4 research outputs found

    Clock-Offset Tracking Software Algorithms For IR-UWB Energy-Detection Receivers

    Get PDF
    We present a clock-offset tracking algorithm for impulse-radio ultra-wide band (IR-UWB) energy-detection receivers. There is a complexity versus performance trade-off for the design of IR-UWB energy-detection receivers: Extremely low-complexity energy-detection receivers are built with a large, constant integration duration; they are robust to clock drifts but are sensitive to noise enhancement effects and cannot adapt to channel variations. More sophisticated energy-detection receivers use a shorter integration duration and combine several weighted outputs of the energy collector; they are robust to noise enhancement effects, can adapt to channel variations and offer a much better performance than non-adaptive receivers. However, they become sensitive to clock offsets. Hence, there is a need for low-complexity clock-offset tracking solutions to support adaptive energy-detection receivers. Our solution is constructed around the Radon transform, an image processing tool traditionally used to detect line features in images. Our solution is fully compatible with the IEEE 802.15.4a standard, does not increase the hardware complexity of the receiver and reduces the performance loss due to clock offset to less than 0.5 dB

    Optimisation des performances de réseaux de capteurs dynamiques par le contrôle de synchronisation dans les systèmes ultra large bande

    Get PDF
    The basic concept of Impulse-Radio UWB (IR-UWB) technology is to transmit and receive baseband impulse waveform streams of very low power density and ultra-short duration pulses (typically at nanosecond scale). These properties of UWB give rise to fine time-domain resolution, rich multipath diversity, low power and low cost on-chip implementation facility, high secure and safety, enhanced penetration capability, high user capacity, and potential spectrum compatibility with existing narrowband systems. Due to all these features, UWB technology has been considered as a feasible technology for WSN applications. While UWB has many reasons to make it a useful and exciting technology for wireless sensor networks and many other applications, it also has some challenges which must be overcome for it to become a popular approach, such as interference from other UWB users, accurate modelling of the UWB channel in various environments, wideband RF component (antennas, low noise amplifiers) designs, accurate synchronization, high sampling rate for digital implementations, and so on. In this thesis, we will focus only on one of the most critical issues in ultra wideband systems: Timing Synchronization.Dans cette thèse nous nous sommes principalement concentrés sur les transmissions impulsion radio Ultra Large Bande (UWB-IR) qui a plusieurs avantages grâce à la nature de sa bande très large (entre 3.1GHZ et 10.6GHz) qui permet un débit élevé et une très bonne résolution temporelle. Ainsi, la très courte durée des impulsions émises assure une transmission robuste dans un canal multi-trajets dense. Enfin la faible densité spectrale de puissance du signal permet au système UWB de coexister avec les applications existantes. En raison de toutes ces caractéristiques, la technologie UWB a été considérée comme une technologie prometteuse pour les applications WSN. Cependant, il existe plusieurs défis technologiques pour l'implémentation des systèmes UWB. A savoir, une distorsion différente de la forme d'onde du signal reçu pour chaque trajet, la conception d'antennes très larges bandes de petites dimensions et non coûteuses, la synchronisation d'un signal impulsionnel, l'utilisation de modulation d'onde d'ordre élevé pour améliorer le débit etc. Dans ce travail, Nous allons nous intéresser à l'étude et l'amélioration de la synchronisation temporelle dans les systèmes ULB

    Antennas and Propagation

    Get PDF
    This Special Issue gathers topics of utmost interest in the field of antennas and propagation, such as: new directions and challenges in antenna design and propagation; innovative antenna technologies for space applications; metamaterial, metasurface and other periodic structures; antennas for 5G; electromagnetic field measurements and remote sensing applications
    corecore