137 research outputs found

    Machine Learning for Disseminating Cooperative Awareness Messages in Cellular V2V Communications

    Get PDF
    This paper develops a novel Machine Learning (ML)-based strategy to distribute aperiodic Cooperative Awareness Messages (CAMs) through cellular Vehicle-to-Vehicle (V2V) communications. According to it, an ML algorithm is employed by each vehicle to forecast its future CAM generation times; then, the vehicle autonomously selects the radio resources for message broadcasting on the basis of the forecast provided by the algorithm. This action is combined with a wise analysis of the radio resources available for transmission, that identifies subchannels where collisions might occur, to avoid selecting them. Extensive simulations show that the accuracy in the prediction of the CAMs\u2019 temporal pattern is excellent. Exploiting this knowledge in the strategy for radio resource assignment, and carefully identifying idle resources, allows to outperform the legacy LTE-V2X Mode 4 in all respects

    Intelligent Lower-Layer Denial-of-Service Attacks Against Cellular Vehicle-to-Everything

    Get PDF
    Vehicle-to-everything (V2X) communication promises a wide range of benefits for society. Within future V2X-enabled intelligent transportation systems, vehicle-to-vehicle (V2V) communication will allow vehicles to directly exchange messages, improving their situational awareness and allowing drivers or (semi-)autonomous vehicles to avoid collisions, particularly in non-line-of-sight scenarios. Thus, V2V has the potential to reduce annual vehicular crashes and fatalities by hundreds of thousands. Cellular Vehicle-to-Everything (C-V2X) is rapidly supplanting older V2V protocols and will play a critical role in achieving these outcomes. As extremely low latency is required to facilitate split-second collision avoidance maneuvers, ensuring the availability of C-V2X is imperative for safe and secure intelligent transportation systems. However, little work has analyzed the physical- (PHY) and MAC-layer resilience of C-V2X against intelligent, protocol-aware denial-of-service (DoS) attacks by stealthy adversaries. In this thesis, we expose fundamental security vulnerabilities in the PHY- and MAC-layer designs of C-V2X and demonstrate how they can be exploited to devastating effect by devising two novel, intelligent DoS attacks against C-V2X: targeted sidelink jamming and sidelink resource exhaustion. Our attacks demonstrate different ways an intelligent adversary can dramatically degrade the availability of C-V2X for one or many vehicles, increasing the likelihood of fatal vehicle collisions. Through hardware experiments with software-defined radios (SDRs) and state-of-the-art C-V2X devices in combination with extensive MATLAB simulation, we demonstrate the viability and effectiveness of our attacks. We show that targeted sidelink jamming can reduce a targeted vehicle\u27s packet delivery ratio by 90% in a matter of seconds, while sidelink resource exhaustion can reduce C-V2X channel throughput by up to 50% in similarly short order. We further provide and validate detection techniques for each attack based on cluster and regression analysis techniques and propose promising, preliminary approaches to mitigate the underlying vulnerabilities that we expose in the PHY/MAC layers of C-V2X

    A survey on vehicular communication for cooperative truck platooning application

    Get PDF
    Platooning is an application where a group of vehicles move one after each other in close proximity, acting jointly as a single physical system. The scope of platooning is to improve safety, reduce fuel consumption, and increase road use efficiency. Even if conceived several decades ago as a concept, based on the new progress in automation and vehicular networking platooning has attracted particular attention in the latest years and is expected to become of common implementation in the next future, at least for trucks.The platoon system is the result of a combination of multiple disciplines, from transportation, to automation, to electronics, to telecommunications. In this survey, we consider the platooning, and more specifically the platooning of trucks, from the point of view of wireless communications. Wireless communications are indeed a key element, since they allow the information to propagate within the convoy with an almost negligible delay and really making all vehicles acting as one. Scope of this paper is to present a comprehensive survey on connected vehicles for the platooning application, starting with an overview of the projects that are driving the development of this technology, followed by a brief overview of the current and upcoming vehicular networking architecture and standards, by a review of the main open issues related to wireless communications applied to platooning, and a discussion of security threats and privacy concerns. The survey will conclude with a discussion of the main areas that we consider still open and that can drive future research directions.(c) 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

    Comparison of IEEE 802.11p and LTE-V2X: An Evaluation With Periodic and Aperiodic Messages of Constant and Variable Size

    Get PDF
    V2X (Vehicle to everything) communications can be currently supported by standards based on IEEE 802.11p (e.g. DSRC or ITS-G5) or LTE-V2X (also known as Cellular V2X or C-V2X) technologies. There has been an intense debate in the community on which technology achieves best performance. However, existing studies do not take into account the variability present in the generation and size of V2X messages. This variability can significantly impact the operation and performance of the Medium Access Control (MAC). This study progresses the state of the art by conducting an in-depth evaluation of both technologies under different message traffic patterns. In particular, we consider aperiodic and periodic messages of constant or variable size based on the standardized ETSI Cooperative Awareness Messages (CAMs). This study considers different scenarios and possible configurations of IEEE 802.11p and LTE-V2X. We demonstrate that IEEE 802.11p can better cope with variations in the size and time interval between messages. We also demonstrate (and characterize) that the LTE-V2X sensing-based semi-persistent scheduling faces certain inefficiencies when transmitting aperiodic messages of variable size. These inefficiencies result in that IEEE 802.11p generally outperforms LTE-V2X when transmitting aperiodic messages of variable size except when the channel load is very low

    Enabling Technologies for Ultra-Reliable and Low Latency Communications: From PHY and MAC Layer Perspectives

    Full text link
    © 1998-2012 IEEE. Future 5th generation networks are expected to enable three key services-enhanced mobile broadband, massive machine type communications and ultra-reliable and low latency communications (URLLC). As per the 3rd generation partnership project URLLC requirements, it is expected that the reliability of one transmission of a 32 byte packet will be at least 99.999% and the latency will be at most 1 ms. This unprecedented level of reliability and latency will yield various new applications, such as smart grids, industrial automation and intelligent transport systems. In this survey we present potential future URLLC applications, and summarize the corresponding reliability and latency requirements. We provide a comprehensive discussion on physical (PHY) and medium access control (MAC) layer techniques that enable URLLC, addressing both licensed and unlicensed bands. This paper evaluates the relevant PHY and MAC techniques for their ability to improve the reliability and reduce the latency. We identify that enabling long-term evolution to coexist in the unlicensed spectrum is also a potential enabler of URLLC in the unlicensed band, and provide numerical evaluations. Lastly, this paper discusses the potential future research directions and challenges in achieving the URLLC requirements

    D4.2 Final report on trade-off investigations

    Full text link
    Research activities in METIS WP4 include several as pects related to the network-level of future wireless communication networks. Thereby, a large variety of scenarios is considered and solutions are proposed to serve the needs envis ioned for the year 2020 and beyond. This document provides vital findings about several trade-offs that need to be leveraged when designing future network-level solutions. In more detail, it elaborates on the following trade- offs: • Complexity vs. Performance improvement • Centralized vs. Decentralized • Long time-scale vs. Short time-scale • Information Interflow vs. Throughput/Mobility enha ncement • Energy Efficiency vs. Network Coverage and Capacity Outlining the advantages and disadvantages in each trade-off, this document serves as a guideline for the application of different network-level solutions in different situations and therefore greatly assists in the design of future communication network architectures.Aydin, O.; Ren, Z.; Bostov, M.; Lakshmana, TR.; Sui, Y.; Svensson, T.; Sun, W.... (2014). D4.2 Final report on trade-off investigations. http://hdl.handle.net/10251/7676
    • …
    corecore