132 research outputs found

    Machine Learning Classification of Cervical Tissue Liquid Based Cytology Smear Images by Optomagnetic Imaging Spectroscopy

    Get PDF
    Semi-automated system for classification of cervical smear images based on Optomagnetic Imaging Spectroscopy (OMIS) and machine learning is proposed. Optomagnetic Imaging Spectroscopy has been applied to screen 700 cervical samples prepared according to Liquid Based Cytology (LBC) principles and to record spectra of the samples. Peak intensities and peak shift frequencies from the spectra have been used as features in classification models. Several machine learning algorithms have been tested and results of classification have been compared. Results suggest that the presented approach can be used to improve standard LBC screening tests for cervical cancer detection. Developed system enables detection of pre-cancerous and cancerous states with sensitivity of 79% and specificity of 83% along with AUC (ROC) of 88% and could be used as an improved alternative procedure for cervical cancer screening. Moreover, this can be achieved via portable apparatus and with immediately available results

    Machine Learning Classification of Cervical Tissue Liquid Based Cytology Smear Images by Optomagnetic Imaging Spectroscopy

    Get PDF
    Semi-automated system for classification of cervical smear images based on Optomagnetic Imaging Spectroscopy (OMIS) and machine learning is proposed. Optomagnetic Imaging Spectroscopy has been applied to screen 700 cervical samples prepared according to Liquid Based Cytology (LBC) principles and to record spectra of the samples. Peak intensities and peak shift frequencies from the spectra have been used as features in classification models. Several machine learning algorithms have been tested and results of classification have been compared. Results suggest that the presented approach can be used to improve standard LBC screening tests for cervical cancer detection. Developed system enables detection of pre-cancerous and cancerous states with sensitivity of 79% and specificity of 83% along with AUC (ROC) of 88% and could be used as an improved alternative procedure for cervical cancer screening. Moreover, this can be achieved via portable apparatus and with immediately available results

    Machine Learning Classification of Cervical Tissue Liquid Based Cytology Smear Images by Optomagnetic Imaging Spectroscopy

    Get PDF
    Semi-automated system for classification of cervical smear images based on Optomagnetic Imaging Spectroscopy (OMIS) and machine learning is proposed. Optomagnetic Imaging Spectroscopy has been applied to screen 700 cervical samples prepared according to Liquid Based Cytology (LBC) principles and to record spectra of the samples. Peak intensities and peak shift frequencies from the spectra have been used as features in classification models. Several machine learning algorithms have been tested and results of classification have been compared. Results suggest that the presented approach can be used to improve standard LBC screening tests for cervical cancer detection. Developed system enables detection of pre-cancerous and cancerous states with sensitivity of 79% and specificity of 83% along with AUC (ROC) of 88% and could be used as an improved alternative procedure for cervical cancer screening. Moreover, this can be achieved via portable apparatus and with immediately available results

    An Efficient Cervical Whole Slide Image Analysis Framework Based on Multi-scale Semantic and Spatial Deep Features

    Full text link
    Digital gigapixel whole slide image (WSI) is widely used in clinical diagnosis, and automated WSI analysis is key for computer-aided diagnosis. Currently, analyzing the integrated descriptor of probabilities or feature maps from massive local patches encoded by ResNet classifier is the main manner for WSI-level prediction. Feature representations of the sparse and tiny lesion cells in cervical slides, however, are still challengeable for the under-promoted upstream encoders, while the unused spatial representations of cervical cells are the available features to supply the semantics analysis. As well as patches sampling with overlap and repetitive processing incur the inefficiency and the unpredictable side effect. This study designs a novel inline connection network (InCNet) by enriching the multi-scale connectivity to build the lightweight model named You Only Look Cytopathology Once (YOLCO) with the additional supervision of spatial information. The proposed model allows the input size enlarged to megapixel that can stitch the WSI without any overlap by the average repeats decreased from 10310410^3\sim10^4 to 10110210^1\sim10^2 for collecting features and predictions at two scales. Based on Transformer for classifying the integrated multi-scale multi-task features, the experimental results appear 0.8720.872 AUC score better and 2.51×2.51\times faster than the best conventional method in WSI classification on multicohort datasets of 2,019 slides from four scanning devices.Comment: 16 pages, 8 figures, already submitted to Medical Image Analysi

    Multi-Pass Fast Watershed for Accurate Segmentation of Overlapping Cervical Cells

    Get PDF

    Implementing decision tree-based algorithms in medical diagnostic decision support systems

    Get PDF
    As a branch of healthcare, medical diagnosis can be defined as finding the disease based on the signs and symptoms of the patient. To this end, the required information is gathered from different sources like physical examination, medical history and general information of the patient. Development of smart classification models for medical diagnosis is of great interest amongst the researchers. This is mainly owing to the fact that the machine learning and data mining algorithms are capable of detecting the hidden trends between features of a database. Hence, classifying the medical datasets using smart techniques paves the way to design more efficient medical diagnostic decision support systems. Several databases have been provided in the literature to investigate different aspects of diseases. As an alternative to the available diagnosis tools/methods, this research involves machine learning algorithms called Classification and Regression Tree (CART), Random Forest (RF) and Extremely Randomized Trees or Extra Trees (ET) for the development of classification models that can be implemented in computer-aided diagnosis systems. As a decision tree (DT), CART is fast to create, and it applies to both the quantitative and qualitative data. For classification problems, RF and ET employ a number of weak learners like CART to develop models for classification tasks. We employed Wisconsin Breast Cancer Database (WBCD), Z-Alizadeh Sani dataset for coronary artery disease (CAD) and the databanks gathered in Ghaem Hospital’s dermatology clinic for the response of patients having common and/or plantar warts to the cryotherapy and/or immunotherapy methods. To classify the breast cancer type based on the WBCD, the RF and ET methods were employed. It was found that the developed RF and ET models forecast the WBCD type with 100% accuracy in all cases. To choose the proper treatment approach for warts as well as the CAD diagnosis, the CART methodology was employed. The findings of the error analysis revealed that the proposed CART models for the applications of interest attain the highest precision and no literature model can rival it. The outcome of this study supports the idea that methods like CART, RF and ET not only improve the diagnosis precision, but also reduce the time and expense needed to reach a diagnosis. However, since these strategies are highly sensitive to the quality and quantity of the introduced data, more extensive databases with a greater number of independent parameters might be required for further practical implications of the developed models
    corecore