17 research outputs found

    Modeling Interference Between OFDM/OQAM and CP-OFDM: Limitations of the PSD-Based Model

    Get PDF
    To answer the challenges put out by the next generation of wireless networks (5G), important research efforts have been undertaken during the last few years to find new waveforms that are better spectrally localized and less sensitive to asynchronism effects than the widely deployed Cyclic Prefix Orthogonal Frequency Division Multiplexing (CP-OFDM). One of the most studied schemes is OFDM-Offset Quadrature Amplitude Modulation (OFDM/OQAM) based on the PHYDYAS filter pulse. In the recent literature, spectrum coexistence between OFDM/OQAM and CP-OFDM is commonly studied based on the Power Spectral Density (PSD) model. In this paper, we show that this approach is flawed and we show that the actual interference injected by OFDM/OQAM systems onto CP-OFDM is much higher than what is classically expected with the PSD based model in the literature. We show that though using OFDM/OQAM in secondary systems is still advantageous, it brings limited gain in the context of coexistence with incumbent CP-OFDM systems.Comment: 7 pages, 9 figures, ICT 201

    On the performance of densified DVB-H single frequency networks

    Get PDF
    The broadcasting of TV programmes to mobile phones can be enabled by the newly developed technology called Digital Video Broadcasting-Handheld (DVB-H). Because of the scarcity and cost of frequency resources, frequency reuse needs to be considered when rolling out DVB-H networks. By simulcasting the same content from several transmitters, a Single Frequency Network (SFN) can provide good coverage and good frequency efficiency. In this paper, the performance of densified DVB-H SFN networks is analysed in terms of the coverage probability under different coverage requirements with and without frequency reuse. A dichotomy searching approach is used to determine the optimal cell radius for a cell in a densified DVB-H SFN for a given network topology. Based on the optimal cell radius map and a SFN gain map generated from the simulation results, guidelines are proposed on how to avoid the potential pitfalls in configuring the parameters of a densified DVB-H SFN network and optimise its parameters in terms of minimising the cost of the network for a range of predefined network parameters

    Sincronização de quadro e frequência para OFDM no padrão IEEE 802.15.4g : algoritmos e implementação em hardware

    Get PDF
    Orientadores: Renato da Rocha Lopes, Eduardo Rodrigues de LimaDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: O objetivo deste trabalho é propor métodos de sincronização de quadro e de frequência de portadora para a camada física MR-OFDM do padrão IEEE 802.15.4g, começando pela pesquisa de algoritmos, passando pelas etapas de modelagem e simulação em alto nível, e finalmente implementando e avaliando os métodos propostos em hardware. A sincronização de quadro é o processo responsável por detectar o início do dado transmitido, ou seja, a primeira amostra válida do sinal de interesse. No caso de sistemas OFDM, onde o sinal transmitido é composto por um ou mais símbolos OFDM (cada símbolo sendo composto por uma quantidade fixa de amostras), o objetivo é detectar a borda ou janelamento de tais símbolos OFDM, ou seja, onde começa e termina cada um deles. A sincronização de frequência, por sua vez, consiste em estimar e compensar o erro de frequência de portadora, causado principalmente pelo descasamento dos osciladores do transmissor e do receptor. Com base em estudos preliminares, selecionamos o algoritmo de Minn para a detecção de quadro. Para a correção de erro de frequência, dividimos o processo em duas etapas, como é geralmente proposto na literatura: primeiro, o erro de frequência fracionário é estimado no domínio do tempo durante a detecção de quadro e compensado via rotação de sinal; após a conversão do domínio do tempo para o domínio da frequência, o erro de frequência inteiro é estimado e compensado utilizando um novo e simples algoritmo que será proposto e detalhado neste trabalho. Os algoritmos propostos foram implementados em hardware e uma plataforma de verificação baseada em FPGA foi criada para avaliar o seu desempenho. Os módulos implementados são parte de um projeto que está sendo desenvolvido no Instituto de Pesquisa Eldorado (Campinas) que tem como objetivo implementar em ASIC um transceptor compatível com o padrão IEEE 802.15.4gAbstract: The objective of this work is proposing methods of frame and frequency synchronization for the MR-OFDM PHY of IEEE 802.15.4g standard, starting with the research of state-of-the-art algorithms, passing through modeling, high-level simulations, and finally implementing and evaluating the proposed methods in hardware. Frame synchronization is the process responsible for detecting the beginning of transmitted data and, in the case of OFDM systems, the border of each OFDM symbol, while frequency synchronization consists of estimating and compensating the Carrier Frequency Offset (CFO) caused mainly by a mismatch between the transmitter and receiver oscillators. Based on the initial studies, we selected Minn¿s algorithm for frame detection. For the CFO correction, we split the process into two steps, as commonly proposed in the literature: first, the Fractional CFO is estimated in the time domain during the frame detection and compensated via signal rotation; after the conversion from time to frequency domain, the Integer CFO is estimated and compensated with a novel and simple algorithm that will be detailed in this work. The proposed algorithms were implemented in hardware and inserted in an FPGA-based verification platform for performance measurement. The implemented modules are part of a project that is under development at Eldorado Research Institute (Campinas) and aims to implement in ASIC a transceiver compliant to the IEEE 802.15.4g standardMestradoTelecomunicações e TelemáticaMestra em Engenharia Elétric

    Blind Estimation of OFDM System Parameters for Automatic Signal Identification

    Get PDF
    Orthogonal frequency division multiplexing (OFDM) has gained worldwide popular­ ity in broadband wireless communications recently due to its high spectral efficiency and robust performance in multipath fading channels. A growing trend of smart receivers which can support and adapt to multiple OFDM based standards auto­ matically brings the necessity of identifying different standards by estimating OFDM system parameters without a priori information. Consequently, blind estimation and identification of OFDM system parameters has received considerable research atten­ tions. Many techniques have been developed for blind estimation of various OFDM parameters, whereas estimation of the sampling frequency is often ignored. Further­ more, the estimated sampling frequency of an OFDM signal has to be very accurate for data recovery due to the high sensitivity of OFDM signals to sampling clock offset. To address the aforementioned problems, we propose a two-step cyclostation- arity based algorithm with low computational complexity to precisely estimate the sampling frequency of a received oversampled OFDM signal. With this estimated sampling frequency and oversampling ratio, other OFDM system parameters, i.e., the number of subcarriers, symbol duration and cyclic prefix (CP) length can be es­ timated based on the cyclic property from CP sequentially. In addition, modulation scheme used in the OFDM can be classified based on the higher-order statistics (HOS) of the frequency domain OFDM signal. All the proposed algorithms are verified by a lab testing system including a vec­ tor signal generator, a spectrum analyzer and a high speed digitizer. The evaluation results confirm the high precision and efficacy of the proposed algorithm in realistic scenarios

    High Accuracy WiFi Sensing for Vital Sign Detection with Multi-Task Contrastive Learning

    Get PDF
    WiFi sensing has emerged as a promising technique in the healthcare industry, enabling contact-free monitoring of vital signs by detecting changes in WiFi signals resulting from physiological activities. State-of-the-art WiFi sensing uses channel state information (CSI) to analyze signal characteristics, capturing subtle changes due to heartbeats and breathing. However, existing methods face challenges in concurrently measuring respiration and heart rates, and they exhibit high sensitivity to environmental factors and individual differences, limiting the detection accuracy of a trained model in real-world environments. In this paper, we propose a novel multi-task contrastive learning framework for concurrent detection of respiration and heart rates. We introduce multi-task learning with hard-shared layers to exploit the physiological link between breathing and heartbeat. Additionally, we leverage contrastive learning to improve our model's ability to differentiate and prioritize CSI changes related to respiratory and cardiac activities. The experimental results demonstrate the proposed model's ability to accurately measure respiratory and heart rates in challenging scenarios, including long-distance and non-line-of-sight conditions, even when utilizing omnidirectional antennas

    Performance enhancement for LTE and beyond systems

    Get PDF
    A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of PhilosophyWireless communication systems have undergone fast development in recent years. Based on GSM/EDGE and UMTS/HSPA, the 3rd Generation Partnership Project (3GPP) specified the Long Term Evolution (LTE) standard to cope with rapidly increasing demands, including capacity, coverage, and data rate. To achieve this goal, several key techniques have been adopted by LTE, such as Multiple-Input and Multiple-Output (MIMO), Orthogonal Frequency-Division Multiplexing (OFDM), and heterogeneous network (HetNet). However, there are some inherent drawbacks regarding these techniques. Direct conversion architecture is adopted to provide a simple, low cost transmitter solution. The problem of I/Q imbalance arises due to the imperfection of circuit components; the orthogonality of OFDM is vulnerable to carrier frequency offset (CFO) and sampling frequency offset (SFO). The doubly selective channel can also severely deteriorate the receiver performance. In addition, the deployment of Heterogeneous Network (HetNet), which permits the co-existence of macro and pico cells, incurs inter-cell interference for cell edge users. The impact of these factors then results in significant degradation in relation to system performance. This dissertation aims to investigate the key techniques which can be used to mitigate the above problems. First, I/Q imbalance for the wideband transmitter is studied and a self-IQ-demodulation based compensation scheme for frequencydependent (FD) I/Q imbalance is proposed. This combats the FD I/Q imbalance by using the internal diode of the transmitter and a specially designed test signal without any external calibration instruments or internal low-IF feedback path. The instrument test results show that the proposed scheme can enhance signal quality by 10 dB in terms of image rejection ratio (IRR). In addition to the I/Q imbalance, the system suffers from CFO, SFO and frequency-time selective channel. To mitigate this, a hybrid optimum OFDM receiver with decision feedback equalizer (DFE) to cope with the CFO, SFO and doubly selective channel. The algorithm firstly estimates the CFO and channel frequency response (CFR) in the coarse estimation, with the help of hybrid classical timing and frequency synchronization algorithms. Afterwards, a pilot-aided polynomial interpolation channel estimation, combined with a low complexity DFE scheme, based on minimum mean squared error (MMSE) criteria, is developed to alleviate the impact of the residual SFO, CFO, and Doppler effect. A subspace-based signal-to-noise ratio (SNR) estimation algorithm is proposed to estimate the SNR in the doubly selective channel. This provides prior knowledge for MMSE-DFE and automatic modulation and coding (AMC). Simulation results show that this proposed estimation algorithm significantly improves the system performance. In order to speed up algorithm verification process, an FPGA based co-simulation is developed. Inter-cell interference caused by the co-existence of macro and pico cells has a big impact on system performance. Although an almost blank subframe (ABS) is proposed to mitigate this problem, the residual control signal in the ABS still inevitably causes interference. Hence, a cell-specific reference signal (CRS) interference cancellation algorithm, utilizing the information in the ABS, is proposed. First, the timing and carrier frequency offset of the interference signal is compensated by utilizing the cross-correlation properties of the synchronization signal. Afterwards, the reference signal is generated locally and channel response is estimated by making use of channel statistics. Then, the interference signal is reconstructed based on the previous estimate of the channel, timing and carrier frequency offset. The interference is mitigated by subtracting the estimation of the interference signal and LLR puncturing. The block error rate (BLER) performance of the signal is notably improved by this algorithm, according to the simulation results of different channel scenarios. The proposed techniques provide low cost, low complexity solutions for LTE and beyond systems. The simulation and measurements show good overall system performance can be achieved
    corecore