1,040 research outputs found

    Kernelization and Sparseness: the case of Dominating Set

    Get PDF
    We prove that for every positive integer rr and for every graph class G\mathcal G of bounded expansion, the rr-Dominating Set problem admits a linear kernel on graphs from G\mathcal G. Moreover, when G\mathcal G is only assumed to be nowhere dense, then we give an almost linear kernel on G\mathcal G for the classic Dominating Set problem, i.e., for the case r=1r=1. These results generalize a line of previous research on finding linear kernels for Dominating Set and rr-Dominating Set. However, the approach taken in this work, which is based on the theory of sparse graphs, is radically different and conceptually much simpler than the previous approaches. We complement our findings by showing that for the closely related Connected Dominating Set problem, the existence of such kernelization algorithms is unlikely, even though the problem is known to admit a linear kernel on HH-topological-minor-free graphs. Also, we prove that for any somewhere dense class G\mathcal G, there is some rr for which rr-Dominating Set is W[22]-hard on G\mathcal G. Thus, our results fall short of proving a sharp dichotomy for the parameterized complexity of rr-Dominating Set on subgraph-monotone graph classes: we conjecture that the border of tractability lies exactly between nowhere dense and somewhere dense graph classes.Comment: v2: new author, added results for r-Dominating Sets in bounded expansion graph

    A new proof of the flat wall theorem

    Get PDF
    We give an elementary and self-contained proof, and a numerical improvement, of a weaker form of the excluded clique minor theorem of Robertson and Seymour, the following. Let t,r >= 1 be integers, and let R = 49152t(24) (40t(2) +r). An r-wall is obtained from a 2r x r-grid by deleting every odd vertical edge in every odd row and every even vertical edge in every even row, then deleting the two resulting vertices of degree one, and finally subdividing edges arbitrarily. The vertices of degree two that existed before the subdivision are called the pegs of the r-wall. Let G be a graph with no Kt minor, and let W be an R-wall in G. We prove that there exist a set A subset of V(G) of size at most 12288t(24) and an r-subwall W' of W such that V(W') n A = 0 and W' is a flat wall in G A in the following sense. There exists a separation (X, Y) of G A such that X boolean AND Y is a subset of the vertex set of the cycle C' that bounds the outer face of W', V(W') subset of Y, every peg of W' belongs to X and the graph G[Y] can almost be drawn in the unit disk with the vertices X n Y drawn on the boundary of the disk in the order determined by C'. Here almost means that the assertion holds after repeatedly removing parts of the graph separated from X n Y by a cutset Z of size at most three, and adding all edges with both ends in Z. Our proof gives rise to an algorithm that runs in polynomial time even when r and t are part of the input instance. The proof is self-contained in the sense that it uses only results whose proofs can be found in textbooks. (C) 2017 The Authors. Published by Elsevier Inc

    Forbidding Kuratowski Graphs as Immersions

    Full text link
    The immersion relation is a partial ordering relation on graphs that is weaker than the topological minor relation in the sense that if a graph GG contains a graph HH as a topological minor, then it also contains it as an immersion but not vice versa. Kuratowski graphs, namely K5K_{5} and K3,3K_{3,3}, give a precise characterization of planar graphs when excluded as topological minors. In this note we give a structural characterization of the graphs that exclude Kuratowski graphs as immersions. We prove that they can be constructed by applying consecutive ii-edge-sums, for i≤3i\leq 3, starting from graphs that are planar sub-cubic or of branch-width at most 10

    Linear Kernels for Edge Deletion Problems to Immersion-Closed Graph Classes

    Get PDF
    Suppose F is a finite family of graphs. We consider the following meta-problem, called F-Immersion Deletion: given a graph G and an integer k, decide whether the deletion of at most k edges of G can result in a graph that does not contain any graph from F as an immersion. This problem is a close relative of the F-Minor Deletion problem studied by Fomin et al. [FOCS 2012], where one deletes vertices in order to remove all minor models of graphs from F. We prove that whenever all graphs from F are connected and at least one graph of F is planar and subcubic, then the F-Immersion Deletion problem admits: - a constant-factor approximation algorithm running in time O(m^3 n^3 log m) - a linear kernel that can be computed in time O(m^4 n^3 log m) and - a O(2^{O(k)} + m^4 n^3 log m)-time fixed-parameter algorithm, where n,m count the vertices and edges of the input graph. Our findings mirror those of Fomin et al. [FOCS 2012], who obtained similar results for F-Minor Deletion, under the assumption that at least one graph from F is planar. An important difference is that we are able to obtain a linear kernel for F-Immersion Deletion, while the exponent of the kernel of Fomin et al. depends heavily on the family F. In fact, this dependence is unavoidable under plausible complexity assumptions, as proven by Giannopoulou et al. [ICALP 2015]. This reveals that the kernelization complexity of F-Immersion Deletion is quite different than that of F-Minor Deletion
    • …
    corecore