1,487 research outputs found

    On two-echelon inventory systems with Poisson demand and lost sales

    Get PDF
    We derive approximations for the service levels of two-echelon inventory systems with lost sales and Poisson demand. Our method is simple and accurate for a very broad range of problem instances, including cases with both high and low service levels. In contrast, existing methods only perform well for limited problem settings, or under restrictive assumptions.\u

    Aggregate constrained inventory systems with independent multi-product demand: control practices and theoretical limitations

    Get PDF
    In practice, inventory managers are often confronted with a need to consider one or more aggregate constraints. These aggregate constraints result from available workspace, workforce, maximum investment or target service level. We consider independent multi-item inventory problems with aggregate constraints and one of the following characteristics: deterministic leadtime demand, newsvendor, basestock policy, rQ policy and sS policy. We analyze some recent relevant references and investigate the considered versions of the problem, the proposed model formulations and the algorithmic approaches. Finally we highlight the limitations from a practical viewpoint for these models and point out some possible direction for future improvements

    Closed-loop two-echelon repairable item systems

    Get PDF
    In this paper we consider closed loop two-echelon repairable item systems with repair facilities both at a number of local service centers (called bases) and at a central location (the depot). The goal of the system is to maintain a number of production facilities (one at each base) in optimal operational condition. Each production facility consists of a number of identical machines which may fail incidentally. Each repair facility may be considered to be a multi-server station, while any transport from the depot to the bases is modeled as an ample server. At all bases as well as at the depot, ready-for-use spare parts (machines) are kept in stock. Once a machine in the production cell of a certain base fails, it is replaced by a ready-for-use machine from that base's stock, if available. The failed machine is either repaired at the base or repaired at the central repair facility. In the case of local repair, the machine is added to the local spare parts stock as a ready-for-use machine after repair. If a repair at the depot is needed, the base orders a machine from the central spare parts stock to replenish its local stock, while the failed machine is added to the central stock after repair. Orders are satisfied on a first-come-first-served basis while any requirement that cannot be satisfied immediately either at the bases or at the depot is backlogged. In case of a backlog at a certain base, that base's production cell performs worse. To determine the steady state probabilities of the system, we develop a slightly aggregated system model and propose a special near-product-form solution that provides excellent approximations of relevant performance measures. The depot repair shop is modeled as a server with state-dependent service rates, of which the parameters follow from an application of Norton's theorem for Closed Queuing Networks. A special adaptation to a general Multi-Class MDA algorithm is proposed, on which the approximations are based. All relevant performance measures can be calculated with errors which are generally less than one percent, when compared to simulation results. \u

    An optimal approach for the joint problem of level of repair analysis and spare parts stocking

    Get PDF
    We propose a method that can be used when deciding on how to maintain capital goods, given a product design and the layout of a repair network. Capital goods are physical systems that are used to produce products or services. They are expensive and technically complex and have high downtime costs. Examples are manufacturing equipment, defense systems, and medical devices

    A discrete time Markov chain model for a periodic inventory system with one-way substitution.

    Get PDF
    This paper studies the optimal design of an inventory system with “one-way substitution”, in which a high-quality (and hence, more expensive) item fulfills its own demand and simultaneously acts as backup safety stock for the (cheaper) low-quality item. Through the use of a discrete time Markov model we analyze the effect of one-way substitution in a periodic inventory system with an (R,s,S) or (R,S) order policy, assuming backorders, zero replenishment leadtime and correlated demand. In more detail, the optimal inventory control parameters (S and s) are determined in view of minimizing the expected total cost per period (i.e. sum of inventory holding costs, purchasing costs, backorder costs and adjustment costs). Numerical results show that the one-way substitution strategy can outperform both the “no pooling” (only product-specific stock is held, and demand can never be rerouted to stock of a different item) and “full pooling” strategies (implying that demand for a particular product type is always rerouted to the stock of the flexible product, and no product-specific stock is held) − provided the mix of dedicated and flexible inputs is chosen adequately − even when the cost premium for flexibility is significant. Furthermore, we can observe that decreasing the demand correlation results in rerouting more demand to the flexible product and because of the risk-pooling effect reduces the optimal expected total cost.Inventory management; One-way substitution;
    • 

    corecore