations, allowing quantitative 686 

comparisons of new organic chemical tracers highly specific to HVHF to be made against 687 

background levels.  688 
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