12,053 research outputs found

    Simulation Based Study of Safety Stocks under Short-Term Demand Volatility in Integrated Device Manufacturing.

    Get PDF
    © IEOM Society InternationalA problem faced by integrated device manufacturers (IDMs) relates to fluctuating demand and can be reflected in long-term demand, middle-term demand, and short-term demand fluctuations. This paper explores safety stock under short term demand fluctuations in integrated device manufacturing. The manufacturing flow of integrated circuits is conceptualized into front end and back end operations with a die bank in between. Using a model of the back-end operations of integrated circuit manufacturing, simulation experiments were conducted based on three scenarios namely a production environment of low demand volatility and high capacity reliability (Scenario A), an environment with lower capacity reliability than scenario A (Scenario B), and an environment of high demand volatility and low capacity reliability (Scenario C). Results show trade-off relation between inventory levels and delivery performance with varied degree of severity between the different scenarios studied. Generally, higher safety stock levels are required to achieve competitive delivery performance as uncertainty in demand increases and manufacturing capability reliability decreases. Back-end cycle time are also found to have detrimental impact on delivery performance as the cycle time increases. It is suggested that success of finished goods safety stock policy relies significantly on having appropriate capacity amongst others to support fluctuations

    Inventory management strategy for the supply chain of a medical device company

    Get PDF
    Thesis (M. Eng. in Logistics)--Massachusetts Institute of Technology, Engineering Systems Division, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 97-98).In the medical device industry, many companies rely on a high inventory strategy in order to meet their customers' urgent requirements, sometimes leading to excessive inventory. This problem is compounded when it involves a long supply chain with several stages of activities and with long delivery and processing lead times. It is further exacerbated when high inventory leads to the frequent expiry of items with short shelf lives, which is typical of surgical items that have to be sterilized. Good supply chain strategies can potentially lead to a significant reduction of the supply chain cost. Through the use of relevant mathematical formulae and Strategic Inventory Placement optimization method, this paper examines the extent of the usefulness of a few possible strategies, such as kitting architecture change and continuous review system, for a family of medical emergency surgical kits across the whole supply chain for a medical device company. The result shows that reducing production lead time and review period, as well as adopting certain kitting architecture changes can reduce inventory value by more than 60% and operating cost by more than 20%. In addition, the paper shows that the Strategic Inventory Placement method can further reduce the total inventory value and operating cost by increasing the inventory of finished products and reducing the inventory of components in the supply chain.by Poi Chung Tjhin and Rachita Pandey.M.Eng.in Logistic

    E-Fulfillment and Multi-Channel Distribution – A Review

    Get PDF
    This review addresses the specific supply chain management issues of Internet fulfillment in a multi-channel environment. It provides a systematic overview of managerial planning tasks and reviews corresponding quantitative models. In this way, we aim to enhance the understanding of multi-channel e-fulfillment and to identify gaps between relevant managerial issues and academic literature, thereby indicating directions for future research. One of the recurrent patterns in today’s e-commerce operations is the combination of ‘bricks-and-clicks’, the integration of e-fulfillment into a portfolio of multiple alternative distribution channels. From a supply chain management perspective, multi-channel distribution provides opportunities for serving different customer segments, creating synergies, and exploiting economies of scale. However, in order to successfully exploit these opportunities companies need to master novel challenges. In particular, the design of a multi-channel distribution system requires a constant trade-off between process integration and separation across multiple channels. In addition, sales and operations decisions are ever more tightly intertwined as delivery and after-sales services are becoming key components of the product offering.Distribution;E-fulfillment;Literature Review;Online Retailing

    Containing Risk when Maximizing Supply-Chain Performance

    Get PDF
    The objective of this dissertation is to develop and test an approach that will quantify the level of risk in the supply chain, evaluate the cost and impact of risk mitigation strategies, validate event management protocols pre-implementation, and optimize across a portfolio of risk mitigation strategies. The research integrates a Mixed Integer Linear Programming (MILP) model and a Discrete Event Simulation model to investigate a production-inventory-transportation problem subject to risk. The MILP model calculates the optimal Net Profit Contribution of the supply chain in the absence of risk. Deviation risks are introduced as volatility in final demand and lead times, with lead time volatility affecting raw material lead times from suppliers to manufacturing plants and finished goods lead times from manufacturing plants to the warehouses. Disruption risks are modelled as temporarily impeding production at the manufacturing plants, in-bound distribution of raw materials from suppliers to the manufacturing plants, and out-bound distribution of finished goods from the manufacturing plants to warehouses. Computational experiments are run to examine the impact of risk on the supply chain. Further experiments explore the consequences of three risk mitigation strategies (inventory placement, expediting, and production flexibility) on supply chain performance in the presence of risk with the aim of discovering whether one strategy dominates or whether a portfolio approach to risk mitigation performs best. In sum, this research seeks to develop a framework that can inform efforts in understanding, planning for and controlling risk in the supply chain

    A forecast-driven tactical planning model for a serial manufacturing system

    Get PDF
    We examine tactical planning for a serial manufacturing system that produces a product family with many process steps and low volumes. The system is subject to uncertainty in demand, in the supply of raw materials, and in yield at specific process steps. A multi-period forecast gets updated each period, and demand uncertainty is realised in terms of forecast errors. The objective of the system is to satisfy demand at a high service level with minimal operating costs. The primary means for handling the system uncertainty are inventory and production flexibility: each process step can work overtime. We model the trade-offs associated with these tactics, by building a dynamic programming model that allows us to optimise the placement of decoupling buffers across the line, as well as to determine the optimal policies for production smoothing and inventory replenishment. We test the model using both data from a real factory as well as hypothetical data. We find that the model results confirm our intuition as to how these tactics address the trade-offs; based on these tests, we develop a set of managerial insights on the application of these operating tactics. Moreover, we validate the model by comparing its outputs to that from a detailed factory simulation

    An enhanced approximation mathematical model inventorying items in a multi-echelon system under a continuous review policy with probabilistic demand and lead-time

    Get PDF
    An inventory system attempts to balance between overstock and understock to reduce the total cost and achieve customer demand in a timely manner. The inventory system is like a hidden entity in a supply chain, where a large complete network synchronizes a series of interrelated processes for a manufacturer, in order to transform raw materials into final products and distribute them to customers. The optimality of inventory and allocation policies in a supply chain for a cement industry is still unknown for many types of multi-echelon inventory systems. In multi-echelon networks, complexity exists when the inventory issues appear in multiple tiers and whose performances are significantly affected by the demand and lead-time. Hence, the objective of this research is to develop an enhanced approximation mathematical model in a multi-echelon inventory system under a continuous review policy subject to probabilistic demand and lead-time. The probability distribution function of demand during lead-time is established by developing a new Simulation Model of Demand During Lead-Time (SMDDL) using simulation procedures. The model is able to forecast future demand and demand during lead-time. The obtained demand during lead-time is used to develop a Serial Multi-echelon Inventory (SMEI) model by deriving the inventory cost function to compute performance measures of the cement inventory system. Based on the performance measures, a modified distribution multi-echelon inventory (DMEI) model with the First Come First Serve (FCFS) rule (DMEI-FCFS) is derived to determine the best expected waiting time and expected number of retailers in the system based on a mean arrival rate and a mean service rate. This research established five new distribution functions for the demand during lead-time. The distribution functions improve the performance measures, which contribute in reducing the expected waiting time in the system. Overall, the approximation model provides accurate time span to overcome shortage of cement inventory, which in turn fulfil customer satisfaction
    • …
    corecore