290,496 research outputs found

    Ermakov-Pinney and Emden-Fowler equations: new solutions from novel B\"acklund transformations

    Full text link
    The class of nonlinear ordinary differential equations yy=F(z,y2)y^{\prime\prime}y = F(z,y^2), where F is a smooth function, is studied. Various nonlinear ordinary differential equations, whose applicative importance is well known, belong to such a class of nonlinear ordinary differential equations. Indeed, the Emden-Fowler equation, the Ermakov-Pinney equation and the generalized Ermakov equations are among them. B\"acklund transformations and auto B\"acklund transformations are constructed: these last transformations induce the construction of a ladder of new solutions adimitted by the given differential equations starting from a trivial solutions. Notably, the highly nonlinear structure of this class of nonlinear ordinary differential equations implies that numerical methods are very difficulty to apply

    Painleve property and the first integrals of nonlinear differential equations

    Full text link
    Link between the Painleve property and the first integrals of nonlinear ordinary differential equations in polynomial form is discussed. The form of the first integrals of the nonlinear differential equations is shown to determine by the values of the Fuchs indices. Taking this idea into consideration we present the algorithm to look for the first integrals of the nonlinear differential equations in the polynomial form. The first integrals of five nonlinear ordinary differential equations are found. The general solution of one of the fourth ordinary differential equations is given.Comment: 22 page

    Meromorphic solutions of nonlinear ordinary differential equations

    Full text link
    Exact solutions of some popular nonlinear ordinary differential equations are analyzed taking their Laurent series into account. Using the Laurent series for solutions of nonlinear ordinary differential equations we discuss the nature of many methods for finding exact solutions. We show that most of these methods are conceptually identical to one another and they allow us to have only the same solutions of nonlinear ordinary differential equations

    Use of Complex Lie Symmetries for Linearization of Systems of Differential Equations - II: Partial Differential Equations

    Full text link
    The linearization of complex ordinary differential equations is studied by extending Lie's criteria for linearizability to complex functions of complex variables. It is shown that the linearization of complex ordinary differential equations implies the linearizability of systems of partial differential equations corresponding to those complex ordinary differential equations. The invertible complex transformations can be used to obtain invertible real transformations that map a system of nonlinear partial differential equations into a system of linear partial differential equation. Explicit invariant criteria are given that provide procedures for writing down the solutions of the linearized equations. A few non-trivial examples are mentioned.Comment: This paper along with its first part ODE-I were combined in a single research paper "Linearizability criteria for systems of two second-order differential equations by complex methods" which has been published in Nonlinear Dynamics. Due to citations of both parts I and II these are not replaced with the above published articl
    corecore