76 research outputs found

    Wide spread spectrum watermarking with side information and interference cancellation

    Full text link
    Nowadays, a popular method used for additive watermarking is wide spread spectrum. It consists in adding a spread signal into the host document. This signal is obtained by the sum of a set of carrier vectors, which are modulated by the bits to be embedded. To extract these embedded bits, weighted correlations between the watermarked document and the carriers are computed. Unfortunately, even without any attack, the obtained set of bits can be corrupted due to the interference with the host signal (host interference) and also due to the interference with the others carriers (inter-symbols interference (ISI) due to the non-orthogonality of the carriers). Some recent watermarking algorithms deal with host interference using side informed methods, but inter-symbols interference problem is still open. In this paper, we deal with interference cancellation methods, and we propose to consider ISI as side information and to integrate it into the host signal. This leads to a great improvement of extraction performance in term of signal-to-noise ratio and/or watermark robustness.Comment: 12 pages, 8 figure

    Simplification Resilient LDPC-Coded Sparse-QIM Watermarking for 3D-Meshes

    Full text link
    We propose a blind watermarking scheme for 3-D meshes which combines sparse quantization index modulation (QIM) with deletion correction codes. The QIM operates on the vertices in rough concave regions of the surface thus ensuring impeccability, while the deletion correction code recovers the data hidden in the vertices which is removed by mesh optimization and/or simplification. The proposed scheme offers two orders of magnitude better performance in terms of recovered watermark bit error rate compared to the existing schemes of similar payloads and fidelity constraints.Comment: Submitted, revised and Copyright transfered to IEEE Transactions on Multimedia, October 9th 201

    Oblivious data hiding : a practical approach

    Get PDF
    This dissertation presents an in-depth study of oblivious data hiding with the emphasis on quantization based schemes. Three main issues are specifically addressed: 1. Theoretical and practical aspects of embedder-detector design. 2. Performance evaluation, and analysis of performance vs. complexity tradeoffs. 3. Some application specific implementations. A communications framework based on channel adaptive encoding and channel independent decoding is proposed and interpreted in terms of oblivious data hiding problem. The duality between the suggested encoding-decoding scheme and practical embedding-detection schemes are examined. With this perspective, a formal treatment of the processing employed in quantization based hiding methods is presented. In accordance with these results, the key aspects of embedder-detector design problem for practical methods are laid out, and various embedding-detection schemes are compared in terms of probability of error, normalized correlation, and hiding rate performance merits assuming AWGN attack scenarios and using mean squared error distortion measure. The performance-complexity tradeoffs available for large and small embedding signal size (availability of high bandwidth and limitation of low bandwidth) cases are examined and some novel insights are offered. A new codeword generation scheme is proposed to enhance the performance of low-bandwidth applications. Embeddingdetection schemes are devised for watermarking application of data hiding, where robustness against the attacks is the main concern rather than the hiding rate or payload. In particular, cropping-resampling and lossy compression types of noninvertible attacks are considered in this dissertation work

    ICA for watermarking digital images

    Get PDF
    A domain independent ICA-based approach to watermarking is presented. This approach can be used on images, music or video to embed either a robust or fragile watermark. In the case of robust watermarking, the method shows high information rate and robustness against malicious and non-malicious attacks, while keeping a low induced distortion. The fragile watermarking scheme, on the other hand, shows high sensitivity to tampering attempts while keeping the requirement for high information rate and low distortion. The improved performance is achieved by employing a set of statistically independent sources (the independent components) as the feature space and principled statistical decoding methods. The performance of the suggested method is compared to other state of the art approaches. The paper focuses on applying the method to digitized images although the same approach can be used for other media, such as music or video

    On the Use of Masking Models for Image and Audio Watermarking

    Get PDF
    In most watermarking systems, masking models, inherited from data compression algorithms, are used to preserve fidelity by controlling the perceived distortion resulting from adding the watermark to the original signal. So far, little attention has been paid to the consequences of using such models on a key design parameter: the robustness of the watermark to intentional attacks. The goal of this paper is to demonstrate that by considering fidelity alone, key information on the location and strength of the watermark may become available to an attacker; the latter can exploit such knowledge to build an effective mask attack. First, defining a theoretical framework in which analytical expressions for masking and watermarking are laid, a relation between the decrease of the detection statistic and the introduced perceptual distortion is found for the mask attack. The latter is compared to the Wiener filter attack. Then, considering masking models widely used in watermarking, experiments on both simulated and real data (audio and images) demonstrate how knowledge on the mask enables to greatly reduce the detection statistic, even for small perceptual distortion costs. The critical tradeoff between robustness and distortion is further discussed, and conclusions on the use of masking models in watermarking drawn

    Reversible Image Watermarking Using Modified Quadratic Difference Expansion and Hybrid Optimization Technique

    Get PDF
    With increasing copyright violation cases, watermarking of digital images is a very popular solution for securing online media content. Since some sensitive applications require image recovery after watermark extraction, reversible watermarking is widely preferred. This article introduces a Modified Quadratic Difference Expansion (MQDE) and fractal encryption-based reversible watermarking for securing the copyrights of images. First, fractal encryption is applied to watermarks using Tromino's L-shaped theorem to improve security. In addition, Cuckoo Search-Grey Wolf Optimization (CSGWO) is enforced on the cover image to optimize block allocation for inserting an encrypted watermark such that it greatly increases its invisibility. While the developed MQDE technique helps to improve coverage and visual quality, the novel data-driven distortion control unit ensures optimal performance. The suggested approach provides the highest level of protection when retrieving the secret image and original cover image without losing the essential information, apart from improving transparency and capacity without much tradeoff. The simulation results of this approach are superior to existing methods in terms of embedding capacity. With an average PSNR of 67 dB, the method shows good imperceptibility in comparison to other schemes

    Tatouage du flux compressé MPEG-4 AVC

    Get PDF
    La présente thèse aborde le sujet de tatouage du flux MPEG-4 AVC sur ses deux volets théoriques et applicatifs en considérant deux domaines applicatifs à savoir la protection du droit d auteur et la vérification de l'intégrité du contenu. Du point de vue théorique, le principal enjeu est de développer un cadre de tatouage unitaire en mesure de servir les deux applications mentionnées ci-dessus. Du point de vue méthodologique, le défi consiste à instancier ce cadre théorique pour servir les applications visées. La première contribution principale consiste à définir un cadre théorique pour le tatouage multi symboles à base de modulation d index de quantification (m-QIM). La règle d insertion QIM a été généralisée du cas binaire au cas multi-symboles et la règle de détection optimale (minimisant la probabilité d erreur à la détection en condition du bruit blanc, additif et gaussien) a été établie. Il est ainsi démontré que la quantité d information insérée peut être augmentée par un facteur de log2m tout en gardant les mêmes contraintes de robustesse et de transparence. Une quantité d information de 150 bits par minutes, soit environ 20 fois plus grande que la limite imposée par la norme DCI est obtenue. La deuxième contribution consiste à spécifier une opération de prétraitement qui permet d éliminer les impactes du phénomène du drift (propagation de la distorsion) dans le flux compressé MPEG-4 AVC. D abord, le problème a été formalisé algébriquement en se basant sur les expressions analytiques des opérations d encodage. Ensuite, le problème a été résolu sous la contrainte de prévention du drift. Une amélioration de la transparence avec des gains de 2 dB en PSNR est obtenueThe present thesis addresses the MPEG-4 AVC stream watermarking and considers two theoretical and applicative challenges, namely ownership protection and content integrity verification.From the theoretical point of view, the thesis main challenge is to develop a unitary watermarking framework (insertion/detection) able to serve the two above mentioned applications in the compressed domain. From the methodological point of view, the challenge is to instantiate this theoretical framework for serving the targeted applications. The thesis first main contribution consists in building the theoretical framework for the multi symbol watermarking based on quantization index modulation (m-QIM). The insertion rule is analytically designed by extending the binary QIM rule. The detection rule is optimized so as to ensure minimal probability of error under additive white Gaussian noise distributed attacks. It is thus demonstrated that the data payload can be increased by a factor of log2m, for prescribed transparency and additive Gaussian noise power. A data payload of 150 bits per minute, i.e. about 20 times larger than the limit imposed by the DCI standard, is obtained. The thesis second main theoretical contribution consists in specifying a preprocessing MPEG-4 AVC shaping operation which can eliminate the intra-frame drift effect. The drift represents the distortion spread in the compressed stream related to the MPEG encoding paradigm. In this respect, the drift distortion propagation problem in MPEG-4 AVC is algebraically expressed and the corresponding equations system is solved under drift-free constraints. The drift-free shaping results in gain in transparency of 2 dB in PSNREVRY-INT (912282302) / SudocSudocFranceF

    Joint Compression and Watermarking Using Variable-Rate Quantization and its Applications to JPEG

    Get PDF
    In digital watermarking, one embeds a watermark into a covertext, in such a way that the resulting watermarked signal is robust to a certain distortion caused by either standard data processing in a friendly environment or malicious attacks in an unfriendly environment. In addition to the robustness, there are two other conflicting requirements a good watermarking system should meet: one is referred as perceptual quality, that is, the distortion incurred to the original signal should be small; and the other is payload, the amount of information embedded (embedding rate) should be as high as possible. To a large extent, digital watermarking is a science and/or art aiming to design watermarking systems meeting these three conflicting requirements. As watermarked signals are highly desired to be compressed in real world applications, we have looked into the design and analysis of joint watermarking and compression (JWC) systems to achieve efficient tradeoffs among the embedding rate, compression rate, distortion and robustness. Using variable-rate scalar quantization, an optimum encoding and decoding scheme for JWC systems is designed and analyzed to maximize the robustness in the presence of additive Gaussian attacks under constraints on both compression distortion and composite rate. Simulation results show that in comparison with the previous work of designing JWC systems using fixed-rate scalar quantization, optimum JWC systems using variable-rate scalar quantization can achieve better performance in the distortion-to-noise ratio region of practical interest. Inspired by the good performance of JWC systems, we then investigate its applications in image compression. We look into the design of a joint image compression and blind watermarking system to maximize the compression rate-distortion performance while maintaining baseline JPEG decoder compatibility and satisfying the additional constraints imposed by watermarking. Two watermarking embedding schemes, odd-even watermarking (OEW) and zero-nonzero watermarking (ZNW), have been proposed for the robustness to a class of standard JPEG recompression attacks. To maximize the compression performance, two corresponding alternating algorithms have been developed to jointly optimize run-length coding, Huffman coding and quantization table selection subject to the additional constraints imposed by OEW and ZNW respectively. Both of two algorithms have been demonstrated to have better compression performance than the DQW and DEW algorithms developed in the recent literature. Compared with OEW scheme, the ZNW embedding method sacrifices some payload but earns more robustness against other types of attacks. In particular, the zero-nonzero watermarking scheme can survive a class of valumetric distortion attacks including additive noise, amplitude changes and recompression for everyday usage
    • …
    corecore