2,505 research outputs found

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer

    Capacity of Fading Gaussian Channel with an Energy Harvesting Sensor Node

    Full text link
    Network life time maximization is becoming an important design goal in wireless sensor networks. Energy harvesting has recently become a preferred choice for achieving this goal as it provides near perpetual operation. We study such a sensor node with an energy harvesting source and compare various architectures by which the harvested energy is used. We find its Shannon capacity when it is transmitting its observations over a fading AWGN channel with perfect/no channel state information provided at the transmitter. We obtain an achievable rate when there are inefficiencies in energy storage and the capacity when energy is spent in activities other than transmission.Comment: 6 Pages, To be presented at IEEE GLOBECOM 201

    Communicating Using an Energy Harvesting Transmitter: Optimum Policies Under Energy Storage Losses

    Full text link
    In this paper, short-term throughput optimal power allocation policies are derived for an energy harvesting transmitter with energy storage losses. In particular, the energy harvesting transmitter is equipped with a battery that loses a fraction of its stored energy. Both single user, i.e. one transmitter-one receiver, and the broadcast channel, i.e., one transmitter-multiple receiver settings are considered, initially with an infinite capacity battery. It is shown that the optimal policies for these models are threshold policies. Specifically, storing energy when harvested power is above an upper threshold, retrieving energy when harvested power is below a lower threshold, and transmitting with the harvested energy in between is shown to maximize the weighted sum-rate. It is observed that the two thresholds are related through the storage efficiency of the battery, and are nondecreasing during the transmission. The results are then extended to the case with finite battery capacity, where it is shown that a similar double-threshold structure arises but the thresholds are no longer monotonic. A dynamic program that yields an optimal online power allocation is derived, and is shown to have a similar double-threshold structure. A simpler online policy is proposed and observed to perform close to the optimal policy.Comment: Submitted to IEEE Transactions on Wireless Communications, August 201
    corecore