Outage probabilities and single-hop throughput are two important performance
metrics that have been evaluated for certain specific types of wireless
networks. However, there is a lack of comprehensive results for larger classes
of networks, and there is no systematic approach that permits the convenient
comparison of the performance of networks with different geometries and levels
of randomness.
The uncertainty cube is introduced to categorize the uncertainty present in a
network. The three axes of the cube represent the three main potential sources
of uncertainty in interference-limited networks: the node distribution, the
channel gains (fading), and the channel access (set of transmitting nodes). For
the performance analysis, a new parameter, the so-called {\em spatial
contention}, is defined. It measures the slope of the outage probability in an
ALOHA network as a function of the transmit probability p at p=0. Outage is
defined as the event that the signal-to-interference ratio (SIR) is below a
certain threshold in a given time slot. It is shown that the spatial contention
is sufficient to characterize outage and throughput in large classes of
wireless networks, corresponding to different positions on the uncertainty
cube. Existing results are placed in this framework, and new ones are derived.
Further, interpreting the outage probability as the SIR distribution, the
ergodic capacity of unit-distance links is determined and compared to the
throughput achievable for fixed (yet optimized) transmission rates.Comment: 22 pages, 6 figures. Submitted to IEEE Trans. Wireles