3,383 research outputs found

    Ontology in the Game of Life

    Get PDF
    The game of life is an excellent framework for metaphysical modeling. It can be used to study ontological categories like space, time, causality, persistence, substance, emergence, and supervenience. It is often said that there are many levels of existence in the game of life. Objects like the glider are said to exist on higher levels. Our goal here is to work out a precise formalization of the thesis that there are various levels of existence in the game of life. To formalize this thesis, we develop a set-theoretic construction of the glider. The method of this construction generalizes to other patterns in the game of life. And it can be extended to more realistic physical systems. The result is a highly general method for the set-theoretical construction of substance

    Narrow coverings of omega-product spaces

    Full text link
    Results of Sierpinski and others have shown that certain finite-dimensional product sets can be written as unions of subsets, each of which is "narrow" in a corresponding direction; that is, each line in that direction intersects the subset in a small set. For example, if the set (omega \times omega) is partitioned into two pieces along the diagonal, then one piece meets every horizontal line in a finite set, and the other piece meets each vertical line in a finite set. Such partitions or coverings can exist only when the sets forming the product are of limited size. This paper considers such coverings for products of infinitely many sets (usually a product of omega copies of the same cardinal kappa). In this case, a covering of the product by narrow sets, one for each coordinate direction, will exist no matter how large the factor sets are. But if one restricts the sets used in the covering (for instance, requiring them to be Borel in a product topology), then the existence of narrow coverings is related to a number of large cardinal properties: partition cardinals, the free subset problem, nonregular ultrafilters, and so on. One result given here is a relative consistency proof for a hypothesis used by S. Mrowka to construct a counterexample in the dimension theory of metric spaces

    Counting points of slope varieties over finite fields

    Full text link
    The slope variety of a graph is an algebraic set whose points correspond to drawings of a graph. A complement-reducible graph (or cograph) is a graph without an induced four-vertex path. We construct a bijection between the zeroes of the slope variety of the complete graph on nn vertices over F2\mathbb{F}_2, and the complement-reducible graphs on nn vertices.Comment: 9 pages, 5 figure

    Convex Rank Tests and Semigraphoids

    Get PDF
    Convex rank tests are partitions of the symmetric group which have desirable geometric properties. The statistical tests defined by such partitions involve counting all permutations in the equivalence classes. Each class consists of the linear extensions of a partially ordered set specified by data. Our methods refine existing rank tests of non-parametric statistics, such as the sign test and the runs test, and are useful for exploratory analysis of ordinal data. We establish a bijection between convex rank tests and probabilistic conditional independence structures known as semigraphoids. The subclass of submodular rank tests is derived from faces of the cone of submodular functions, or from Minkowski summands of the permutohedron. We enumerate all small instances of such rank tests. Of particular interest are graphical tests, which correspond to both graphical models and to graph associahedra
    • …
    corecore