643 research outputs found

    Opportunistic Routing in Ad Hoc Networks: How many relays should there be? What rate should nodes use?

    Full text link
    Opportunistic routing is a multi-hop routing scheme which allows for selection of the best immediately available relay. In blind opportunistic routing protocols, where transmitters blindly broadcast without knowledge of the surrounding nodes, two fundamental design parameters are the node transmission probability and the transmission spectral efficiency. In this paper these parameters are selected to maximize end-to-end performance, characterized by the product of transmitter density, hop distance and rate. Due to the intractability of the problem as stated, an approximation function is examined which proves reasonably accurate. Our results show how the above design parameters should be selected based on inherent system parameters such as the path loss exponent and the noise level.Comment: 5 pages, 8 figures, Submitted to IEEE GLOBECOM 201

    A Unifying Framework for Local Throughput in Wireless Networks

    Full text link
    With the increased competition for the electromagnetic spectrum, it is important to characterize the impact of interference in the performance of a wireless network, which is traditionally measured by its throughput. This paper presents a unifying framework for characterizing the local throughput in wireless networks. We first analyze the throughput of a probe link from a connectivity perspective, in which a packet is successfully received if it does not collide with other packets from nodes within its reach (called the audible interferers). We then characterize the throughput from a signal-to-interference-plus-noise ratio (SINR) perspective, in which a packet is successfully received if the SINR exceeds some threshold, considering the interference from all emitting nodes in the network. Our main contribution is to generalize and unify various results scattered throughout the literature. In particular, the proposed framework encompasses arbitrary wireless propagation effects (e.g, Nakagami-m fading, Rician fading, or log-normal shadowing), as well as arbitrary traffic patterns (e.g., slotted-synchronous, slotted-asynchronous, or exponential-interarrivals traffic), allowing us to draw more general conclusions about network performance than previously available in the literature.Comment: Submitted for journal publicatio

    Outage and Local Throughput and Capacity of Random Wireless Networks

    Full text link
    Outage probabilities and single-hop throughput are two important performance metrics that have been evaluated for certain specific types of wireless networks. However, there is a lack of comprehensive results for larger classes of networks, and there is no systematic approach that permits the convenient comparison of the performance of networks with different geometries and levels of randomness. The uncertainty cube is introduced to categorize the uncertainty present in a network. The three axes of the cube represent the three main potential sources of uncertainty in interference-limited networks: the node distribution, the channel gains (fading), and the channel access (set of transmitting nodes). For the performance analysis, a new parameter, the so-called {\em spatial contention}, is defined. It measures the slope of the outage probability in an ALOHA network as a function of the transmit probability pp at p=0p=0. Outage is defined as the event that the signal-to-interference ratio (SIR) is below a certain threshold in a given time slot. It is shown that the spatial contention is sufficient to characterize outage and throughput in large classes of wireless networks, corresponding to different positions on the uncertainty cube. Existing results are placed in this framework, and new ones are derived. Further, interpreting the outage probability as the SIR distribution, the ergodic capacity of unit-distance links is determined and compared to the throughput achievable for fixed (yet optimized) transmission rates.Comment: 22 pages, 6 figures. Submitted to IEEE Trans. Wireles

    Optimal Transmission Range for Wireless Ad Hoc Networks Based on Energy Efficiency

    Get PDF
    The transmission range that achieves the most economical use of energy in wireless ad hoc networks is studied for uniformly distributed network nodes. By assuming the existence of forwarding neighbors and the knowledge of their locations, the average per-hop packet progress for a transmission range that is universal for all nodes is derived. This progress is then used to identify the optimal per-hop transmission range that gives the maximal energy efficiency. Equipped with this analytical result, the relation between the most energy-economical transmission range and the node density, as well as the path loss exponent, is numerically investigated. It is observed that when the path loss exponent is high (such as four), the optimal transmission ranges are almost identical over the range of node densities that we studied. However, when the path loss exponent is only two, the optimal transmission range decreases noticeably as the node density increases. Simulation results also confirm the optimality of the per-hop transmission range that we found analytically

    Cooperative retransmission protocols in fading channels : issues, solutions and applications

    Get PDF
    Future wireless systems are expected to extensively rely on cooperation between terminals, mimicking MIMO scenarios when terminal dimensions limit implementation of multiple antenna technology. On this line, cooperative retransmission protocols are considered as particularly promising technology due to their opportunistic and flexible exploitation of both spatial and time diversity. In this dissertation, some of the major issues that hinder the practical implementation of this technology are identified and pertaining solutions are proposed and analyzed. Potentials of cooperative and cooperative retransmission protocols for a practical implementation of dynamic spectrum access paradigm are also recognized and investigated. Detailed contributions follow. While conventionally regarded as energy efficient communications paradigms, both cooperative and retransmission concepts increase circuitry energy and may lead to energy overconsumption as in, e.g., sensor networks. In this context, advantages of cooperative retransmission protocols are reexamined in this dissertation and their limitation for short transmission ranges observed. An optimization effort is provided for extending an energy- efficient applicability of these protocols. Underlying assumption of altruistic relaying has always been a major stumbling block for implementation of cooperative technologies. In this dissertation, provision is made to alleviate this assumption and opportunistic mechanisms are designed that incentivize relaying via a spectrum leasing approach. Mechanisms are provided for both cooperative and cooperative retransmission protocols, obtaining a meaningful upsurge of spectral efficiency for all involved nodes (source-destination link and the relays). It is further recognized in this dissertation that the proposed relaying-incentivizing schemes have an additional and certainly not less important application, that is in dynamic spectrum access for property-rights cognitive-radio implementation. Provided solutions avoid commons-model cognitive-radio strict sensing requirements and regulatory and taxonomy issues of a property-rights model

    Optimisation of spatial CSMA using a simple stochastic geometry model for 1D and 2D networks

    Get PDF
    International audienceIn modern wireless networks especially in Machine-to-Machine (M2M) systems and in the Internet of Things (IoT) there is a high densities of users and spatial reuse has become an absolute necessity for telecommunication entities. This paper studies the maximum throughput of Carrier Sense Multiple Access (CSMA) in scenarios with spatial reuse. Instead of running extensive simulation with complex tools which would be somewhat time consuming, we evaluate the spatial throughput of a CSMA network using a simple model which produces closed formulas and give nearly instantaneous values. This simple model allows us to optimize the network easily and study the influence of the main network parameters. The nodes will be deployed as a Poisson Point Process (PPP) of a one or two dimensional space. To model the effect of (CSMA), we give random marks to our nodes and to elect transmitting nodes in the PPP we choose those with the smallest marks in their neighborhood. To describe the signal propagation, we use a signal with power-law decay and we add a random Rayleigh fading. To decide whether or not a transmission is successful, we adopt the Signal-over-Interference Ratio (SIR) model in which a packet is correctly received if its transmission power divided by the interference power is above a capture threshold. We assume that each node in our PPP has a random receiver at a typical distance from the transmitter i.e. the average distance between a node and its closest neighbor. We also assume that all the network nodes always have a pending packet. With all these assumptions, we analytically study the density of throughput of successful transmissions and we show that it can be optimized with regard to the carrier-sense threshold

    High-SIR Transmission Capacity of Wireless Networks with General Fading and Node Distribution

    Full text link
    In many wireless systems, interference is the main performance-limiting factor, and is primarily dictated by the locations of concurrent transmitters. In many earlier works, the locations of the transmitters is often modeled as a Poisson point process for analytical tractability. While analytically convenient, the PPP only accurately models networks whose nodes are placed independently and use ALOHA as the channel access protocol, which preserves the independence. Correlations between transmitter locations in non-Poisson networks, which model intelligent access protocols, makes the outage analysis extremely difficult. In this paper, we take an alternative approach and focus on an asymptotic regime where the density of interferers η\eta goes to 0. We prove for general node distributions and fading statistics that the success probability \p \sim 1-\gamma \eta^{\kappa} for η0\eta \rightarrow 0, and provide values of γ\gamma and κ\kappa for a number of important special cases. We show that κ\kappa is lower bounded by 1 and upper bounded by a value that depends on the path loss exponent and the fading. This new analytical framework is then used to characterize the transmission capacity of a very general class of networks, defined as the maximum spatial density of active links given an outage constraint.Comment: Submitted to IEEE Trans. Info Theory special issu
    corecore