5 research outputs found

    Interference-Aware Scheduling for Connectivity in MIMO Ad Hoc Multicast Networks

    Full text link
    We consider a multicast scenario involving an ad hoc network of co-channel MIMO nodes in which a source node attempts to share a streaming message with all nodes in the network via some pre-defined multi-hop routing tree. The message is assumed to be broken down into packets, and the transmission is conducted over multiple frames. Each frame is divided into time slots, and each link in the routing tree is assigned one time slot in which to transmit its current packet. We present an algorithm for determining the number of time slots and the scheduling of the links in these time slots in order to optimize the connectivity of the network, which we define to be the probability that all links can achieve the required throughput. In addition to time multiplexing, the MIMO nodes also employ beamforming to manage interference when links are simultaneously active, and the beamformers are designed with the maximum connectivity metric in mind. The effects of outdated channel state information (CSI) are taken into account in both the scheduling and the beamforming designs. We also derive bounds on the network connectivity and sum transmit power in order to illustrate the impact of interference on network performance. Our simulation results demonstrate that the choice of the number of time slots is critical in optimizing network performance, and illustrate the significant advantage provided by multiple antennas in improving network connectivity.Comment: 34 pages, 12 figures, accepted by IEEE Transactions on Vehicular Technology, Dec. 201

    Stability-Based Topology Control in Wireless Mesh Networks

    Get PDF

    Solution methods for planning problems in wireless mesh networks

    Get PDF
    Ankara : The Department of Industrial Engineering and the Graduate School of Engineering and Science of Bilkent University, 2012.Thesis (Master's) -- Bilkent University, 2012.Includes bibliographical references leaves 41-43.Wireless Mesh Networks (WMNs) consist of a finite number of radio nodes. A subset of these nodes, called gateways, has wired connection to the Internet and the non-gateway nodes transmit their traffic to a gateway node through the wireless media in a multi-hop fashion. Wireless communication signals that propagate simultaneously within the same frequency band may interfere with one another at a receiving node and may therefore prevent successful transmission of data. In order to circumvent this problem, nodes on the network can be configured to receive and send signals in different time slots and through different frequency bands. Therefore, a transmission slot can be defined as a pair of a certain frequency band and a specific time slot. In addition, by adjusting the power level of a radio node, its transmission range can be modified. Given a wireless mesh network with fixed node locations, demand rate at each node, and maximum power level for each node, we study the problem of carrying the traffic of each node to the Internet through the network. Our goal is to allocate capacities in proportion to the demand of each node in such a way that the minimum ratio is maximized. We propose a mixed integer linear programming (MILP) formulation to select a given number of gateway locations among the nodes in the network, to determine the routing of the traffic of each node through the gateway nodes, to assign transmission slots to each node in order to ensure no interference among wireless signals, and to determine the transmission power levels. In our study, we adopt the physical interference model, instead of the protocol interference, since this is more realistic. Since MILP formulation becomes computationally inefficient for larger instances; we developed several different approaches. Then, we proposed a combinatorial optimization model which successfully solves most of the instances. We tested our models and methods in several data sets, and results are presented.Özdemir, GörkemM.S

    Practical interference management strategies in Gaussian networks

    Get PDF
    Increasing demand for bandwidth intensive activities on high-penetration wireless hand-held personal devices, combined with their processing power and advanced radio features, has necessitated a new look at the problems of resource provisioning and distributed management of coexistence in wireless networks. Information theory, as the science of studying the ultimate limits of communication e ciency, plays an important role in outlining guiding principles in the design and analysis of such communication schemes. Network information theory, the branch of information theory that investigates problems of multiuser and distributed nature in information transmission is ideally poised to answer questions about the design and analysis of multiuser communication systems. In the past few years, there have been major advances in network information theory, in particular in the generalized degrees of freedom framework for asymptotic analysis and interference alignment which have led to constant gap to capacity results for Gaussian interference channels. Unfortunately, practical adoption of these results has been slowed by their reliance on unrealistic assumptions like perfect channel state information at the transmitter and intricate constructions based on alignment over transcendental dimensions of real numbers. It is therefore necessary to devise transmission methods and coexistence schemes that fall under the umbrella of existing interference management and cognitive radio toolbox and deliver close to optimal performance. In this thesis we work on the theme of designing and characterizing the performance of conceptually simple transmission schemes that are robust and achieve performance that is close to optimal. In particular, our work is broadly divided into two parts. In the rst part, looking at cognitive radio networks, we seek to relax the assumption of non-causal knowledge of primary user's message at the secondary user's transmitter. We study a cognitive channel model based on Gaussian interference channel that does not assume anything about users other than primary user's priority over secondary user in reaching its desired quality of service. We characterize this quality of service requirement as a minimum rate that the primary user should be able to achieve. Studying the achievable performance of simple encoding and decoding schemes in this scenario, we propose a few di erent simple encoding schemes and explore di erent decoder designs. We show that surprisingly, all these schemes achieve the same rate region. Next, we study the problem of rate maximization faced by the secondary user subject to primary's QoS constraint. We show that this problem is not convex or smooth in general. We then use the symmetry properties of the problem to reduce its solution to a feasibly implementable line search. We also provide numerical results to demonstrate the performance of the scheme. Continuing on the theme of simple yet well-performing schemes for wireless networks, in the second part of the thesis, we direct our attention from two-user cognitive networks to the problem of smart interference management in large wireless networks. Here, we study the problem of interference-aware wireless link scheduling. Link scheduling is the problem of allocating a set of transmission requests into as small a set of time slots as possible such that all transmissions satisfy some condition of feasibility. The feasibility criterion has traditionally been lack of pair of links that interfere too much. This makes the problem amenable to solution using graph theoretical tools. Inspired by the recent results that the simple approach of treating interference as noise achieves maximal Generalized Degrees of Freedom (which is a measure that roughly captures how many equivalent single-user channels are contained in a given multi-user channel) and the generalization that it can attain rates within a constant gap of the capacity for a large class of Gaussian interference networks, we study the problem of scheduling links under a set Signal to Interference plus Noise Ratio (SINR) constraint. We show that for nodes distributed in a metric space and obeying path loss channel model, a re ned framework based on combining geometric and graph theoretic results can be devised to analyze the problem of nding the feasible sets of transmissions for a given level of desired SINR. We use this general framework to give a link scheduling algorithm that is provably within a logarithmic factor of the best possible schedule. Numerical simulations con rm that this approach outperforms other recently proposed SINR-based approaches. Finally, we conclude by identifying open problems and possible directions for extending these results
    corecore