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Abstract—The task of segmenting cell nuclei and cytoplasm
in Pap smear images is one of the most challenging tasks in
automated cervix cytological analysis due to specifically the
presence of overlapping cells. This paper introduces a multi-
pass fast watershed-based method (MPFW) to segment both
nucleus and cytoplasm from large cell masses of overlapping
cervical cells in three watershed passes. The first pass locates
the nuclei with barrier-based watershed on the gradient-based
edge map of a pre-processed image. The next pass segments
the isolated, touching, and partially overlapping cells with a
watershed transform adapted to the cell shape and location.

The final pass introduces mutual iterative watersheds sepa-
rately applied to each nucleus in the largely overlapping clusters
to estimate the cell shape. In MPFW, the line-shaped contours of
the watershed cells are deformed with ellipse fitting and contour
adjustment to give a better representation of cell shapes. The
performance of the proposed method has been evaluated using
synthetic, real extended depth-of-field, and multi-layers cervical
cytology images provided by the first and second overlapping
cervical cytology image segmentation challenges in ISBI 2014
and ISBI 2015. The experimental results demonstrate superior
performance of the proposed MPFW in terms of segmentation
accuracy, detection rate, and time complexity, compared to recent
peer methods.

Keywords—Overlapping cell segmentation, cervix cytology, shape
marker, distance map, watershed segmentation, Chan-Vese active
contour.

I. INTRODUCTION

CERVICAL cancer, a malignant tumor in the tissues of
the cervix, is one of the most serious threats to women

health worldwide. According to World Health Organization
[1], this cancer is responsible for more than 270 thousand
deaths every year, and about 85% of these death cases occur in
the developing countries owing to lack of access to screening
and treatment services. Notwithstanding these facts, cervical
cancer is one of those rare cancer groups which can be cured
if detected at an early stage by Pap smear test, where a
sample of cervical cells is deposited onto a glass slide for
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microscopic examination. In the last three decades, Pap test
has dramatically reduced the incidence and mortality rates
of cervical cancer in developed countries with an effective
screening program [2], [3]. However, Pap test is still a manual
screening task performed by pathologists, who should be
skilled enough to localize the abnormal cells among thousands
of cells. This manual procedure is not only difficult and time-
consuming, but also results in inaccurate diagnoses owing to
intra- and inter-observer variability. To this end, a machine-
assisted screening and diagnosing system will bring significant
benefits to combat cervical cancer, and accurate segmentation
of cell nuclei and cytoplasm in the digitized Pap smear images
is the essential first step.

Despite the recent development in analyzing Pap smears, es-
tablishing an accurate and completely automatic segmentation
for both nuclei and cytoplasm of cervical cells in the digitized
Pap images remains an open problem. Fig. 1 (a)-(d) show the
procedures of generating the digitized Pap images, like those
used in this study. A cervical cytology slide is examined under
a microscope (a), to capture different fields of view (FOVs),
each with a 3D stack of images acquired at multiple focal
planes (b), where some of the cells are out of focus (c). The 3D
stack is then processed to generate a single extended depth-of-
field (EDF) image where the entire field of view is supposed to
be perfectly in focus [4], as shown in Fig. 1 (d). Unfortunately,
the generated Pap images usually have a complex structure,
resulting from the inconsistent staining, the noisy background,
the poor contrast of the cell cytoplasm, the overlap among
cervical cells, and the presence of mucus, blood, and artifacts,
as shown in Fig. 1 (e). It is thus challenging to automatically
achieve accurate segmentation of cervical cells in Pap smear
images, where cellular components often cannot be reliably
attributed to individual cells.

In this study, we establish an accurate Multi-Pass Fast Wa-
tershed (MPFW) method to automatically segment each cell’s
nucleus and cytoplasm from overlapping clusters in synthetic,
real EDF, and multi-layer Pap images. The proposed method-
ology differs from other segmentation methods for overlapping
cervical cells in the literature [5]–[18], in two key points: (1) it
is designed to be an adaptable and cost-effective method with
highly efficient algorithmic components; (2) it works with not
only the EDF images, but also the FOV images. In addition, the
proposed methodology demonstrates superior performance in
both nuclei and cytoplasm segmentation compared to existing
successful methods. This has been achieved by three watershed
passes in our MPFW. The first watershed pass incorporates
intensity gradient information into the watershed framework to
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(a) (b) (c) (d) (e)

Fig. 1. (a) shows the Pap image acquisition from a cervical cytology slide tested under a microscope. (b) shows a 3D stack of focal plane images acquired from
the slide, where different cells are in and out of focus (c), which is then converted into a single EDF microscope image (d). Image (e) expounds the challenges
of overlapping cervical cell segmentation owing to the poor cytoplasm contrast, complex background, existence of blood, mucus, bacteria, dye concentration,
and high degree of overlap among cells. All these factors impact the desired segmentation.

segment the cell nuclei, whereas the cytoplasm segmentation,
which is the main contribution of this study, is achieved by two
watershed passes. Specifically, the second watershed pass is
based on two markers within the same cell region that indicate
the cell shape and location information, to segment isolated and
partially overlapped cells. The third pass introduces a mutual
iterative watershed that is independently conducted for each
nucleus in the largely overlapping cells not segmented in the
previous pass. Elliptical modelling is also performed to deform
the line-shape watershed contour to give a more realistic cell
segmentation. The proposed MPFW is evaluated and compared
to the state-of-the-art methods proposed in the past five years
on several datasets of synthetic, real EDF, and multi-layer Pap
images, with competitive results in both nuclei and cytoplasm
segmentation accuracy, as well as method adaptability and
compute complexity.

The manuscript is organized as follows. Section II gives
a brief survey of the current segmentation methods for Pap
images. Section III describes our proposed methodology. Sec-
tion IV describes the material and experimental setting. The
experimental results and discussion are presented in Section
V. Finally, the conclusion is provided in Section VI.

II. LITERATURE REVIEW

Existing methods for cervical cell segmentation can be
classified into four diverse groups: 1) studies for segmentation
of cell nuclei, 2) studies for segmentation of cellular compo-
nents (i.e., nuclei, cell mass, and background), 3) studies for
segmentation of the single cells without any overlap, and only
recently 4) studies to extract both nuclei and cytoplasm from
a cell mass of touching or overlapping cells. We provide brief
review of these different groups of methods in this section.

A. Segmentation of Cell Nuclei
Methods for single and overlapping nuclei segmentation

have been extensively studied over the years. In an early
attempt, Bamford et al. [19] introduced a method to extract
the cell nuclei from cervical cytology images using Viterbi
search-based dual active contour algorithm, which is proved

to be more efficient than the conventional active contour
algorithm. Several methods have then been proposed based on
morphological analysis [20], [21], watershed transform [22],
[23], unsupervised classification [24], and deformable models
[25]–[28] to delineate the boundaries of single and overlapping
cervical nuclei. For instance, Plissiti et al. [29] proposed a
segmentation method for overlapping cell nuclei based on mor-
phological operations and active contour model. A watershed-
based method was presented in [23], where a morphological
reconstruction is employed to extract the nucleus markers,
which are then used with watershed transform to identify
the nuclei boundaries. Then, the false nuclei candidates are
eliminated based the fuzzy C-means clustering algorithm. Chen
et al. [30] introduced a supervised learning-based template
matching method to segment touching nuclei from microscopy
images. This method used training nuclei samples for building
a statistical model capturing the texture and shape variations
of the nuclei structures to be used for segmentation. In [31],
a new segmentation method for nuclei of overlapping cells is
introduced based on a circular shape function (CSF) and fuzzy
c-means clustering.

In general, the existing studies on the segmentation of
cervical cell nuclei have achieved a satisfied performance. The
accurate nuclei segmentation is a prerequisite for successful
segmentation of individual cell cytoplasm, which is quite
important for subsequent cellular analysis.

B. Segmentation of Cellular Components
The goal of the second group of studies, beside segmenting

the single/ overlapping nuclei, is to separate the whole cell
masses from the background. An example of such methods can
be found in [32], [33]. In [32], a non-parametric hierarchical
segmentation algorithm is performed to initially segment the
Pap image, and then, support vector machine is used to
classify the obtained segments based on their spectral, shape
and gradient features. In [33], Gencctav et al. introduced a
method employing automatic thresholding to separate the cell
masses from the background, and then, multi-scale hierarchical
watershed and a binary classifier are applied to separate the
nuclei from cell masses. Yet, these methods delineate the
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boundary of the whole cell mass, instead of delineating the
boundary of each individual cell cytoplasm.

C. Segmentation of Isolated cell

Single cell segmentation from Pap image has been ap-
proached in several works. Edge enhancement [34], unsu-
pervised classification [35], and deformable models [36]–[38]
are common choices for segmentation of single or isolated
cells. For instance, Lin et al. [34] proposed a segmentation
method based on a series of edge enhancement techniques. The
gradient vector flow (GVF) is also adapted to extract the nuclei
and cytoplasm boundaries of individual cells in Pap images in
[38]. This method estimates the orientation of the GVFs in the
pixels near to an edge. Li et al. [36] also applied the GVF in
a radiating fashion over the GVF field. In [35], a patch-based
fuzzy C-mean clustering and morphological reconstruction are
conducted to segment the isolated cells. Although most of these
methods produce good segmentation results for both nuclei and
cytoplasm, they cannot process the touching and overlapping
cells, which are typically present in cytology specimen.

D. Segmentation of Overlapping Cell

The segmentation of nuclei and cytoplasm pairs of cervical
cells with overlap is a crucial task in automated cervical cancer
screening, since the similarities between the overlapping and
malignant cells may result in misclassification of the over-
lapped regions [39], [40]. The earliest studies for overlapping
cell segmentation attempt to segment the nucleus and cyto-
plasm of touching or partially overlapping cells. For instance,
Béliz-Osorio et al. [41] utilized a locally constrained watershed
transform to segment touching cells. Another segmentation
method for touching nuclei and cytoplasm is introduced in
[42] based on a graph-partitioning via superpixel and multi-
scale convolutional network (MSCN). In [43], the cytoplasm
is segmented with a global multi-way graph cut, whereas the
nuclei were segmented using an adaptive and local graph cut,
which allows the combination of intensity, texture, boundary
and region information. The touching regions are then splitting
by integrating two concave points-based approaches. Another
method for touching cell segmentation is proposed in [44]
based on morphological filtering and curvelet initialized level
set evolution.

For partially overlapping cells, the segmentation method in
[7] applies gradient thresholding to extract the cell boundaries,
followed by a set of morphological operations to infer the
cytoplasm segmentation. In [10], morphological reconstruction
and thresholding are utilized to detect the cell nuclei, whereas
the individual cytoplasm of partially overlapping cells are
delineated through a hierarchical deformation process.

Due to the importance of this issue, two grand challenges on
the segmentation of overlapping cervical cells from synthetic,
EDF, and multiple focal-plane images, have been recently held
in conjunction with the IEEE International Symposium on
Biomedical Imaging (ISBI) in 2014 and 2015. On the provided
datasets by these challenges, a limited number of methods
have been suggested to address the problem of overlapping

cell segmentation, and they achieved satisfying performances
[5], [6], [8], [9], [11]–[18], [45]. This section reviews these
methods presented in the literature for the above segmentation
challenges.

Numerous segmentation methods with satisfying perfor-
mances have been proposed using the first dataset consisting
of 2D synthetic and real EDF images. For instance, Ushizima
et al. [5] introduces a method based on superpixel partitioning
and Voronoi diagram. Several methods have also been designed
to optimize the segmentation performance by incorporating
level set evolution with shape prior, such as elliptical shape
prior [6], [45], star shape prior [9], geodesic-based shape
prior [8], and dynamically-learned shape prior [11], [18].
Another segmentation method is proposed in [17] based on
sparse shape deformation guided toward the target cell shape
using representative features that are captured from a well-
established initial shape.

In addition, segmentation of overlapping cells from a 3D
stack of images acquired at multiple focal-planes has the
potential to produce more exquisite segmentation, even though,
it is fairly complicated because of the fuzzy cell contours
for the out-of-focus cells in the images. Various methods
have been proposed to delineate the overlapping cell borders
using multiple focal-plane images given by the second ISBI
challenge. In [13], the cell cytoplasm is segmented by dividing
the focal-plane images into grid squares and classifying them
based on gradient features. An improved version of this method
is then introduced in [14] to approximate the cell boundaries by
a new distance metric and gradient-based refinement process.
Ramalho et al. [12] enhanced the segmentation method in [5]
to work with multi-layer volumes. The cytoplasm segmentation
is performed by combining the cell contours extracted by
Laplacian of Gaussian (LoG) method from multi-focal images
with the corresponding contours extracted by Canny detector
from EDF image. Lee et al. [15] designed a segmentation
method to extract accurate cell boundaries by labelling image
superpixels into the cells with the nearest nucleus, and refining
the contour by cell-wise graph cuts.

In spite of the satisfying performance given by the above
methods on the two datasets, most of them have adopted
complex techniques and require extensive parameter tuning,
hence cannot be easily adapted to a new dataset of cell im-
ages. Furthermore, most of these methods are computationally
expensive. Since these methods are supposed to be employed
in a typical laboratory with modest computing facilities, the
applicability of the segmentation systems must become an
important consideration.

III. THE PROPOSED METHODOLOGY

The proposed methodology is performed in three passes of
watershed transform intelligently controlled by representative
marker identification functions, including (A) the first-pass wa-
tershed for nuclei localization, (B) the second-pass watershed
for touching and overlapping cytoplasm segmentation, and (C)
the third-pass watershed for largely overlapping cytoplasm
segmentation in an iterative fashion.

In general, marker-controlled watershed transform has been
widely used for image segmentation because of its advantages
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of simplicity, rapidity, flexibility and absence of adjustable
parameters [46]. The proper marker definition is the key to
successful use of the marker-controlled watershed, as those
markers with proper marking function, determine the final seg-
mentation performance [47]. Therefore, MPFW incorporates a
representative and properly-identified set of markers with each
of the following watershed passes.

A. First-pass Watershed for Nuclei Localization
Our first-pass watershed phase entails region partitioning

to reduce computational cost and enforce local consistency,
followed by contour-based watershed transform to localize the
nuclei within the cell mass. This phase starts by separating
the image foreground (i.e., cell mass or clump) from the
background, by employing Triangle algorithm [48] on the
median filtered Pap image. The triangle algorithm separates
the image into two classes by establishing a line between the
peak of the image histogram and its farthest end, and thereafter,
the appropriate threshold is identified as the point with the
maximum distance between the histogram and the established
line. Consequentially, tiny background objects unlikely to be
cell masses are eliminated.

Then, mean-based partitioning is introduced to generate a
rough image with an obvious difference between nuclei and
other cellular components. While image partitioning with mean
shift algorithm offers homogeneous regions for each intensity
sub-range, these regions are asymmetrical in shape or size.
This may lead to divide some symmetrically-shaped objects
into multiple partitions or include them with other partitions.
Providing that the nuclei in pap images usually have symmetric
shape, i.e., ellipse, we propose to develop our mean-based
partitioning technique to generate a rough version of the image.

First, regularized superpixel partitioning is performed to
fragment the image into regular partitions, then, the mean
of each partition is computed and replaced all pixels in the
partition. SLIC algorithm [49] is chosen here as it considerably
reduces the computational cost and could get a high accuracy
of up to 95%. SLIC algorithm uses two factors; one determines
the number of pixels in each partition, and the other one
tells how much it should care about distance and color versus
distance and geographical distance and location. These two
factors are assigned to 25 and 0.01, respectively, for five
different datasets used in this study, as described later in Sec-
tion IV. This process generates an intermediate image, where
many irrelevant details in the noisy Pap image are filtered
and the edges between the different cellular components are
highlighted, with the cluster shape taken into consideration
during partitioning.

The next step extracts the high-gradient pixels representing
the object contours to use them directly as a barrier to the
water flow in the watershed transform. Specifically, the Sobel
gradient of the generated intermediate image is obtained, and
then, automatic Otsu’s thresholding is applied to extract the
high-gradient contour pixels. Next, morphological closing with
a disc structuring element of diameter 1 is employed to link
the adjacent pixels and build connected contours, which are
used as the markers of watershed transform. Marker-controlled

watershed is then applied, and the resultant watershed regions
with closed contours are most probably nuclei regions. There
will be some small closed regions resulted from blood or
mucus that generate closed boundaries. Some overlapping
cells with clear boundaries may also get closed contours as
well. Such regions are basically marked as nuclei candidates,
but they can be filtered out based on their shape and size
properties. Finally, morphological dilation and holes-filling
operators are applied to build a solid nuclei mask, followed
by Chan-Vese level-set with only two iterations to connect a
single nucleus that is divided into multiple parts in the region
partitioning step.

Algorithm 1 The overlapping cell segmentation processes.
1: procedure INDIVIDUAL CYTOPLASM SEGMENTATION
2: Input: Nuclei image INu, Background image IBK

3: Output: Individual cell C
4:
5: % SECOND-PASS WATERSHED
6: Din ← Ht(−DE(IBK), h) % Inner distance function
7: Dout ← Ht(DE(INu), h) % Outer distance function
8: MC ← Ht((2×Din +Dout), h) % Integrated marking function
9: MG ← Ht(DG(∼ IBK , INu), h) % Geodesic marking function

10: SC ←W (MC), SG ←W (MG) % Watershed transform
11:
12: for Cc=1 To # regions in SC do
13: if # nuclei in Cc==1 then
14: Cg = SG(Nu) % Corresponding geodesic cell
15: Cc

e = E(Cc,Ω), Cg
e = E(Cg ,Ω) % Ellipse modelling

16: Cf = Cc
e ∨ Cg

e % Cells combination
17: Cf = Cf∧ ∼ IBK % Contour adjustment
18: else
19:
20: % THIRD-PASS WATERSHED
21: for i=1 To # nuclei Nu in Cc do
22: Nui

e = E(Nui,Ω
d) % Enlarged nucleus-in-focus

23: I′Nu = INu ∨Nuie % Temporary nuclei image
24: D′

out ← Ht(DE(I′Nu), h) % Intermed. marking function
25: S′ ←W (D′

out) % Intermediate watershed segmentation
26: Cm = S′(Nui), Cg = SG(Nui) % Corresponding cells
27: Cm

e = E(Cm,Ω), Cg
e = E(Cg ,Ω) % Ellip. modelling

28: Cf = Cg
e ∨ Cm

e % Cells combination
29: Cf = Cf∧ ∼ IBK % Contour adjustment

end
end

end
30: C = E(Cf ) % Chan-Vese modelling
31: C = C∧ ∼ IBK % Contour adjustment to remove false pixels
32: Eliminating the small candidates based on a present threshold Γ
33:

end procedure

B. Second-pass Watershed for Cell Segmentation

The cytoplasm segmentation is achieved by the second
and third MPFW passes, and it is the main contribution
of this study. Algorithm 1 summarizes the overlapping cell
segmentation processes performed by watershed segmentation
intertwined with elliptical modelling and contour refinement.

The second and most crucial pass in our MPFW is designed
to segment most of cells in the image based on the localized
nuclei and cell mass, as shown in Fig. 2. For this purpose, this
pass incorporates the advantages of different distance trans-
forms based on two sets of markers to effectively represent the
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individual cell cytoplasm. Particularly, two marking functions,
i.e., integrated inner-outer Euclidean distance transform (EDT)
and geodesic distance transform (GDT), are combined to over-
come the over- and under-segmentation problems. Moreover,
a set of nuclei markers characterizing the cell number and
location, are incorporated with geometric-based marker charac-
terizing the cell shape, for better segmentation of overlapping
cells in Pap image.

Euclidean distance transform (EDT) is one of the most
extensively used marking function [46], including inner and
outer distance transforms. The inner distance map converts
a binary image into a distance map where each pixel has
a value corresponding to the minimum distance from outer
markers, whereas the outer distance transform measures the
minimum straight-line distance from given inner markers. Fig.
2 (b) and (d) show examples of the inner and outer DT that
are computed based on the background image shown in Fig.
2 (a) and the nuclei image in Fig. 2 (b). The corresponding
segmentation of the inner and outer DT by marker-controlled
watershed is displayed in Fig. 2 (d) and (f), respectively.
Moreover, Fig. 3 displays an example of a cell mass with
missing and over-segmented nuclei, where (b)and (c) present
the watershed segmentation using the inner and outer distance
maps, respectively, for the output from the first watershed pass
shown in (a).

The inner distance transform has the potential to preserve the
physical characteristics and resemble the shape of the desired
cells based on the provided markers, as shown in Fig. 2 (c). In
addition, the inner distance map gives a good indication for the
widely overlapping cells that cannot be accurately segmented
with a single watershed transform. However, it suffers from
some drawbacks (see Fig. 2 (d) and Fig. 3 (b)): 1) inaccurate
watershed lines because of the reduction in the pixels elevation
along the cutting lines between the overlapping cells when
they move away from the cell mass boundary; 2) the over-
segmentation for some elongated cells where two or more
regional minima are appeared; 3) the under-segmentation for
some overlapping cells, as it cannot guarantee that there will
be a regional minimum corresponding to each cell in the
overlapping cluster. This occurs when two or more cells are
located closely in the same convex cluster, hence, their regional
minima are connected with a valley.

On the other hand, while the outer distance transform based
on nuclei guarantee one-to-one correspondence between the
markers and cells, it also has several drawbacks (see the ex-
ample in Fig. 3 (c)), including 1) the under-segmentation where
some cells associated with missed nuclei in the first watershed
pass will be missed even if those cells are single or slightly
touching cells; 2) the over-segmentation caused by the false
positive nuclei detection; 3) the high pixel-based false negative
rate, where the nuclei-based watershed sometimes trims the
cytoplasm border. Most of those cases could be handled if the
outer distance map include shape information, which has been
proven to be beneficial for watershed segmentation [50].

Another kind of marking functions used for cell segmen-
tation is the geodesic distance transform (GDT) [51]. The
geodesic distance is the length of the shortest path between
the true pixel in a binary image and the nearest true pixel

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Fig. 2. Watershed segmentation using different marking functions based on
(a) background and (b) nuclei markers, including (c) classical Din on the
background image with the corresponding segmentation in (d), (e) Dout for
nuclei image with its segmentation in (f), (g) DG for the nuclei and cell mass
image with the corresponding segmentation in (h),(i) represents our integrated
distance map with its segmentation in (j). (k) represents elliptical modelling
process, and the corresponding results after contours adjustment in (l).
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(a) (b) (c) (d) (e)

Fig. 3. The watershed segmentation based on the nuclei and background segmentation in (a) using the classical Din on the background image (b), the Dout

for nuclei image (c), the DG for the nuclei and cell mass image (d), and our integrated distance map (e). As shown, Din-based segmentation preserves the
shape of most cells, but does not guarantee the one-to-one correspondence. In contrast, while segmentation with Dout and DG guarantees the one-to-one
correspondence, the cells of missed nuclei cannot be detected and the cell shape is not taken into consideration. All these drawbacks have been tackled with
our integrated marking function, as shown in (e).

in a given mask. Examples of the GDT-based segmentation
are displayed in Fig. 2 (h) and Fig. 3 (d). As shown, the
GDT has the same advantages and disadvantages of the outer
EDT, but with more true positive detection for the cytoplasm
boundary pixels. Nevertheless, it still confronts the under- and
over-segmentation problems.

In summary, the available marking functions have some
advantages and disadvantages that cannot be ignored. In ad-
dition, none of the available functions can offer overlapping
segmentation. This inspired us to introduce a smart marker
definition process incorporating the useful information of each
marking before conducting the watershed. The designed mark-
ing process also enables excluding the widely overlapping cells
from segmentation to be segmented later in an iterative fashion
(see Fig. 2 (j)). Specifically, two marking functions are utilized
based on two sets of markers. The first marking function is a
combination of inner and outer EDT of cell nuclei and image
background, and the second marking function is the GDT of
the cell mass based on the cell nuclei. The integrated marking
function successes in handling the drawbacks of the classical
marking functions, as shown in Fig. 3 (e).

To obtain the first marker, the inner distance map is gener-
ated by firstly computing the Euclidean distance map DE(x, y)
for the binary background image IBK(x, y) displayed in Fig.
2 (a). The distance transform assigns a number representing
the distance between each image pixel (x, y) and the nearest
non-zero pixel (x′, y′) ∈ IBK , as follows:

DE(x, y) = inf
(x′,y′)∈IBK

√
(x− x′)2 + (y − y′)2. (1)

After that, the inverse of the resulted distance map is
computed, where the inner regions of cell mass appear as
minima. The pixels not belonging to the cell mass are assigned
to Infinity. The minimal value is then assigned to the region
outside the cell mass to be segmented, i.e., background, to
obtain an appropriate distance map Din(x, y).

Subsequently, H-minima transform Ht(I, h) is applied to
the inverse distance map with depth threshold h of 1, so that
over- and under- segmentation caused by regional irregularities
can be reduced. H-minima transformation is a contrast-oriented
simplification method [52] that suppresses undesired minima

whose depth is lower or equal to a given depth h of the relief
function RI , representing the morphological reconstruction of
image I . The threshold h separates the lower values that could,
in turn, lead to over-segmentation, from the higher values that
result in under-segmentation. H-minima transform of image I
can be defined as follows:

Ht(I, h) = RI(I + h). (2)

The outer distance map Dout(x, y) is also computed for
the binary nuclei image INu(x, y) displayed in Fig. 2 (b).
Finally, the combined marking function MCh

(x, y) is built
by integrating these two distance maps with higher weight
to Din(x, y) to exclude widely overlapping cells, and then,
filtering with H-minima transform to further exhibit the barrier
between the adjacent minima:

MCh
(x, y) = Ht(2×Din(x, y) +Dout(x, y)), h). (3)

The resulted integrated marking function MCh
is displayed

in Fig. 2 (i) with the corresponding segmentation in (j). This
marking function successfully represents the cell cytoplasm in
many cases. Nonetheless, it is possible to get a wide eccentric
minimum in the combined distance map. Such case may lead
to separate a single cell into two or more regions. To avoid
a possible over-segmentation, the geodesic distance transform,
described in [52], is computed. The GD map DG(x, y) is built
with respect to the seed locations specified by nuclei mask and
the binary image belonging to the foreground area, i.e., cell
mass. In particular, GDT assigns a number for each pixel (x, y)
in the foreground image ∼ IBK , portraying the minimum
length L of the path P = {p1, p2, ..., pl} joining that pixel
and the nearest true pixel in nuclei image (x′, y′) ∈ INu:

DG = min{L(P)|p1 = (x, y), pl = (x′, y′) and P ⊆∼ IBK}.
(4)

Finally, the second marking function MGh
(x, y) is generated

by applying H-minima transform on DG(x, y), as follows:

MGh
(x, y) = Ht(DG(INu(x, y)), h). (5)

Marker-controlled watershed W is then performed twice us-
ing the combined marking function MCh

(x, y) to get the seg-
mentation SC , and the geodesic marking function MGh

(x, y)
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(a) (b) (c) (d)

Fig. 4. Intermediate results of the third-pass watershed; (a) the input image, (b) and (c) the distance maps for two iterations on nucleus a and b, (d) the final
individual cell segmentation for the given watershed region.

to get the geodesic-based segmentation SG. Thereafter, each
obtained watershed region in the first segmentation Cc ∈ SC

is classified into whether an individual cell (i.e., if there is
a single nucleus inside) or cell cluster with multiple largely
overlapping cells (i.e., if two or more nuclei are included
within the watershed region). If the given Cc is identified
as individual cell, then, Cc and the corresponding cell in
the geodesic-based segmentation, Cg ∈ SG, are ellipsoidal
modelled E(.,Ω) in an image domain Ω by fitting ellipses
algorithm [53], and adjusting the ellipse points located outside
the cell mass (i.e., ∼ IBK) to the nearest mass border. By this
way, the cell contours in the overlapping area are curved for
more realistic cell contour than the straight lines imposed by
watershed segmentation (see Fig. 2 (k)). Finally, the resulted
modelled cells, i.e., Cc

e and Cg
e, corresponding to the SC

and SG watershed regions, respectively, are consolidated via
inclusive OR operator ∨ to obtain the final segmentation of
this stage Cf = Cc

e ∨ Cg
e (see Fig. 2 (l)).

In case where the SC watershed region is classified as a
cluster of largely overlapping cells, the third-pass watershed
transform is run on this given segment to extract the individual
cells. The process is repeated for each nucleus in the cluster
until all cells corresponding to detected nuclei are segmented.
The next section provides details of this process.

C. Third-pass Watershed for Largely Overlapping Cell Seg-
mentation

The third watershed pass aims to extract the individual
cytoplasm of clusters that are not segmented earlier due to
the obscure geometric information of its cells (see Fig. 2
(l)). Given that each detected nucleus Ni, {i = 1, 2, ..., n}
represents a single cell in the given watershed region, a mutual
preference-based watershed is designed, where watershed is
repeated for each nucleus inside the given watershed region,
and in each iteration, the nucleus-in-focus is given a preference
for larger domain over its adjacent nuclei. In particular, a
temporary nuclei image I ′Ni

(x, y),∀Ni ∈ {N1, N2, ..., Nn} is
built, in which the size of the nucleus-in-focus is doubled
to expand the bassinet where the water flow will move.
Fig. 4 displays a largely overlapping cluster that is separated
through the third watershed pass. Fig. 4 (b) and (c) represent
the distance maps for two independent watershed iterations,
in which a single cell is taken a preference for a larger

segmentation over the other joint cells in its turn, resulting
in an overlapped segmentation shown in Fig. 4 (d).

As the shape of the markers can be regarded as the first
shape estimation of the overlapping cells, we use the ellipse
modelling to double the nuclei size with preserving the el-
liptical shape of the nuclei. Thereafter, the outer distance
transform is performed to convert the binary nuclei map into a
distance map where every pixel has a value corresponding to
the minimum distance from the nuclei markers. Since the EDT
measures the distance from the elliptical nuclei, the obtained
distance map resembles the shape of the overlapping cells,
which are assumed to be elliptical. H-minima transform is
then applied to compound the image minima area. Finally,
the watershed is separately performed for each nucleus, as
following:

S′Ni
= W (D′Ni

(x, y)),∀Ni ∈ {N1, N2, ..., Nn}. (6)

where S′Ni
is the intermediate segmentation of the overlapping

cluster with respect to the nucleus-in-focus Nui. Only the seg-
mentation of the corresponding cell to Nui is extracted from
S′Ni

and this process is repeated till getting the segmentation
for all cells in the given overlapping watershed region. As
this watershed pass is mutually independent for each nucleus
within the given region, the segmented cells will be naturally
overlapped. Next, elliptical modelling is performed on those
obtained cells, to finally get more realistic segmentation, as
shown in Fig. 4 (d).

In addition, since controlled watershed does not take the
cell intensity information into account, the contour of the
provided segmentation remains a plausible guess based on the
location and shape of the cells. Therefore, we presume that
utilizing intensity-based refinement step can further enhance
the segmentation performance. The cell mass in the Pap image
is first equalized with contrast-limited adaptive histogram
equalization [54] with 0.01 threshold to enhance its contrast.
Subsequently, the refinement process is performed with the
region-based active contours proposed by Chan and Vese in
[55] due to its fast, flexible, and accurate implementation.
Although we believe that employing some improved level sets
can effectively enhance the segmentation performance, we seek
to adopt simple, fast, and efficient methods to maintain the
applicability of the segmentation system. The Matlab graphics
processing unit (GPU) implementation of Chan-Vese algorithm
is employed for faster segmentation.
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The Chan-Vese energy model tends to minimize the energy
function E(c1, c2, R) = Es(R) + Ee(R) with respect to the
cell contour (R), where Es is the force to shrink the cell
contour (R), Ee is the force to expand it, c1 represents
the average pixels’ intensity inside R, and c2 represents the
average intensity outside R. The two forces get balanced when
the contour reaches the actual cell contour, whereabouts R
reaches its equilibrium. Finally, the cell candidates whose area
are less than a predefined threshold defining the acceptable cell
size, i.e., 2000 pixels for our datasets.

IV. MATERIALS AND EXPERIMENTS

A. Image Datasets
For performance evaluation, five test datasets provided in the

first and second “ISBI Overlapping Cervical Cytology Image
Segmentation Challenge” [56], [57] were used. All datasets
contain a varying number of cells with different degrees of
overlap, contrast, and texture. Table I summarizes the details
of the test datasets used in our experiments.

The first challenge (ISBI-14) dataset consists of 945 syn-
thetic cytology images, divided into 45 training images, and
two sets of test images: ISBI-14 test-90 dataset of 90 images,
and ISBI-14 test-810 dataset of 810 images. In this study, we
also include the synthetic dataset provided by the ISBI chal-
lenge organizers in their baseline method [45], consisting of 18
cervical cytology images. All those synthetic images were 512
× 512 gray-scale images generated by overlapping a collection
of isolated cells extracted from real Pap smear slides, and
reconstructed by applying random linear brightness transform,
and a random rigid transform (i.e., rotation, translation and
scale), and finally located on the synthetic image using an
alpha channel (sampling from 0:88 to 0:99). The number of
overlapping cells in those images is ranged between 2 and 10
and the overlap coefficient between pairs of cells is in one of
the following ranges: [0, 0.1], [0.1, 0.2], [0.2, 0.3], [0.3, 0.4],
and [0.4, 0.5] [58]. The ISBI-14 dataset also contains 16 real
EDF images, including 8 training images and 8 test images.
All images were annotated with the ground truths of cell nuclei
and cytoplasm.

The second challenge (ISBI-15) dataset consists of 17
samples from different cervical cytology specimens, with 8
samples for training and 9 for test. Each sample is a collection
of multi-layer cell volume and the corresponding EDF image
of 1024 × 1024 pixels. Each sample image contains 20-60
cells distributed on a set of clumps with a varying number
of cells and different degrees of overlap. For each multi-
layer volume, a stack of twenty layers was acquired from
the same specimen at different focal planes, with a focal
depth separation of approximately 1µm. The test images were
annotated with the cytoplasm ground truths. Among those
datasets, the test images are used in our experiments.

B. Evaluation Metrics
Several evaluation metrics were used to assess the perfor-

mance of our nuclei and cytoplasm segmentation methodology.
Particularly, the performance of our cytoplasm segmentation

was assessed using the same evaluation measures used in
the ISBI challenge [56], including the pixel-level Dice co-
efficient (DC), true positive rate (TPp), and false positive
rate (FPp) for a ‘good’cell segmentation, and the object-level
false negative rate (FNo) for remaining cell segmentation. The
segmentation is considered to be good if the obtained cell
segmentation OSeg overlaps with the ground truth OGT with
a DC higher than a specific threshold. DC was computed
as DC = 2

|OGT∧OSeg|
|OGT |+|OSeg| , where |.| denotes the number of

pixels in the object. In our experiments, the performance of the
proposed MPFW method was evaluated over a range of good
segmentation DC thresholds: {0.5, 0.6, 0.7, 0.8} to validate
the effectiveness of our cytoplasm segmentation, whereas a
single DC threshold of 0.7 was used in the ISBI challenges,
and in our performance comparison as well.

Furthermore, the performance of our nuclei segmentation
was evaluated using the same criteria developed by Gençtav et
al. [33] for true nuclei detection. Specifically, the object-level
precision and recall of nuclei detection were first computed.
Then, the pixel-level DC, precision and recall values were
computed for the correct detections.

V. RESULTS AND DISCUSSION

This section presents the evaluation results of the proposed
methodology quantitatively and qualitatively in terms of seg-
mentation accuracy and time complexity. Furthermore, the
proposed methodology was compared with the existing state-
of-the-art segmentation methods for overlapping cervical cells
that were applied on the same datasets, including the winning
methods in the first and second ISBI challenges [56], [57].

A. Quantitative Evaluation
The quantitative evaluation of our cytoplasm segmen-

tation performance over a range of DC thresholds, i.e.,
{0.5, 0.6, 0.7, 0.8}, was conducted and the results were dis-
played in Table II. According to the table, the proposed MPFW
method offered satisfactory cell segmentation performance
in all metrics at different DC thresholds. Our cytoplasm
segmentation showed a stable performance on the first baseline
dataset where the lowest DC obtained for all cells in that
dataset was 0.75. Moreover, a consistent increase in DC, TPp,
and object-level detection rate TPo was shown on the other
datasets, with on average DC of 0.85 and TPp of 0.93 for all
segmented cells with DC <0.5. The worst obtained DC and
TPp at DC threshold of 0.5 on the ISBI-14 datasets were 0.89
and 0.94, respectively, which were high values indicating a
good segmentation. The FNo obtained on the first and second
datasets remained low even when only segmentations with
DC > 0.8 were included in computing FNo. This means that
most of our segmented cells on those datasets had high DC
values, which was up to 1 for some cells. The highest TPp

for all segmented cells was 0.997 on the ISBI-14 datasets and
0.981 on the ISBI-15 dataset, indicating that the segmentation
was quite close to the ground truth. The proposed method had
a significant rise in FNo on the real EDF and multi-layer
datasets when DC threshold changed from 0.7 to 0.8, i.e.,
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TABLE I. DESCRIPTION OF THE TEST IMAGE DATASETS USED IN OUR EXPERIMENTS.

Dataset Source Image type Image size # cells/ image # images
ISBI-14 Baseline DS ISBI organizers [45] Synthetic 512 × 512 2-5 cells 18 images
ISBI-14 test-90 DS First challenge [56] Synthetic 512 × 512 2-10 cells 90 images
ISBI-14 test-810 DS First challenge [56] Synthetic 512 × 512 2-10 cells 810 images
ISBI-14 EDF DS First challenge [56] EDF 1024 × 1024 20-60 cells 8 test images
ISBI-15 test DS Second challenge [57] EDF & FOV 1024 × 1024 20-60 cells 9 samples

20 layers/each

TABLE II. OUR CYTOPLASM SEGMENTATION ((DC)/(TPp)/(FPp)/(FNo)) AT DIFFERENT DC THRESHOLDS FOR SYNTHETIC, EDF, AND
MULTI-LAYER PAP IMAGE DATASETS.

DC >0.5 DC >0.6 DC >0.7 DC >0.8
ISBI-14 Baseline DS (.94)/(.95)/(.005)/(.00) (.94)/(.95)/(.005)/(.00) (.94)/(.95)/(.005)/(.00) (.95)/(.96)/(.003)/(.06)

ISBI-14 test-90 DS (.89)/(.94)/(.005)/(.06) (.90)/(.95)/(.004)/(.08) (.90)/(.95)/(.004)/(.11) (.92)/(.95)/(.003)/(.20)

ISBI-14 test-810 DS (.88)/(.94)/(.006)/(.09) (.89)/(.94)/(.005)/(.12) (.90)/(.95)/(.005)/(.16) (.92)/(.96)/(.004)/(.27)

ISBI-14 EDF DS (.86)/(.91)/(.002)/(.18) (.87)/(.91)/(.002)/(.20) (.88)/(.92)/(.002)/(.23) (.91)/(.94)/(.001)/(.40)

ISBI-15 test DS (.78)/(.93)/(.003)/(.18) (.81)/(.93)/(.003)/(.26) (.85)/(.94)/(.002)/(.34) (.89)/(.97)/(.002)/(.59)

TABLE III. QUANTITATIVE CYTOPLASM SEGMENTATION RESULTS OF THE ISBI-14 SYNTHETIC DATASETS AS A FUNCTION OF THE NUMBER OF CELLS
AND OVERLAPPING RATIO FOR GOOD SEGMENTATION WITH DC > 0.7.

Overlapping ratio
∈ [0,0.1] ∈ [0.1,0.2] ∈ [0.2,0.3] ∈ [0.3,0.4] ∈ [0.4,0.5]

2 cells
DC=.97(.03),TPp=.99(.02),
FPp=.00(.00),FNo=.05(.22)

DC=.92(.07),TPp=.98(.06),
FPp=.00(.00),FNo=.03(.11)

DC=.92(.07),TPp=.97(.06),
FPp=.00(.00),FNo=.03(.11)

DC=.92(.06),TPp=.97(.06),
FPp=.00(.01),FNo=.10(.31)

DC=.91(.06),TPp=.95(.06),
FPp=.00(.01),FNo=.17(.34)

3 cells
DC=.97(.02),TPp=1.0(.01),
FPp=.00(.00),FNo=.02(.07)

DC=.90(.06),TPp=.97(.04),
FPp=.01(.00),FNo=.00(.00)

DC=.89(.07),TPp=.95(.08),
FPp=.01(.00),FNo=.15(.28)

DC=.88(.08),TPp=.95(.06),
FPp=.01(.01),FNo=.17(.28)

DC=.88(.06),TPp=.90(.10),
FPp=.00(.00),FNo=.33(.40)

4 cells
DC=.97(.04),TPp=.99(.05),
FPp=.00(.00),FNo=.00(.00)

DC=.91(.05),TPp=.98(.05),
FPp=.00(.00),FNo=.04(.09)

DC=.89(.07),TPp=.95(.06),
FPp=.01(.01),FNo=.19(.28)

DC=.89(.06),TPp=.93(.07),
FPp=.00(.00),FNo=.15(.22)

DC=.86(.07),TPp=.90(.09),
FPp=.01(.00),FNo=.38(.31)

5 cells
DC=.97(.04),TPp=.99(.04),
FPp=.00(.00),FNo=.03(.08)

DC=.90(.06),TPp=.97(.05),
FPp=.01(.00),FNo=.14(.20)

DC=.89(.06),TPp=.96(.06),
FPp=.01(.00),FNo=.30(.31)

DC=.86(.06),TPp=.92(.08),
FPp=.01(.00),FNo=.30(.35)

DC=.85(.07),TPp=.89(.10),
FPp=.01(.00),FNo=.23(.33)

6 cells
DC=.96(.05),TPp=.98(.05),
FPp=.00(.00),FNo=.02(.05)

DC=.89(.06),TPp=.97(.05),
FPp=.01(.00),FNo=.03(.07)

DC=.88(.07),TPp=.95(.08),
FPp=.01(.00),FNo=.13(.18)

DC=.86(.07),TPp=.91(.08),
FPp=.01(.00),FNo=.24(.24)

DC=.85(.07),TPp=.89(.10),
FPp=.01(.00),FNo=.39(.30

7 cells
DC=.96(.05),TPp=.99(.05),
FPp=.00(.00),FNo=.01(.03)

DC=.89(.06),TPp=.97(.05),
FPp=.01(.00),FNo=.06(.09)

DC=.88(.07),TPp=.94(.07),
FPp=.01(.01),FNo=.20(.26)

DC=.86(.06),TPp=.90(.08),
FPp=.01(.00),FNo=.27(.28)

DC=.86(.07),TPp=.89(.11),
FPp=.01(.00),FNo=.39(.32

8 cells
DC=.96(.04),TPp=.99(.04),
FPp=.00(.00),FNo=.03(.05)

DC=.89(.06),TPp=.97(.05),
FPp=.01(.00),FNo=.14(.16)

DC=.87(.07),TPp=.93(.08),
FPp=.01(.00),FNo=.13(.13)

DC=.86(.07),TPp=.90(.09),
FPp=.01(.00),FNo=.23(.29)

DC=.84(.07),TPp=.87(.10),
FPp=.01(.00),FNo=.33(.28)

9 cells
DC=.95(.05),TPp=.98(.06),
FPp=.00(.00),FNo=.01(.02)

DC=.88(.06),TPp=.96(.05),
FPp=.01(.00),FNo=.11(.17)

DC=.87(.07),TPp=.93(.08),
FPp=.01(.00),FNo=.15(.17)

DC=.86(.06),TPp=.90(.09),
FPp=.01(.00),FNo=.32(.27)

DC=.83(.07),TPp=.87(.09),
FPp=.01(.01),FNo=.36(.18)

10 cells
DC=.96(.05),TPp=.99(.02),
FPp=.00(.00),FNo=.00(.00)

DC=.89(.06),TPp=.94(.08),
FPp=.01(.00),FNo=.06(.09)

DC=.87(.06),TPp=.93(.09),
FPp=.00(.00),FNo=.06(.05)

DC=.85(.08),TPp=.89(.09),
FPp=.01(.00),FNo=.40(.31)

DC=.84(.08),TPp=.87(.10),
FPp=.01(.00),FNo=.24(.11)

Average DC=.96(.04),TPp=.99(.05),
FPp=.00(.00),FNo=.01(.02)

DC=.89(.06),TPp=.97(.05),
FPp=.01(.00),FNo=.06(.04)

DC=.88(.07),TPp=.94(.08),
FPp=.01(.00),FNo=.14(.06)

DC=.87(.07),TPp=.91(.08),
FPp=.01(.00),FNo=.25(.10)

DC=.85(.07),TPp=.89(.10),
FPp=.01(.00),FNo=.31(.08)

from only 0.23 to 0.40 for the EDF dataset, and from 0.34
to 0.59 on the multi-layer dataset. This indicated that there
were many cells on those datasets had DC values between
0.7 and 0.8, which were still good results according to the
ISBI challenge guidelines.

The second evaluation, shown in Table III, assesses the
performance of our MPFW with respect to varying number of
cells and pairwise overlap coefficients, for a good segmentation
threshold of DC > 0.7. These results were obtained with
the ISBI-14 synthetic datasets, of which the cell number and
overlapping ratio per image were provided with the datasets.
According to the shown results, the performance of the pro-
posed MPFW was semi-ideal with very high TPp of 0.99 and
low FPp of zero for almost all images with overlap ratio
∈[0, 0.1], regardless the number of cells. Our performance
was also promising with high DC in the range [0.87, 0.92]
for images with ≤0.2 overlap ratio. Likewise, the proposed
MPFW was shown to be efficient in segmenting clusters of
highly overlapping cells with up to 0.4 overlap between pairs

of cells, provided that the number of cells within the cluster
is four or less. When the overlapping ratio is relatively high,
i.e., ∈ [0.4, 0.5], MPFW had a slight degradation in the DC,
TPp, and FNo as the number of cells was increased. Although
that the segmentation of such case represents the main factor
for performance degradation in cell segmentation methods, the
proposed MPFW successfully segmented most of those highly
overlapping cells with an average DC of 0.85 (±0.07) and
TPp of 0.89 (±0.10). Those results prove that our MPFW
methodology is capable of producing robust segmentation even
on challenging images with large clusters of highly overlapping
cells.

Furthermore, our performance in terms of DC, FNo, and
TPp for synthetic datasets was represented as a function of
cell number and overlapping ratios in Fig. 5 (a), (b), and (c),
respectively. As observed from the figure, the proposed method
yielded a competitive DC for all images of less than three
cells or ≤0.2 overlap between the cells. Yet, our segmentation
was shown to be good with images with four to six cells,
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provided that the overlapping ratio is ≤0.3. Our method had
the worst DC when the overlapping ratio became more than
0.4 and number of cells exceeds eight cells per image. Fig. 5
(b) shows that our performance in FNo is more sensitive to
the changes in the overlapping degree than the changes in the
number of cells. The proposed method successfully segments
most of overlapping clusters of up to ten cells with less than
0.3 overlap between cells. When the overlapping ratio is higher
than 0.3 and the number of cells exceeds eight cells, the false
negative occurrences by MPFW was significantly augmented.
As proven by Fig. 5, the degree of overlap has a great influence
on all measures. This was because it became difficult to obtain
the shape information from a highly overlapping cluster due
to the appearance of valley connecting the regional minima
in the inner distance map. This, in effect, led to producing
an ellipse-based estimation of the cell shape during the third
watershed pass. Regarding TPp, the proposed method showed
a high TPp for images with up to 0.3 overlap between pairs
of cells regardless the number of cells, and up to 0.4 overlap
with less than five cells per image. Similar to DC, our TPp

performance degraded when the overlapping ratio is relatively
high between 0.4 and 0.5, and number of cells was eight or
more.

(a) (b)

(c)

Fig. 5. Functional analysis of the proposed method in terms of (a) DC (in
range [0.8 1]), (b) FNo (in range [0 0.5]), and (c) TPp (in range [0.8 1]).
The diagrams show the evaluation metrics as a function of number of cells (y
axis) and overlapping ratio (x axis).

In terms of nuclei segmentation, the proposed MPFW
method yielded a high object-level preco of 0.98 and reco of
0.96. Furthermore, the pixel-based results for our methodology
consist of a precp of 0.92(±0.07), recp of 0.95(±0.05) and
DC of 0.93 (±0.04). These results demonstrate the effec-
tiveness of the barrier-based watershed segmentation. The
designed mean-based partitioning of the noisy Pap image
successfully removes the irrelevant image details and highlight
the difference between nuclei and other cellular components.
This makes it easy to extract the nuclei boundaries with

gradient thresholding process, which are then used to stop
the water flow in the first watershed pass. With our nuclei
segmentation process, most of the detected nuclei candidates
are true cell nuclei, while the false negative cases occurred due
to missing the nuclei shape or poor nuclei contrast. Therefore,
we believe that some pre-processing operations to enhance
nuclei contrast can be beneficial.

B. Qualitative Evaluation

The qualitative experiment consists of a visual inspection
of the results of our cell mass separation, nuclei segmentation,
and cytoplasm segmentation process. Fig. 6 shows some of
our segmentation results using synthetic, real EDF, and multi-
layer Pap images. As seen in Fig. 6 (b), the cell masses
were accurately defined by triangle algorithm despite the
complex background and poor contrast of the cell masses.
Median filtering of the Pap image before separation helps
to improve the clump segmentation performance. The pro-
posed methodology also provided a precise estimation of the
nuclei boundaries detected in the first watershed pass, as
shown in Fig. 6 (c). Furthermore, Fig. 6 (d) proves that the
boundaries of each individual cells in the overlapping regions
were successfully detected by the proposed MPFW algorithm,
showing promising segmentation of overlapping cells that is
comparatively similar to the ground truth segmentation shown
in Fig. 6 (e). Therefore, the proposed MPFW algorithm can
be successfully used to separate the individual nuclei and
cytoplasm from a clump of highly overlapping cells in different
kind of datasets. There are some failure cases appeared in
the EDF sample displayed in the third row of Fig. 6. This
failure was mainly due to the lack of shape information from
completely overlapping cells.

Overall, the proposed MPFW method provides a promising
performance in terms of nuclei and cytoplasm segmentation
thanks to the smart incorporation of cell shape and loca-
tion information with watersheds in an iterative fashion. Our
improved marker identification process successes in building
accurate descriptors for cell shapes, as well as, helps to
avoid over- and under-segmentation by establishing one-to-
one correspondence between the cells and detected nuclei. In
addition, the designed preference-based watershed can produce
a fair cytoplasm segmentation for highly overlapping cells
whose shape information are not available.

C. Comparison with Other Methods

The performance of our MPFW method was further quanti-
tatively and qualitatively compared with the performance of
the proposed methods in the past five years for automatic
segmentation of overlapping cervical cells using the ISBI
challenge datasets. First, we conduct a comparison between our
segmentation results and the segmentation results of [10], [11],
[18] using the test dataset provided by the ISBI-14 baseline
method [45]. The proposed MPFW method was also employed
on the ISBI-14 test-90 and test-810 synthetic datasets, and
the obtained cytoplasm segmentation results were compared
with the results of the presented methods in the literature on
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(a) (b) (c) (d) (e)

Fig. 6. Examples of our nucleus and cytoplasm segmentation results on synthetic (row 1 and 2), real EDF (row 3), and a single layer of multi-layer (row 4)
Pap images; (a) the input Pap images, (b) the detected cell masses by Triangle algorithm, (c) the extracted nuclei in the first watershed pass, (d) the cytoplasm
segmentation by the second and third watershed pass, and (e) corresponding ground truth images.

the same datasets, including the ISBI-14 challenge winners:
Ushizima et al. [5], Nosrati et al [6] and their newly proposed
method [9], the baseline method [8], and some later introduced
methods [11], [15], [17], [18]. In addition, the performance of
our cytoplasm segmentation on some real EDF Pap images
was compared with the performance of the baseline method
[8]. The proposed method was also applied to the ISBI-15 test
dataset, and compared with the introduced methods on this
dataset, including the challenge winners: Ramalho et al. [12],
Phoulady et al. [13] and their newly proposed method [14], as
well as, recently proposed methods presented in [15], [16]. For
nuclei segmentation, only those methods reported their nuclei
segmentation results, were included in the nuclei segmentation
comparison. The comparison results are displayed in Table IV,
Table V, and Fig. 7.

Table IV shows the comparison results of the cytoplasm
segmentation performance, where bold numbers indicate su-
perior results. The proposed MPFW showed a promising

performance level in cytoplasm segmentation over all other
methods. The designed cytoplasm segmentation achieved the
best performance in terms of TPp of higher than 0.94 for all
datasets, and DC with an average of 0.91 for four datasets. Our
MPFW can also be recognized with the high detection rate,
which is demonstrated by the low FNo of less than 16% for
the synthetic datasets, and better detection rate than other state-
of-the-art methods for the real EDF and multi-layer datasets.

In details, the obtained DC on the baseline dataset was
0.94 with up to 6% improvement over the other methods
applied on the same dataset. Moreover, the obtained FNO

on the baseline dataset was zero, which indicates that MPFW
successfully segmented all cells in this dataset. The proposed
method also achieved the highest TPp without increasing the
FPp. On the ISBI-14 test-90 dataset, the proposed MPFW
obtained a superior performance in terms of DC, TPp, and
FNo over the other six methods. Specifically, our obtained
DC was 0.90 and TPp was 0.95, with up to 4% and 12%

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TMI.2018.2815013

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



12

TABLE IV. COMPARISON RESULTS (µ± σ) OF OUR CYTOPLASM
SEGMENTATION AND THE STATE-OF-THE-ART METHODS.

Methods FNo TPp FPp DC
Test dataset of [45]

[45] .21 ± .29 .92 ± .10 .002 ± .005 .88 ± .07
[10] .07 ± .14 .94 ± .05 .005 ± .007 .92 ± .06
[11] .00 ± .00 .93 ± .05 .005 ± .01 .91 ± .05
[18] .00 ± .00 .92 ± .09 .004 ± .005 .93 ± .06

MPFW .00 ± .00 .95 ± .08 .005 ± .007 .93 ± .06
ISBI-14 test-90 dataset

[5] .174 ± .210 .826 ± .130 .001 ± .002 .867 ± .083
[6] .140 ± .170 .900 ± .090 .005 ± .004 .870 ± .080
[9] .110 ± .170 .930 ± .090 .005 ± .004 .880 ± .080
[11] .163 ± .223 .939 ± .064 .005 ± .005 .888 ± .076
[17] .274 ± .277 .907 ± .088 .004 ± .005 .889 ± .073
[18] .222 ± .240 .945 ± .071 .005 ± .005 .897 ± .077

MPFW .106 ± .167 .951 ± .072 .004 ± .004 .902 ± .074
ISBI-14 test-810 dataset

[5] .267 ± .278 .841 ± .130 .002 ± .002 .872 ± .082
[6] .110 ± .166 .875 ± .086 .004 ± .004 .871 ± .075
[8] .315 ± .294 .905 ± .097 .003 ± .005 .893 ± .082
[15] .137 ± .194 .882 ± .097 .002 ± .003 .897 ± .075

MPFW .161 ± .249 .946 ± .079 .005 ± .004 .898 ± .073
Real EDF images [8]

[8] .36 ± .08 .90 ± .10 .00 ± .00 .87 ± .09
MPFW .23 ± .17 .92 ± .09 .00 ± .00 .88 ± .08

ISBI-15 FOV test database
[13] .408 ± .163 .927 ± .098 .003 ± .002 .831 ± .079
[12] .501 ± .180 .899 ± .113 .002 ± .001 .856 ± .078
[15] .434 ± .168 .877 ± .123 .001 ± .001 .879 ± .087
[14] .352 ± 000 .874 ± 000 .001 ± 000 .861 ± 000
[16] .361 ± .158 .885 ± .101 .002 ± .001 .852 ± .076

MPFW .336 ± .130 .940 ± .080 .002 ± .002 .851 ± .079

improvement, respectively, over the other methods on the same
dataset. Furthermore, the highest detection rate was realized by
our MPFW, i.e., 89% with up to 17% improvement over the
other methods. Our FPp was also less than the FPp obtained
by [6], [9], [11], [18].

Moreover, the proposed MPFW also achieved the best
DC and TPp on the ISBI-14 test-810 dataset, with up to
3% and 11% improvement, respectively, over the compared
methods. The obtained FNo was also much lower than the
FNo obtained by the ISBI-14 winning methods and baseline
methods [5], [8]. Furthermore, the proposed MPFW had the
highest performance in all measures with the real EDF images.
Particularly, the obtained DC and TPp were 0.88 and 0.92,
compared with 0.87 and 0.90 obtained by the ISBI baseline
method [8]. MPFW also provided 13% improvement in the
detection rate over [8]. On the ISBI-15 dataset, the proposed
methodology yielded remarkable results with very high TPp

and low FNo compared to its counterparts. This indicates
that our proposed method can effectively be used to segment
individual cytoplasm of overlapping clusters from multi-layer
cytology preparation volumes.

Although the cytoplasm segmentation process is the main
contribution of this paper, our nuclei segmentation process
has also shown a competitive performance. The object-level
and pixel-level nuclei segmentation results of the proposed
MPFW and the ISBI-14 segmentation methods [5], [6], [8]
using the ISBI-14 synthetic test dataset are displayed in Table
V. Compared to the challenge winning methods and baseline
method, our proposed method had the best nuclei segmentation
in four out of five measures. Most of the detected candidates

by our method were true cell nuclei, proved by our high preco
of 0.98 and reco of 0.96, with up to 8% and 7% improvement
over the ISBI methods. Also, our recp of 0.95 was higher
than those obtained by the ISBI methods, with up to 8%
improvement. The highest precp of 0.97 was obtained by [5],
however, this was at the expense of decreasing the recp based
on the fact that the augment in the object size leads to include
more true and false pixels in the segmentation. Those results
indicated that our designed nuclei segmentation pass could
be effectively used to extract the nuclei boundaries in Pap
images. The designed mean-based partitioning step helps to
minimize the within-class variance for the regions with high
homogeneity, e.g., cell nuclei, and maximize the between-class
variance. This, in turn, leads to more obvious boundaries that
are used to control the first barrier-based watershed pass.

TABLE V. COMPARISON RESULTS OF OUR NUCLEI SEGMENTATION
AND THE ISBI-14 CHALLENGE METHODS.

Methods preco reco precp recp DC
[5] .959 .895 .968 ± .055 .871 ± .069 .914 ± .039
[6] .903 .893 .901 ± .097 .916 ± .093 .900 ± .053
[8] .977 .883 .942 ± .078 .912 ± .081 .921 ± .049

MPFW .983 .959 .906 ± .068 .950 ± .051 .925 ± .041

Furthermore, Fig. 7 displays a visual comparison between
our nuclei and cytoplasm segmentation results and the segmen-
tation results of ISBI-14 winning methods on synthetic and real
EDF images provided in the challenge report [58]. As can be
observed from the figure, the proposed MPFW algorithm is
effective and reliable in delineating both nuclei and cytoplasm
boundaries compared to its counterparts. MPFW provided
better cytoplasm segmentation for the overlapping cells than
the ISBI methods. For instance, the cell segmentation in [5]
was done by straight lines splitting the cytoplasm between
pairs of cells, which obviously is not realistic. This is usually
the case with classical watershed segmentation. However, our
proposed method copes with this by employing elliptical
modelling and mutual iterated watershed. In addition, [5]
showed several under-segmentation cases related to missing
cell nuclei. Under- and over- segmentation was avoided in
MPFW by incorporating two sets of markers, with robust
marking functions, as well as improving the nuclei detection
rate. In addition, the segmentation of [6] had a high pixel-
level false negative rate, where the segmented cells are smaller
than the actual cell segmentation, and delineated with a rough
border that ignores the fine contour details. It is also seen that
our method provided better pixel-level cell segmentation, with
more regular cell contour, than the ISBI baseline method [8].

Overall, the quantitative and qualitative evaluation demon-
strates the superiority of the proposed MPFW algorithm over
the state-of-the-art methods for overlapping cell segmentation
in Pap images. Besides being more accurate in terms of nuclei
and cytoplasm segmentation, our method avoids the limitations
in most of the existing segmentation methods, which can
generally be outlined as being relatively complicated, compute-
intensive, requiring extensive parameter tuning, and difficult
to adapt to a new dataset of cytological cells. For instance,
the level set-based segmentation methods, such as [6], [11],
[18], [45], usually involve a handful of arbitrary parameters
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[5] [6] [8] MPFW

Fig. 7. Visual comparison between the proposed methodology and the ISBI-14 challenge methods using synthetic and real EDF Pap images, provided by [58].

empirically set for every dataset. This, in effect, reintroduces
strenuous intervention of the users with no guarantee that
the final chosen parameters are optimal. Another group of
segmentation methods are based on shape deformation, such
as [10], [17]. While shape-driven segmentation is one of the
most reliable techniques to establish accurate cell analysis,
still it is complicated and compute-intensive due to the costly
training step and shape generation procedure. In addition, these
methods may fail to segment some cells with infrequent cell
shape in the training dataset.

With our MPFW method, the segmentation of each image is
completely autonomous, where the incorporated shape infor-
mation is independently built from each cell itself, not fixed
shape prior [6], [9], [45], and not based on training shapes from
a dictionary which usually has a large shape variations [10],
[11], [17], [18]. This explains the superior performance of the

proposed MPFW method with the five datasets over the current
state-of-the-art methods. In addition, parameter adjustment is
not necessary for our watershed cytoplasm segmentation to
work with a new dataset, and only needed for the secondary
refinement process of the segmented cells. This means that
a fair performance for cytoplasm segmentation can be ob-
tained regardless of the parameters chosen (from a reasonable
range). There are three parameters used by Chan-Vese model
employed for refinement; the smoothing and contraction-bias
parameters that were set by default to 1 and -1, respectively,
and the maximum number of iterations that was 30 iterations
for the datasets used in this study. These values were initially
chosen, and certainly, exquisite parameter selection offers
better cytoplasm segmentation performance.

Although Chan-Vese refinement further enhanced our re-
sults, yet the watershed passes alone have the potential to
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produce a promising cell segmentation with a DC of 0.899
(±0.08), TPp of 0.895 (±0.10), FPp of 0.002 (±0.004), and
FNo of 0.184 (±0.26) on the ISBI-14 synthetic datasets (e.g.,
see the segmentation results in Fig. 2 (l)). Furthermore, since
our cytoplasm segmentation process does not depend on the
cell intensity or texture information, it can be easily adapted
to work with any new dataset.

D. Computational Complexity
The space and time-complexity of the segmentation method

have become important, especially when dealing with large or
high-resolution images, which is often the case in Pap smears
images. Therefore, we aimed to design a robust segmentation
method with low time-complexity and high-performance ac-
curacy. Table VI displays the device specification and average
computation time of the proposed MPFW method implemented
with non-optimized Matlab code, compared with the compu-
tation time for other state-of-the-art methods on the ISBI-
14 synthetic datasets. Ideally, we would like to carry all
experiments on the same device, however, the implementation
code of other methods are not publicly available yet. Although
the implementation of Lu et al. method [8] is available, it needs
a huge RAM, which is not the case with our device.

As shown in Table VI, the proposed method is proven to
be cost-effective with an average of 5 seconds for nuclei and
cytoplasm segmentation from 512 × 512 Pap images. This is
less than a half of the time needed by the first ISBI-14 winning
method, [5], which took 12 seconds per image. Moreover,
MPFW is around 60 times faster than the baseline method
[8] whose average computation time was ∼300 seconds.
Our method is also faster than [9], and also provides better
performance in nuclei and cytoplasm segmentation.

TABLE VI. COMPUTER SPECIFICATION AND COMPUTATIONAL TIME
FOR THE PROPOSED AND STATE-OF-THE-ART METHODS.

Methods Computer specification Time/Image
[5] 12-core Intel, CPU 2.4GHz, 64GB RAM 12 sec.
[6] PC, CPU 3.4 GHz,16 GB RAM 16.7 sec.
[9] PC, CPU 3.4 GHz,16 GB RAM 6.6 sec.
[8] PC, CPU 2.7 GHz, 8 GB RAM ∼ 300 sec.
[11] PC, CPU 3.2 GHz, 8 GB RAM 40.8 sec.
[17] PC, CPU 3.2 GHz, 8 GB RAM 27.4 sec.
[18] PC, CPU 3.2 GHz, 8 GB RAM 30 sec.

MPFW PC, CPU 3.2 GHz, 8 GB RAM 4.76 sec.

In general, watershed transform is characterized by low
computational cost and small number of parameters. We
take advantage of those properties and design a multi-pass
watershed intelligently controlled with cell shape and loca-
tion information to dramatically reduce the computation time
needed for cell segmentation compared to other methods in
the literature. Despite the iterative performing of watershed in
the third-watershed pass, this stage is only needed for widely
overlapping cells, e.g., three out of ten cells with overlap ratio
∈[0.4, 0.5] in the example shown in Fig. 4. The images with
single, touching, and partially overlapping cells are segmented
with the second-watershed pass.

Furthermore, the felicitous utilize of Chan-Vese model with
few iterations, i.e., 30 iterations, on the graphics processing

unit (GPU) further accelerates our methodology. The new
computational improvements enable us to process large digital
images faster and more effective.

VI. CONCLUSIONS

Despite the exciting development in the field of overlapping
cell segmentation from cervical cytology images during the
past five years, the focus of existing methods is mainly to
achieve high performance in nuclei and cytoplasm segmenta-
tion on given datasets. In this paper, we have tried to widen
our objectives to include the system applicability, speed, and
straightforward implementation. For this purpose, we design
MPFW; a simple and cost-effective segmentation method that
is also capable of achieving superior segmentation performance
than state-of-the-art methods.

The proposed methodology has been evaluated on several
datasets of synthetic, EDF, and multi-focal Pap images. Com-
pared to the existing segmentation methods for overlapping
cervical cells, the proposed method exhibits the following
merits: (1) it provides more accurate segmentation for both
nuclei and cytoplasm; (2) it successfully segments most of
overlapping cells with a low false negative rate; (3) it can work
efficiently with both single and multi-layers Pap smear images;
(4) it is simpler in implementation, and requires less time and
space; and (5) the cell segmentation process is adaptable and
can be natively extended to a new type of images without
complicated experiments and extensive parameter tuning for
individual datasets.

In the future, we intend to apply our method to other types
of cell images. Our future work will also include designing
a complete cell analysis system with a user-friendly interface
for direct use by pathologists. The desired system will begin
with generating an EDF image from given multi-layer cytology
volumes, and end with classifying the cells into normal or
abnormal cells and making a decision on the given sample.

REFERENCES

[1] W. H. Organization et al., “WHO guidance note: comprehensive cervical
cancer prevention and control: a healthier future for girls and women,”
2013.

[2] E. Lăără, N. Day, and M. Hakama, “Trends in mortality from cervical
cancer in the nordic countries: association with organised screening
programmes,” The Lancet, vol. 329, no. 8544, pp. 1247–1249, 1987.

[3] G. Johannesson, G. Geirsson, and N. Day, “The effect of mass screening
in iceland, 1965–74, on the incidence and mortality of cervical carci-
noma,” International journal of cancer, vol. 21, no. 4, pp. 418–425,
1978.

[4] A. P. Bradley and P. C. Bamford, “A one-pass extended depth of field
algorithm based on the over-complete discrete wavelet transform,” in
IVCNZ, 2004, pp. 279–284.

[5] D. Ushizima, A. Bianch, and C. Carneiro, “Segmentation of subcel-
lular compartiments combining superpixel representation with voronoi
diagrams,” in ISBI Overlapping Cervical Cytology Image Segmentation
Challenge. IEEE, 2014, pp. 1–2.

[6] M. Nosrati and G. Hamarneh, “A variational approach for overlapping
cell segmentation,” in ISBI Overlapping Cervical Cytology Image
Segmentation Challenge. IEEE, 2014, pp. 1–2.

[7] A. Tareef, Y. Song, W. Cai, D. Feng, and M. Chen, “Automated three-
stage nucleus and cytoplasm segmentation of overlapping cells,” in
ICARCV. IEEE, 2014, pp. 865–870.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TMI.2018.2815013

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



15

[8] Z. Lu, G. Carneiro, and A. Bradley, “An improved joint optimization of
multiple level set functions for the segmentation of overlapping cervical
cells,” IEEE Trans. Image Process., 2015.

[9] M. Nosrati and G. Hamarneh, “Segmentation of overlapping cervical
cells: A variational method with star-shape prior,” in ISBI. IEEE, 2015,
pp. 186–189.

[10] A. Tareef, Y. Song, M.-Z. Lee, D. D. Feng, M. Chen, and W. Cai,
“Morphological filtering and hierarchical deformation for partially
overlapping cell segmentation,” in DICTA. IEEE, 2015, pp. 1–7.

[11] A. Tareef, Y. Song, W. Cai, H. Huang, Y. Wang, D. Feng, and
M. Chen, “Learning shape-driven segmentation based on neural network
and sparse reconstruction toward automated cell analysis of cervical
smears,” in ICONIP. Springer, 2015, pp. 390–400.

[12] G. L. Ramalho, D. S. Ferreira, A. G. Bianchi, C. M. Carneiro, F. N.
Medeiros, and D. M. Ushizima, “Cell reconstruction under voronoi and
enclosing ellipses from 3D microscopy,” IEEE ISBI Second Overlapping
Cervical Cytology Image Segmentation Challenge, pp. 3–4, 2015.

[13] H. Phoulady, D. Goldgof, L. Hall, and P. Mouton, “An approach for
overlapping cell segmentation in multi-layer cervical cell volumes,”
IEEE ISBI Second Overlapping Cervical Cytology Image Segmentation
Challenge, 2015.

[14] ——, “A new approach to detect and segment overlapping cells in multi-
layer cervical cell volume images,” in ISBI. IEEE, 2016, pp. 201–204.

[15] H. Lee and J. Kim, “Segmentation of overlapping cervical cells in
microscopic images with superpixel partitioning and cell-wise contour
refinement,” in CVPR, 2016, pp. 63–69.

[16] P. Kumar, S. Happy, S. Chatterjee, D. Sheet, and A. Routray, “An
unsupervised approach for overlapping cervical cell cytoplasm segmen-
tation,” in IECBES. IEEE, 2016, pp. 106–109.

[17] A. Tareef, Y. Song, W. Cai, H. Huang, H. Chang, Y. Wang, M. Fulham,
D. Feng, and M. Chen, “Automatic segmentation of overlapping cer-
vical smear cells based on local distinctive features and guided shape
deformation,” Neurocomp., vol. 221, pp. 94–107, 2017.

[18] A. Tareef, Y. Song, H. Huang, Y. Wang, D. Feng, M. Chen, and W. Cai,
“Optimizing the cervix cytological examination based on deep learning
and dynamic shape modeling,” Neurocomp., vol. 248, pp. 28–40, 2017.

[19] P. Bamford and B. Lovell, “Unsupervised cell nucleus segmentation
with active contours,” Signal Processing, vol. 71, no. 2, pp. 203–213,
1998.

[20] M. E. Plissiti, C. Nikou, and A. Charchanti, “Automated detection
of cell nuclei in Pap smear images using morphological reconstruc-
tion and clustering,” IEEE Transactions on Information Technology in
Biomedicine, vol. 15, no. 2, pp. 233–241, 2011.

[21] ——, “Combining shape, texture and intensity features for cell nuclei
extraction in Pap smear images,” Pattern Recognition Letters, vol. 32,
no. 6, pp. 838–853, 2011.

[22] C. Jung and C. Kim, “Segmenting clustered nuclei using H-minima
transform-based marker extraction and contour parameterization,” IEEE
Trans. Biomed. Eng., vol. 57, no. 10, pp. 2600–2604, 2010.

[23] M. Plissiti, C. Nikou, and A. Charchanti, “Watershed-based segmen-
tation of cell nuclei boundaries in Pap smear images,” in IEEE Inter-
national Conference on Information Technology and Applications in
Biomedicine (ITAB). IEEE, 2010, pp. 1–4.

[24] C. Jung, C. Kim, S. W. Chae, and S. Oh, “Unsupervised segmentation of
overlapped nuclei using Bayesian classification,” IEEE Trans. Biomed.
Eng., vol. 57, no. 12, pp. 2825–2832, 2010.

[25] M. Hu, X. Ping, and Y. Ding, “Automated cell nucleus segmentation
using improved snake,” in ICIP, vol. 4. IEEE, 2004, pp. 2737–2740.

[26] M. E. Plissiti, C. Nikou, and A. Charchanti, “Accurate localization of
cell nuclei in Pap smear images using gradient vector flow deformable
models.” in BIOSIGNALS, 2010, pp. 284–289.

[27] C. Bergmeir, M. Garcı́a Silvente, and J. M. Benı́tez, “Segmentation
of cervical cell nuclei in high-resolution microscopic images: A new
algorithm and a web-based software framework,” Computer Methods
and Programs in Biomedicine, vol. 107, no. 3, pp. 497–512, 2012.

[28] M. E. Plissiti and C. Nikou, “Cell nuclei segmentation by learning a
physically based deformable model,” in International Conference on
Digital Signal Processing (DSP). IEEE, 2011, pp. 1–6.

[29] M. Plissiti, A. Charchanti, O. Krikoni, and D. Fotiadis, “Automated
segmentation of cell nuclei in Pap smear images,” in IEEE International
Special Topic Conference on Information Technology in Biomedicine.
Citeseer, 2006, pp. 26–28.

[30] C. Chen, W. Wang, J. A. Ozolek, and G. K. Rohde, “A flexible and
robust approach for segmenting cell nuclei from 2D microscopy images
using supervised learning and template matching,” Cytometry Part A,
vol. 83, no. 5, pp. 495–507, 2013.

[31] R. Saha, M. Bajger, and G. Lee, “Spatial shape constrained fuzzy
c-means (FCM) clustering for nucleus segmentation in Pap smear
images,” in DICTA. IEEE, 2016, pp. 1–8.

[32] A. Kale and S. Aksoy, “Segmentation of cervical cell images,” in
International Conference on Pattern Recognition (ICPR). IEEE, 2010,
pp. 2399–2402.

[33] A. Gentav, S. Aksoy, and S. nder, “Unsupervised segmentation and
classification of cervical cell images,” Pattern Recognition, vol. 45,
no. 12, pp. 4151–4168, 2012.

[34] C.-H. Lin, Y.-K. Chan, and C.-C. Chen, “Detection and segmentation of
cervical cell cytoplast and nucleus,” International Journal of Imaging
Systems and Technology, vol. 19, no. 3, pp. 260–270, 2009.

[35] T. Chankong, N. Theera-Umpon, and S. Auephanwiriyakul, “Automatic
cervical cell segmentation and classification in pap smears,” Computer
Methods and Programs in Biomedicine, vol. 113, no. 2, pp. 539–556,
2014.

[36] K. Li, Z. Lu, W. Liu, and J. Yin, “Cytoplasm and nucleus segmen-
tation in cervical smear images using radiating GVF snake,” Pattern
Recognition, vol. 45, no. 4, pp. 1255–1264, 2012.

[37] J. Fan, R. Wang, S. Li, and C. Zhang, “Automated cervical cell
image segmentation using level set based active contour model,” in
International Conference on Control Automation Robotics & Vision
(ICARCV). IEEE, 2012, pp. 877–882.

[38] S.-F. Yang-Mao, Y.-K. Chan, and Y.-P. Chu, “Edge enhancement
nucleus and cytoplast contour detector of cervical smear images,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
vol. 38, no. 2, pp. 353–366, 2008.

[39] M. Guven and C. Cengizler, “Data cluster analysis-based classification
of overlapping nuclei in pap smear samples,” BME online, vol. 13, no. 1,
p. 159, 2014.

[40] E. Bengtsson, O. Eriksson, J. Holmquist, T. Jarkrans, B. Nordin, and
B. Stenkvist, “Segmentation of cervical cells: detection of overlapping
cell nuclei,” Comput. Gr. Image Process., vol. 16, no. 4, pp. 382–394,
1981.

[41] N. Béliz-Osorio, J. Crespo, M. Garcı́a-Rojo, A. Muñoz, and J. Azpiazu,
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