10,681 research outputs found

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial

    DVB-RCS return link radio resource management for broadband satellite systems using fade mitigation techniques at ka band

    Get PDF
    Current Broadband Satellite systems supporting DVB-RCS at Ku band have static physical layer in order not to complicate their implementation. However at Ka band frequencies and above an adaptive physical layer wherein the physical layer parameters are dynamically modified on a per user basis is necessary to counteract atmospheric attenuation. Satellite Radio Resource Management (RRM) at the Medium Access Control (MAC) layer has become an important issue given the emphasis placed on Quality of Service (QoS) provided to the Users. The work presented here tackles the problem of Satellite RRM for Broadband Satellite systems using DVB-RCS where a fully adaptive physical layer is envisaged at Ka band frequencies. The impact of adaptive physical layer and user traffic conditions on the MAC layer functions is analyzed and an algorithm is proposed for the RRM process. Various physical layer issues associated with the resource management problem are also analyzed

    Application of advanced on-board processing concepts to future satellite communications systems: Bibliography

    Get PDF
    Abstracts are presented of a literature survey of reports concerning the application of signal processing concepts. Approximately 300 references are included
    • …
    corecore