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Abstract

We consider a discrete-time queueing model with two coupled queues for studying the optimal transmission policy

of an energy-harvesting sensor node. In particular, the sensor node under study operates energy neutral and harvests

energy according to a Bernoulli process. Discretising energy into “energy chunks”, the battery is modelled as a first

queue, whereas a second queue is introduced to hold the information at the sensor node. We consider a hybrid wireless

sensor network in which a mobile sink is used to collect data. From the vantage point of the sensor node, this means

that the sensor can only send when the sink is sufficiently close. When this is the case, the sensor decides whether to

transmit its data or not depending on the amount of available energy and the value of the information (VoI). Focusing

on the optimal transmission policy, we formulate the optimal control problem as a Markov Decision Process with a

level-dependent block-triangular transition probability matrix. We find the optimal policy which maximises the mean

VoI transmitted from the node in the long run. Finally, we investigate the structure of the optimal policy and the mean

VoI collected from the node for different system parameters by means of some numerical experiments.
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1. Introduction

Wireless sensor networks (WSNs) have attracted considerable research interest over the past few years because of

their wide range of applications in health care, utilities, remote monitoring as well as in diverse industrial contexts [1].

WSNs mainly consist of three components: gateways, relay nodes, and sensors. Gateways act as an interface between

wireless sensor nodes and the application platform. Relay nodes, sometimes referred as routers, are used to extend

the coverage area of the sensor network. Finally, sensors can sense, measure and collect the information from the

environment. The information sensed at the sensor node is analysed and the node can then decide whether to transmit

the data or not. WSNs can be used in many applications that require close monitoring of the physical world which

explains the wide range of areas in which they are applied.

Wireless sensor nodes are low power devices [2] equipped with a small battery and on-board memory. Currently,

the primary power source for sensor nodes is a small on-board battery which limits the lifetime of sensors. Since

they are often installed in hostile terrain, it is very expensive and difficult to replace the battery due to environmental

and terrestrial challenges. To overcome this problem, more efficient energy consumption and power management

are active areas of research and development. Some research focuses on energy conservation by controlling the

communication system. As there is significant energy consumption when the sensor node is idle, switching off the

sensor node can save the the battery and thus extend the lifetime. In such strategies, the WSN node periodically wakes

up to transmits the data and then sleeps by powering off to conserve the energy. WSN technology must efficiently

manage the frequency of ON and OFF times of the node.
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In the context of sensor networks, a refinement of the familiar concept of Quality of Service (QoS) has been

proposed, referred to as “Quality of Information” (QoI), which takes into account on the quality but also on the

timeliness of the information [3, 4, 5]. In this paper, we make use of this new concept and keep track of the value of

information that is currently stored in the sensor node.

To mitigate dependency on batteries, current research efforts aim to create sensors that harvest the necessary

energy from the environment. These are known as energy-harvesting sensor nodes. They use ambient sources of

energy present in the environment like solar, wind or heat and convert it into the electricity which can be used for

transmission. However, the amount of energy harvested heavily depends on the environmental conditions which may

lead to a fluctuating performance. Hence accurate models of WSNs should take into account the random nature of

the harvesting process. Because of such heavy dependence on environmental factors, the role of power management

becomes critical in energy-harvesting wireless sensor networks (EH-WSN).

In this paper, we aim to design an optimal transmission policy (which is essentially a set of decision rules de-

scribing the action to be taken in each state of the system) of a sensor node in a EH-WSN. We allow for the temporal

non-availability of the sink by introducing so called transmission opportunities, which is a natural assumption when

the sink in question is wirelessly connected or even mobile. We further assume that sensor nodes from time to time

gather information to which we assign a value. Its value degrades over time as it is waiting for transmission in the

memory of the sensor node. At each transmission opportunity, the sensor node decides whether to transmit the data or

not depending on the amount of available energy and the value of information, both of which we assume to be discrete

values. This paper investigates the structure of the optimal policy and the resulting optimal mean value of information

transmitted from the sensor node. If the sensor node decides to transmit, it deletes the information from memory and

hence the value of information present in the node resets to zero. From a queueing-theoretical point of view, such

behaviour is also found in queues with disasters, which have been used amongst others in telecommunications and in

particular in the context of satellites and in internet applications.

The remainder of this paper is organised as follows. In the next section, we discuss literature on Markov processes

and Markov decision processes for energy harvesting sensor nodes. We then introduce the Markov decision process

for age- and energy-dependent transmissions in sensor networks in section 3 and evaluate the optimal decision policies

in section 4. Finally, we draw conclusions in Section 5.

2. Related Work

Optimal scheduling in energy harvesting sensor networks is an active research topic. We refer to Yick et al. [2]

and Lu et al. [6] and the references therein for a discussion of key issues and developments in WSNs, addressing the

different challenges including storage capacity, energy replenishment, network services, deployment etc. We restrict

the discussion below to Markovian models of WSNs.

Such models have been studied by various authors, one of the first contributions being [7] where Susu et al.

propose a finite birth-death Markov chain to model energy harvesting sensor nodes, a birth and death corresponding

to energy harvesting and energy consumption respectively. The same energy harvesting process is considered by

Jornet and Akyildiz [8], but the authors allow for more rapid energy consumption, a transmission corresponding to a

deterministic jump downwards. Seyedi and Sikdar [9] propose a Markov model to study the trade-off between energy

consumption and packet error probability. Allowing for time-correlation in the harvesting process, Ho et al. [10]

and Lee et al. [11] assume a Markov modulated harvesting process and verify statistically that a Markov modulated

process is indeed appropriate for describing solar energy harvesting. Most contributions study a single sensor node

in isolation, a notable exception being [12] which studies a body sensor network with multiple harvesting sensors.

Studying the complete network allows for assessing the probability of a node failing to detect an event owing to lack

of energy, which is a key design consideration for body sensor sensors.

The models above, do not allow for buffering sensed data. Data buffering is important when sensors have limited

connectivity. This is the case in hybrid sensor networks where data is collected by a mobile sink: data can only be

offloaded when the mobile sink is within range. In contrast to Markovian models without data buffering, the Markov

process now needs to capture both the state of the battery and the data buffer. De Cuypere et al. [13] consider such a

two-dimensional Markov model and include a data buffer for temporary data storage if the SN is not connected or has

insufficient energy to transmit. The resulting Markov process has a quasi-birth-death structure allowing for efficient

numerical evaluation.
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In addition to modelling harvesting sensor nodes, various authors also consider optimal control policies for trans-

missions. Such control is studied by Sharma et al. [14] for an energy harvesting sensor node that periodically transmits

data. The authors discuss the existence of an optimal transmission policy but do not calculate it. Morsi et al. [15]

calculate an on-off transmission policy either assuming a finite or infinite energy buffer. The same control problem

is considered in [16, 17] in a deterministic setting: data arrivals and the amount of harvested energy are known in

advance. Policies obtained from such model can be a benchmark but given the random nature of energy harvesting,

one expects that the results cannot be attained in a random setting. Ozel et al. [18] consider the optimal scheduling for

energy harvesting sensor node over a time varying channel. In an offline setting, the authors show the optimality of

an adaptive directional water-filling algorithm for throughput maximisation whereas they rely on stochastic dynamic

programming to solve for the optimal online policy.

Various authors introduce Markov decision processes (MDP) to study optimal transmission policies in wireless

sensor networks, see the recent survey [19] and the references. Lei et al. [20] discuss energy-aware threshold transmis-

sion policies by modelling the energy state transitions by a continuous time Markov chain. Three different scenarios

are considered based on recharging and/ or replacement of the battery model. Transmission policies depend on the

condition of the channel state as well as on the value of the message. If the channel state is good then power required

to transmit the data is less. Fernandez et al. [21] use the term “importance of message” for the value of the message

and propose a stochastic approximation algorithm to find out the optimal transmission policy. The optimal policy is a

threshold policy under reasonable assumptions on battery dynamics. Michelusi et al. [22] models the energy harvest-

ing as a Markov process with two states, i.e., a good and a bad state. The authors adapt the transmission probabilities

to the state of the battery, deriving the optimal policy using policy iteration. The optimal policy accounts for the

data at sensor node and the amount of energy at the time of decision making. Some authors further focus on control

policies when the energy harvesting distribution is unknown and the system can learn from past observations. [23, 24]

discuss the optimal power control policies for EH-WSN by formulating the problem as a partially observable Markov

decision process (POMDP). The authors consider an ARQ-based packet transmission protocol, their goal being to

find the optimal transmit power for each packet transmission.

The present paper most closely relates to [13] in terms of modelling assumptions as we consider a model with both

energy consumption and data buffering. However, this contribution also differs considerably from [13]. Foremost, we

study non-additive data gathering dynamics, inspired by the concept of the QoI introduced above. Moreover, we

formulate the associated MDP, while [13] studies the uncontrolled Markov model. Finally, the MDP problem at hand

considerably differs from preceding MDP models for energy harvesting sensor nodes as the policies now account for

both the state of the battery and the state of the data buffer.

3. Markov model

We focus on a single sensor node with energy harvesting capability in a sensor network where data is collected by

a mobile sink as depicted in figure 1. The sensor has an on-board battery for storing harvested energy as well as the

capability for storing sensed information. We assume that time is discrete. That is, time is divided into fixed length

intervals (slots) and transmissions from the sensor node are synchronised with respect to slot boundaries.

The dynamics of the sensor node are governed by three independent stochastic processes. The first process de-

scribes how energy is harvested. Assuming that energy can be discretised into chunks of energy, let Hk denote the

number of energy chunks or energy units harvested during the kth slot. The sequence {Hk, k ∈ N} constitutes a

sequence of independent Bernoulli random variables. Let pe denote the probability that a chunk of energy arrives

during a slot. The second process describes how much information is sensed during a slot. Let Dk denote the amount

of information sensed during the kth slot. We express the amount of information as a discrete number of information

units. The process {Dk, k ∈ N} is a sequence of independent and identically distributed non-negative discrete ran-

dom variables. The sensed information is at most M information units, P[Dk > M] = 0, and we denote the common

probability mass function of the Dk’s by dm = P[Dk = m], m = 0, . . . ,M. For further use, we also introduce the

corresponding distribution function d̄n = P[Dk ≤ n] =
∑

m≤n dm. The third process describes when the sensor node

can pass on its information to the mobile sink. Let Tk be the indicator that there is a transmission opportunity at the

kth slot boundary. The sequence {Tk, k ∈ N} constitutes a sequence of independent Bernoulli random variables, pt

denoting the probability that there is a transmission opportunity at a slot boundary.
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Figure 1: WSN Model

We can now describe the sensor node dynamics in terms of these random variables. Let Bk be the battery level

(in terms of energy chunks) at the kth slot boundary. We assume that a single chunk of energy is required to transmit

information to the mobile sink and that the on-board battery can store N chunks of energy at most. Energy chunks are

lost when the battery capacity is exceeded. In view of these assumptions, we find that the battery level at the (k + 1)st

slot boundary can be expressed as,

Bk+1 = min(Bk + Hk − Uk,N) .

Here Uk is the indicator that there is a transmission at the kth slot boundary. This random variable depends on the

availability of the mobile sink Tk, on the battery level Bk as well as on the value of the information Vk as discussed

below. In particular, transmissions are not possible when there is no energy, which means that Bk = 0 implies Uk = 0.

The evolution of the value of information Vk is the combination of an information loss process and an information

replacement process. To capture the loss of information over time, we assume that the value of information decreases

by one information unit per slot. In addition, we assume that the information at the sensor node is replaced by newly

sensed information whenever the amount of newly sensed information units exceeds the value of information at the

sensor node. Finally, whenever the information is passed on to the mobile sink, the information is deleted at the sensor

node. In view of these assumptions, we can express the value of information at the (k + 1)st slot boundary as follows,

Vk+1 =















Dk+1 for Uk = 1 ,

max(Dk+1, (Vk − 1)+) for Uk = 0 .
(1)

Here Uk is again the indicator that there is a transmission at the kth slot boundary.

When there is no transmission opportunity, Tk = 0, there obviously is no transmission, hence Uk = 0. When there

is a transmission opportunity, Tk = 1, the decision on transmitting depends on the current value of information, as

well as on the battery level. As there is only energy consumption when there is a transmission, it can be beneficial to

postpone transmissions when there is limited value of information at the sensor node. Therefore, we study the optimal

transmission policy by modelling the sensor node as a Markov decision process (MDP).

3.1. MDP formulation

In order to define the MDP, we must specify its state space, action set, transition probabilities and rewards. We

explain each of the components in detail below.

(a) State Space: In view of the modelling assumptions above, the state of the sensor node at the kth slot bound-

ary is described by the battery level Bk and the value of information Vk. These discrete random variables are

positive and bounded by N (battery capacity) and M (maximum of the sensed value of information), respec-

tively. In addition, as the decision to transmit or defer transmission depends on the availability of a transmission

opportunity, we additionally track Tk as well.

Summarising, the state is described by the vector (Bk,Vk,Tk) ∈ S , B ×V × T , where,
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- B = {0, 1, 2, · · · ,N} is the set of battery states,
- V = {0, 1, 2, · · · ,M} is the set of the value of information states.
- T = {0, 1} is the set of the transmission opportunity states.

(b) Action Set: There are at most two possible actions: transmitting (action 1) or not transmitting (action 0). The

sensor node cannot transmit in the absence of energy (Bk = 0) or in the absence of a transmission opportunity

(Tk = 0), hence for s ∈ S0 = B ×V × {0} ∪ {0} × V × T , the only possible action is not to transmit: the action

set is a singleton As = {0} for s ∈ S0. For s ∈ S1 = S\S0, there is a transmission opportunity as well as energy

such that the action set includes both possible actions: As = {0, 1} for s ∈ S1.

For further use, let π : S → {0, 1} denote a policy of the sensor node, that is a mapping from the state space to

the action space {0, 1}. A policy π is admissible if π(s) ∈ As for all s ∈ S. The policy relates to the indicator Uk

of having a transmission at the kth slot boundary as,

Uk = π(Bk,Vk,Tk) .

(c) Transition Probabilities: Let q(s′|s) = q((i′, j′, k′)|(i, j, k)) represent the transition probability that state s′ =

(i′, j′, k′) is visited from state s = (i, j, k) for s ∈ S0. We here suppress the action that is taken from the

notation as for s ∈ S0 only action 0 is available. Remark first that the transition probabilities of the transmission

opportunity process are given by

po(k′|k) =















1 − pt for k′ = 0 ,

pt for k′ = 1 ,

which can also be written as po(k′|k) = pk′

t (1 − pt)
1−k′ . Recalling that the entries of the state vector correspond

to the battery level, the value of information and the indicator of the transmission opportunity respectively, we

find,

q((i′, j′, k′)|(i, j, k)) =











































































d j′ pe pk′

t (1 − pt)
1−k′ for i′ = i + 1 and j′ ≥ j ,

d̄ j−1 pe pk′

t (1 − pt)
1−k′ for i′ = i + 1 and j′ = j − 1 ,

d j′ (1 − pe)pk′

t (1 − pt)
1−k′ for i′ = i < N and j′ ≥ j ,

d̄ j−1(1 − pe)pk′

t (1 − pt)
1−k′ for i′ = i < N and j′ = j − 1

d j′ p
k′

t (1 − pt)
1−k′ for i′ = i = N and j′ ≥ j ,

d̄ j−1 pk′

t (1 − pt)
1−k′ for i′ = i = N and j′ = j − 1 ,

0 otherwise,

(2)

for s ∈ S0 and s′ ∈ S.

For s ∈ S1, let p(s′|s, a) = p((i′, j′, k′)|(i, j, k), a) represent the transition probability that state s′ = (i′, j′, k′) is

visited from state s = (i, j, k) when action a ∈ {0, 1} is chosen. For a = 0, the evolution of the state is similar to

the evolution when there is no transmission opportunity. Hence, we have,

p((i′, j′, k′)|(i, j, k), 0) =











































































d j′ pe pk′

t (1 − pt)
1−k′ for i′ = i + 1 and j′ ≥ j ,

d̄ j−1 pe pk′

t (1 − pt)
1−k′ for i′ = i + 1 and j′ = j − 1 ,

d j′ (1 − pe)pk′

t (1 − pt)
1−k′ for i′ = i < N and j′ ≥ j ,

d̄ j−1(1 − pe)pk′

t (1 − pt)
1−k′ for i′ = i < N and j′ = j − 1

d j′ p
k′

t (1 − pt)
1−k′ for i′ = i = N and j′ ≥ j ,

d̄ j−1 pk′

t (1 − pt)
1−k′ for i′ = i = N and j′ = j − 1 ,

0 otherwise,

(3)

for s ∈ S1 and s′ ∈ S. Finally, for a = 1, we find,

p((i′, j′, k′)|(i, j, k), 1) =



























d j′ pe pk′

t (1 − pt)
1−k′ for i′ = i ,

d j′ (1 − pe)pk′

t (1 − pt)
1−k′ for i′ = i − 1 ,

0 otherwise,

(4)

for s ∈ S1 and s′ ∈ S.
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(d) Reward: We define the immediate reward in state s ∈ S as the value of information that is transmitted to the

mobile sink. That is, the reward in state s ∈ S0 is zero. For s = (i, j, k) ∈ S1 the reward equals j if a = 1 while

there is no reward for a = 0. Let Rπ(s) be the immediate reward in state s = (i, j, k) for policy π, we then have,

Rπ(i, j, k) =















0 for π((i, j, k)) = 0

j for π((i, j, k)) = 1 .

The immediate reward only depends on the state and the action.

3.2. Policy iteration

We focus on the infinite horizon control problem, assuming that a stationary policy is applied. Let vπ(s) be the

uniformly discounted value-to-go from state s under policy π,

vπ(s) = vπ(i, j, k) = E















∞
∑

k=0

αkRπ(Bk,Vk,Tk)

∣

∣

∣

∣

∣

∣

∣

B0 = i,V0 = j,T0 = k















,

where α is a discounting factor. Further, let v∗(s) be the optimal value-to-go from state s,

v∗(s) = max
π

vπ(s) ,

where the maximum is taken over all admissible policies π. The optimal value-to-go and optimal policy can be found

by solving the Bellman equations, which read,

v∗(s) =
∑

s′∈S

αq(s′|s)v∗(s)

for s ∈ S0, and,

v∗(s) = max

















j + α
∑

s′∈S

p(s′|s, 1)v∗(s′),
∑

s′∈S

p(s′|s, a = 0)αv∗(s′)

















for s = (i, j, k) ∈ S1.

To solve the Bellman equations, we rely on policy iteration [25]. To this end, starting from an initial policy π0, we

iterative improve the policy. In each iteration n = 0, 1, . . . we first solve the system of equations,

vπn
(s) =















∑

s′∈S q(s′|s)αvπn
(s′) for s ∈ S0 ,

jπn(s) + α
∑

s′∈S p(s′|s, πn(s))vπn
(s′) for s ∈ S1 .

(5)

We can then adjust the policy in the policy improvement step,

πn+1 = arg maxπ

















jπ(s) + α
∑

s′∈S

p(s′|s, π(s))vπn−1
(s′)

















.

In view of the above, we have πn+1(s) = 0 for s ∈ S0 and

πn+1(s) = 1















j + α
∑

s′∈S

p(s′|s, 1)vπn−1
(s′) > α

∑

s′∈S

p(s′|s, 0)vπn−1
(s′)















(6)

for s ∈ S1 where 1{·} is the indicator function.
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3.3. Quasi birth death structure

The major computational effort in solving the MDP problem, is the evaluation of (5). Note however, that –

regardless of the policy – the transitions of the battery level are skip-free in both directions: the battery level either

remains the same or can only go up or down one level during a slot. This in turn means that the matrix corresponding

to the system of equations (5) has a tridiagonal block structure or quasi birth death (QBD) structure, blocks grouping

transitions from battery level i to battery level i′. As the battery level is skip free, the blocks are non-zero only for

i′ ∈ {i − 1, i, i + 1} (hence the matrix is tridiagonal).

The block structure allows for efficiently solving the system of equations by linear level reduction [26]. To this

end, let vπ(i, k) be the column vector with elements vπ(i, j, k) for j = 0, . . . ,M − 1. Form equation (5), we then find

that these vectors adhere,

vπ(i, 0) = αp̄t p̄eAvπ(i, 0) + αpt p̄eAvπ(i, 1) + αp̄t peAvπ(i + 1, 0) + αpt peAvπ(i + 1, 1) (7)

vπ(N, 0) = αp̄tAvπ(N, 0) + αptAvπ(N, 1) (8)

for i = 0, . . . ,N − 1 and,

vπ(0, 1) = αp̄t p̄eAvπ(0, 0) + αpt p̄eAvπ(0, 1) + αp̄t peAvπ(1, 0) + αpt peAvπ(1, 1) (9)

vπ(i, 1) = Π(i)θ + αΠ(i) p̄t p̄eBvπ(i − 1, 0) + αΠ(i)pt p̄eBvπ(i − 1, 1) + αΠ(i) p̄t peBvπ(i, 0) + αΠ(i)pt peBvπ(i, 1)

+ αΠ̄(i) p̄e p̄tAvπ(i, 0) + αΠ̄(i) p̄e ptAvπ(i, 1) + αΠ̄(i)pe p̄tAvπ(i + 1, 0) + αΠ̄(i)pe ptAvπ(i + 1, 1) (10)

vπ(N, 1) = Π(i)θ + αΠ(i) p̄t p̄eBvπ(N − 1, 0) + αΠ(i)pt p̄eBvπ(N − 1, 1) + αΠ(i) p̄t peBvπ(N, 0)

+ αΠ(i)pt peBvπ(N, 1) + αΠ̄(i) p̄tAvπ(N, 0) + αΠ̄(i)ptAvπ(N, 1) (11)

for i = 1, . . . ,N − 1 with θ = [0, 1, 2, . . . ,M]′ a column vector with M + 1 entries, with Π(i) the (M + 1) × (M + 1)

diagonal matrix with diagonal entries π(i, j, 1) ( j = 0, . . . ,M − 1), with Π̄(i) the (M + 1) × (M + 1) diagonal matrix

with diagonal entries 1 − π(i, j, 1) ( j = 0, . . . ,M − 1), and where the (M + 1) × (M + 1) matrices A and B are defined

as follows,

A =

























































d0 d1 d2 d3 · · · dM

d̄0 d1 d2 d3 · · · dM

0 d̄1 d2 d3 · · · dM

0 0 d̄2 d3 · · · dM

...
...
...
...
. . .

...

0 0 0 0 · · · dM

























































, B =













































d0 d1 d2 d3 · · · dM

d0 d1 d2 d3 · · · dM

d0 d1 d2 d3 · · · dM

...
...
...
...
. . .

...

d0 d1 d2 d3 · · · dM













































.

We further introduce the column vectors vπ(i) = [vπ(i, 0)′, vπ(i, 1)′]′. From equations (7) and (9), we find,

vπ(0) = αp̄e

[

p̄tA ptA

p̄tA ptA

]

vπ(0) + αpe

[

p̄tA ptA

p̄tA ptA

]

vπ(1) . (12)

Analogously, equations (7) and (10) yield,

vπ(i) =

[

0

Π(i)θ

]

+ αp̄e

[

0 0

p̄tΠ(i)B ptΠ(i)B

]

vπ(i − 1) − αp̄e

[

0 0

Π(i) p̄tA Π(i)ptA

]

vπ(i)

+ αpe

[

0 0

Π(i) p̄tB Π(i)ptB

]

vπ(i) + αp̄e

[

p̄tA ptA

p̄tA ptA

]

vπ(i) + αpe

[

p̄tA ptA

Π̄(i) p̄tA Π̄(i)ptA

]

vπ(i + 1) , (13)

whereas equation (8) and (11) lead to,

vπ(N) =

[

0

Π(N)θ

]

+ αp̄e

[

0 0

p̄tΠ(N)B ptΠ(N)B

]

vπ(N − 1)

+ αpe

[

0 0

Π(N) p̄tB Π(N)ptB

]

vπ(N) + α

[

p̄tA ptA

Π̄(N) p̄tA Π̄(i)ptA

]

vπ(N) . (14)

The former set of matrices confirm the QBD structure of the system of equations, as vπ(i) is expressed in terms of

vπ(i − 1), vπ(i) anf vπ(i + 1) for all i.
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3.4. Linear level reduction

As mentioned above, the structural property of the system of equations allows for solving the system of equations

efficiently by linear level reduction [26]. Let the 2(M + 1) × 2(M + 1) matrices F0 and G0, and the 2(M + 1) column

vector h0 be defined as,

F0 =

(

I − αp̄e

[

p̄tA ptA

p̄tA ptA

])−1

, G0 = F0αpe

[

p̄tA ptA

p̄tA ptA

]

, h0 = [0, 0, . . . , 0]′ . (15)

Here I is the 2(M + 1) × 2(M + 1) identity matrix. Hence, we have vπ(0) = G0vπ(1) + h0. For 0 < i < N, we again

have vπ(i) = Givπ(i + 1) + hi where

Gi = αpeFi

[

p̄tA ptA

Π̄(i) p̄tA Π̄(i)ptA

]

, hi = Fi

([

0

Π(i)θ

]

+ αp̄e

[

0 0

p̄tΠ(i)B ptΠ(i)B

]

hi−1

)

(16)

with,

Fi =

(

I − αpe

[

0 0

Π(i) p̄tB Π(i)ptB

]

− αp̄e

[

p̄tA ptA

p̄tA ptA

]

+ αp̄e

[

0 0

Π(i) p̄tA Π(i)ptA

]

− αp̄e

[

0 0

p̄tΠ(i)B ptΠ(i)B

]

Gi−1

)−1

.

Finally, for battery level N, we have,

vπ(N) =

(

I − αp̄e

[

0 0

p̄tΠ(N)B ptΠ(N)B

]

GN−1 − αpe

[

0 0

Π(N) p̄tB Π(N)ptB

]

− α

[

p̄tA ptA

Π̄(N) p̄tA Π̄(i)ptA

])−1

([

0

Π(N)θ

]

+ αp̄e

[

0 0

Π(N) p̄tB Π(N)ptB

]

hN−1

)

. (17)

We find vπ(N) by this last equation, and can then recursively calculate all vπ(i) as we have vπ(i) = Givπ(i + 1) + hi for

i < N.

3.5. Summary and computational complexity

Summarising, we obtain the optimal policy π as follows,

1. Start with an initial policy π0. As we have π0(s) = 0 for s ∈ S0, we only need to choose an action for all s ∈ S1.

Set n = 0.

2. Given π = πn, we calculate vπ(i) for i = 0, . . . ,N as follows:

(a) Calculate F0, G0 and h0 in accordance with equation (15).

(b) Calculate Fi, Gi and hi for i = 1, . . . ,N − 1 in accordance with equation (16).

(c) Calculate vπ(N) using equation (17).

(d) Recursively calculate vπ(i) for i = N − 1, . . . , 0 using vπ(i) = Givπ(i + 1) + hi.

Finally, set vπn
(i) = vπ(i) for i = 0, . . . ,N.

3. We can now update the policy. For each s ∈ S0, set πn+1(s) = 0. For each s ∈ S1 calculate πn+1(s) in accordance

with equation (6).

4. If πn+1 = πn, return πn, if not, set n← n + 1 and return to 2.

As policy iteration assures that the policy improves in every step, the number of iterations is bounded and the algorithm

is guaranteed to converge in a finite number of iterations [27]. Each iteration requires the solution of the system of

linear equations which has complexity O(NM3), see [26] for a general discussion on QBDs or [28] for a discussion

on QBDs in the context of solving MDPs.
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(a) varying pt (b) varying pe

Figure 2: Optimal policy (a) for varying Transmission opportunity pt (b) Varying harvesting energy probability pe as indicated.

4. Numerical examples and discussion

We now investigate the structure of the optimal policy with respect to the different system parameters. To study

the optimal policy for different transmission opportunity probabilities pt, we fix the maximum capacity of the battery

to N = 100 energy chunks and the VoI is at most M = 100 information units, the distribution being,

di = p(1 − p)i .

for 0 < i ≤ M with p = 0.1 and d0 = 1 −
∑M

k=1 dk.

The optimal policy obtained is a deterministic threshold policy. As the system has only one action available when

there is no transmission opportunity, we analyse the policy for the reduced state space S1. The optimal threshold is

two dimensional, meaning that for a fixed VoI we always transmit beyond a certain battery level and that for a fixed

battery level we always transmit beyond a certain number of information units.

Figures 2(a) and 2(b) depict the threshold for the VoI as a function of the battery state for a fixed discounting

factor α = 0.9. Figure 2(a) fixes the probability of an energy arrival pe = 0.1 and shows the threshold for various

transmission opportunity probabilities as indicated. Figure 2(b) fixes the probability of a transmission opportunity

pt = 0.9 and shows the threshold for different energy arrival probabilities as indicated.

It can be seen from both figures that the threshold decreases for increasing levels of the battery. This is not

unexpected. When only a little energy is available, the decision to transmit affects future transmissions more if there

is but a little energy such that one only transmits if there is a lot of information. If more energy available, the effect on

future transmissions is smaller. Moreover, an additional increase will then hardly influence the threshold. Figure 2(a)

further reveals that the threshold increases for increasing values of pt. If there are many transmission opportunities, the

chance to send more data units later on increases as the next transmission opportunity is not far away in time. It is also

observed that the threshold for higher transmission opportunity probabilities can be equal to the threshold at lower

transmission opportunity probabilities but cannot be less. In addition, figure 2(b) shows that boosting the energy

harvesting capability yields lower thresholds. Higher pe implies that availability of energy at future transmission

opportunities is more likely so that one can send even when there is less data. If the battery has enough energy,

a further increase in harvesting capability cannot improve the optimal reward and thus the threshold does not vary

significantly.

Figure 3(a) shows the VoI threshold versus the battery level for different discounting factors as indicated. We

fix the transmission opportunity probability pt = 0.9 and energy arrival probability pe = 0.1, while all the other

parameters are kept the same. A higher discounting factor means that more importance is given to the future rewards.

That is, when the discounting factor is high, the system is more likely to conserve the energy for messages which may

arrive in future with higher VoI which implies that the threshold for sending the VoI is higher as well. Further notice
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Figure 3: (a) Optimal policy for a varying discounting factor and (b) reward at the optimal policy as indicated.

(a) Poisson (b) Geometric

Figure 4: Optimal policy for (a) Poisson (b) geometric VoI distribution for different values of mean (λ) of data arrival as indicated.

that the threshold for low discount factors can equal the threshold for a higher discount factor but cannot exceed that

threshold. Figure 3(b) shows the reward v∗(i, j, 1) for the optimal policy versus the battery level i for different values

of the value of information j as indicated. We retain the parameters of figure 3(a), and additionally fix the discount

factor to α = 0.9. We observe that for a fixed VoI, the optimal reward is a non-decreasing function of the battery

level. Results not depicted here show that if we fix the battery level, the optimal expected reward is non-decreasing

for different VoI as well. With some additional effort, this can be shown theoretically using the approach given by

Kashef et al.[29].

We now focus on the effects of the distribution of the value of Information on the optimal policy. To this end, fig-

ures 4(a) and 4(b) depict the threshold for (truncated) Poisson and (truncated) geometric distributed VoI respectively.

Different values for the mean number of information units (λ) are assumed as indicated. We assume that the battery

can store up to N = 50 chunks and that the VoI is bounded by M = 50. Moreover, the discounting factor is equal

to α = 0.9, the transmission opportunity probability is assumed to be pt = 0.9 and the energy arrival probability is

fixed to pe = 0.1. Comparing figures 4(a) and 4(b) reveals that the distribution of the VoI affects the threshold policy

significantly.
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Optimal data collection

To conclude we study the optimal collection probability pt, assuming that (i) the sensor node applies the optimal

policy and (ii) there is a cost related to data collection.

To this end, we calculate the mean value of information collected per time slot as a function of pt. For every value

of pt, we first find the optimal policy in accordance with section 3. Given this policy, we obtain the Markov chain for

the optimally controlled sensor node. We have the transition probabilities,

τ(s′|s) =























∑

s′∈S

q(s′|s) for s ∈ S0 ,

∑

s′∈S

p(s′|s, π∗(s)) for s ∈ S1 ,
(18)

with q(s′|s) and p(s′|s) as defined in equations (2) - (4). Let γ(s) be the stationary probability of being in state s. That

is, γ(s) is the normalised solution of the system of equations,

γ(s′) =
∑

s∈S

τ(s′|s)γ(s) ,

for s′ ∈ S. Note that the system of equations above is again a QBD. Hence, we can again rely on linear level reduction

to calculate these probabilities in O(NM3), see Latouche and Ramaswami [26].

Once we have found γ(s), the mean reward per time slot can be expressed as,

V̄ =
∑

s=(i, j,k)∈S

γ(s) jπ(s) .

We now investigate the optimal data collection probability for the sensor node at hand, similarly as in [30] for the

uncontrolled sensor node. We assume that there is a cost c associated to data collection such that the average value

after collection equals,

V̄p = −cpt + V̄ . (19)

Note that we hereby assume that the cost can be expressed in terms of information units.

We can now study the impact of transmission opportunity probability on the average VoI collected from a sensor

node operating under its optimal policy. We fix the battery capacity to 50 chunks and the range of VoI is 1 to 50 i.e.,

N = 50,M = 50.

Figure 5(a) fixes the energy arrival probability to 0.4 and plots the V̄p for different discounting factors whereas

figure 5(b) fixes the discounting factor to 0.4 and shows the average VoI collected from node for different energy

arrival probabilities. The cost of collection is assumed to be 2 i.e., c = 2. One clearly observes that V̄p increases for

increasing transmission opportunities and then decreases again. This can be explained by the fact that by increasing

pt one first increases the amount of data one can collect. However, once pt is sufficiently high, hardly any additional

value can be collected by further increasing pt. In contrast the collection cost does increase such that the overall value

decreases.

The small jumps in the figures are present due to a change of the optimal policy at particular transmission opportu-

nity probabilities. As a consequence, the curve representing V̄p is not concave due to these jumps and there may exist

multiple optimum transmission opportunity probabilities for which V̄p attains its maximum value. It is also observed

that the optimal transmission opportunity is more sensitive to changes in pe than to changes of the discounting factor.

5. Conclusions

In this paper, we have proposed a two-queue Markov model for a wireless sensor node. The introduction of

“Value of Information” and its non-additive data gathering process plays an important role in decision making. We

formulated the problem as Markov decision process and found the exact solution by policy iteration. Numerical

results show that the optimal transmission policy is a threshold policy. Further observations show that the threshold

for the value of the information is most sensitive to the battery level when there is but few energy: the node transmits

more selectively when there is less energy. We also studied the behaviour of the optimal reward and mean value of

information collected from a node under the optimal policy, where we found the pervasive structural property that the

optimal reward is non-decreasing in terms of the battery level as well as the VoI.
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Figure 5: Value of information collected from node for (a) varying discounting factor and (b) varying energy harvesting probability
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