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Abstract 

The objective of this dissertation is to develop and test an approach that will 

quantify the level of risk in the supply chain, evaluate the cost and impact of risk 

mitigation strategies, validate event management protocols pre-implementation, 

and optimize across a portfolio of risk mitigation strategies.  The research integrates 

a Mixed Integer Linear Programming (MILP) model and a Discrete Event Simulation 

model to investigate a production-inventory-transportation problem subject to risk.  

The MILP model calculates the optimal Net Profit Contribution of the supply chain in 

the absence of risk.  Deviation risks are introduced as volatility in final demand and 

lead times, with lead time volatility affecting raw material lead times from suppliers 

to manufacturing plants and finished goods lead times from manufacturing plants to 

the warehouses.  Disruption risks are modelled as temporarily impeding production 

at the manufacturing plants, in-bound distribution of raw materials from suppliers 

to the manufacturing plants, and out-bound distribution of finished goods from the 

manufacturing plants to warehouses.  Computational experiments are run to 

examine the impact of risk on the supply chain.  Further experiments explore the 

consequences of three risk mitigation strategies (inventory placement, expediting, 

and production flexibility) on supply chain performance in the presence of risk with 

the aim of discovering whether one strategy dominates or whether a portfolio 

approach to risk mitigation performs best.  In sum, this research seeks to develop a 

framework that can inform efforts in understanding, planning for and controlling 

risk in the supply chain. 



 
 

Chapter 1:  Introduction 

Background 

Recent trends in supply chain management such as outsourcing, 

globalization, and customization are creating significant complexities in supply 

chains, with global supply chains becoming more susceptible to large-scale natural 

disasters, terrorist attacks, electrical blackouts, and operational failures 

(Ghavamifar, Makui, and Taleizadeh, 2018).  Moreover, strategies for increasing the 

efficiency of supply chains can cause them to be less responsive to customer 

requirements (Puga, Minner, and Tancrez, 2018).   As organizations configure their 

supply chains to improve financial performance and customer service, they are 

employing various strategies to mitigate risk including inventory positioning, 

flexibility, diversification, and strategic redundancy.  These strategies can be 

embedded in such mathematical models for optimizing risk as stochastic linear 

programming, robust optimization, scenario analysis, and simulation (Rajagopal, 

Venkatesan, and Goh, 2017).  Testing the results of such risk mitigation strategies 

requires consideration of the nature of exposure to adverse events, their 

interrelationships, and effects on dynamic supply-chain performance.  The objective 

of this dissertation is to develop and test an approach that will quantify the level of 

risk in the supply chain, evaluate the cost and impact of risk mitigation strategies, 

validate event management protocols pre-implementation, and optimize across a 

portfolio of risk mitigation strategies. 
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Problem Setting 

The problem setting is a production-inventory-transportation problem.  The 

impact of risk on the supply network that provides a context for production, 

inventory placement and transportation decisions and costs are evaluated, with the 

costs and benefits of various risk mitigation strategies being examined. 

Figure 1: Schematic of Disruptions and Risk Mitigation Strategies 

 

Focus of Analysis 

 The focus of analysis is an individual firm. Specifically, the costs of the 

various risk mitigation strategies and the potential for optimizing among them are 

analyzed from the perspective of a single firm seeking to maximize its own 

performance as a supply-chain participant rather than maximizing the performance 

of the supply chain as a whole. 
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Production Strategies 

 Production strategies are investigated to determine their influence on the 

characterization of risk in the supply chain and the effectiveness of the various risk 

mitigation strategies.  The three production strategies are: 

• Push 

• Pull 

• Hybrid (push and pull). 

Disruption Risks 

Events that lead to disruptions in the supply chain are considered and 

modelled.  These risks are modelled along three dimensions: 

• Probability of occurrence: how frequently a disruption materializes 

• Severity of occurrence: how much of the capacity is disrupted 

• Time to recovery:  how long the disruption lasts 

Stochastic Parameters 

 Stochastic experiments are undertaken by varying three parameters to 

assess their impact on supply chain performance: 

• Disruption risk characteristics – incidence, severity and time to 

recovery 

• Demand volatility 

• Lead time volatility 

The demand and lead time volatilities are considered deviation risks. 
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Methodology 

The analytical framework involves a combination of optimization and 

simulation to evaluate deviation and disruption risks and the impact of risk 

mitigation. 

• Optimization – Mixed Integer Linear Programming (MLIP) Model.  MILP is 

used to determine production, and the flows of raw materials and 

finished goods in the supply chain network.  Model parameters are fixed.  

Expected values are used for parameter values.  The optimization is 

constructed at a tactical level, with planning assumed to occur with a 

horizon of 90 days.  The output of the optimization consists of a 

procurement plan, a distribution plan, and a distribution plan. 

• Simulation – Discrete Event Simulation.  Simulation is used to realistically 

model the operations and types of variation that occur in the supply 

chain.  The simulation takes as its inputs, among other factors, the 

procurement plan, the production plan, and the distribution plan that are 

outputs of the optimization model.  This approach allows for the 

evaluation of the impact of stochastic events and is suitable for 

introducing various deviations and disruptions into the operations of the 

supply chain allowing for the testing of the plans under conditions of 

uncertainty.  This approach extends an integrated simulation and 

optimization model for production-inventory-transportation planning in 

the face of stochastic demand and lead times (Xu and Smith, 2018).  Xu 

and Smith’s work is extended herein by introducing upstream 
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procurement subject to uncertainty in supply, introducing disruption risk 

at various stages, and explicitly implementing a variety of risk mitigation 

strategies.   

Theoretical Framework 

Two theories inform and underpin this work: (i) Contingency Theory, and (ii) 

Modern Portfolio Theory. 

Contingency Theory 

 Contingency theory holds that there is no single, best way to organize a firm.  

Rather, the appropriate structure of a firm depends on its tasks and objectives as 

well as the environment in which it is operating.  In this view, management ought to 

be focused on achieving alignments between the internal goals of the firm and the 

external environment (Morgan, 2007).  Ginsberg and Venkatraman (1985) point out 

that the complexity of the strategy concept has led researchers to focus their 

attention on studying and exploring relationships that hold within a particular 

context as opposed to investigating and searching for a “grand theory of strategy”.  

Talluri et al. (2013), in developing a framework for assessing risk mitigation 

strategies in supply chains, base their framework on contingency theory because 

“the appropriateness and effectiveness of a risk mitigation strategy are contingent 

on each organization’s internal and external environmental characteristics – there is 

no one-size-fits-all strategy”.   

In this dissertation we analyze multiple sources of risk that could materialize 

in supply chains at various times.  We implement a combination of risk mitigation 

strategies against the various risks.  If contingency theory holds, we will not expect 
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to discover one optimal risk mitigation strategy that super-dominates.  Should that 

be the case, we will then focus the investigation on the conditions under which the 

various risk mitigation strategies are most effective. 

Modern Portfolio Theory 

 Modern Portfolio Theory (MPT) was developed by Harry Markowitz (1952) 

in the context of selecting financial securities when constructing an optimal 

investment portfolio.  Each security has an expected return as well as expected risk, 

both calculated based on historical data.  MPT assumes the investor is risk averse 

and trades off the mean return and the variance of the return (with variance being 

the measure of risk).  An important insight from MPT is that when analyzing 

individual securities for inclusion in a portfolio, the appropriate comparison is 

neither pair-wise nor by looking each security’s individual characteristics.  Rather, 

the appropriate analysis is to determine how the security contributes to the total 

portfolio’s overall risk and return (Markowitz, 1952). 

 Martinez-de-Albeniz and Simchi-Levi (2006) relied on modern portfolio 

theory to study procurement strategies in a supply chain.  Specifically, they applied 

mean-variance analysis to investigate the trade-offs encountered by a manufacturer 

who has a portfolio of long-term contracts to reserve capacity with its suppliers and 

also has access to a spot market.  Consistent with MPT, their analysis revealed the 

existence of an efficient frontier bounded by the maximum expectation portfolio and 

the minimum variance portfolio. 

 In this dissertation we implement the various risk mitigation strategies as 

alternatives for inclusion in a risk mitigation portfolio and investigate the impact of 
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each risk mitigation strategy on the mean supply chain performance measure (net 

profit contribution) as well as the standard deviation of the net profit contribution 

across a set of computational experiments.   

Research Questions 

With a multi-dimensional set of measures to allow for trade-offs between the 

costs of deviation and disruption risks versus the cost of risk mitigation strategies, 

we address the following questions: 

• Q1: Do accounting policy and value-added metrics significantly affect 

production strategy and optimizing model solutions? 

• Q2: Are the best risk mitigation strategies contingent on the nature of 

the particular risks (frequency, severity, correlation)?  Or, 

alternatively, are certain risk mitigation strategies globally optimal 

(dominate all others)? 

• Q3: Is there a portfolio effect among risk mitigation strategies?  That 

is, on a risk-adjusted basis, will a combination of mitigation strategies 

outperform each individual mitigation strategy? 

• Q4: Can a blend of risk mitigation strategies be constructed that 

constitute a Pareto efficient frontier with respect to the performance 

measure (net profit contribution) versus the risk measure (standard 

deviation of net profit contribution) thus providing a basis for trading 

off risk versus performance? 
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Data 

The data for the dissertation is synthetic data inspired by an actual case.  The 

original case was a Mid-western dry goods manufacturing firm with a global supply 

chain.  A sampling of parameters accounted for in the model include: 

• Demand: daily product demands aggregated at warehouses 

• Lead times: raw material lead times from suppliers to plants and 

finished goods lead times from plants to warehouses 

• Costs: unit production costs, shipping costs, inventory carrying costs, 

and penalty costs  

Contributions 

 This dissertation will contribute to the literature in the field of supply chain 

risk management in two primary ways: 

• Test whether a counterpart to financial portfolio theory with 

multidimensional measures of risk and performance may be 

employed successfully for supply chain risk management. 

• Investigate whether supply chain risk mitigation follows contingency 

theory (different risk mitigation strategies will perform best under 

different conditions) or whether globally optimal strategies can be 

constructed. 

Limitations 

To keep the research tractable, this work is circumscribed by the following 

limits: 
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• The portfolio of risk mitigation strategies is limited to inventory 

placement, expediting, and production flexibility. 

• The focus of analysis is a focal firm.  Interactions and collaboration 

across firms in the supply chain are not analyzed. 

• A 90-day planning horizon is used.  While other planning horizons 

were studied in the early, exploratory phases, only the results of the 

90-day planning horizon are reported herein. 
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Chapter 2: Literature Review 

A brief review of literature in the areas of supply chain planning, risk 

modeling, risk definition, and risk mitigation strategies was conducted considering 

foundational papers as well as applications and extensions of methodologies in 

supply chain risk management. 

Supply Chain Planning 

 Supply chain planning is a research area with a deep and wide literature.  

While some research streams explore circumscribed component problems in-depth 

e.g. supply-production problems, production-distribution problems, inventory-

distribution problems, and scheduling-allocation problems, other streams 

investigate the overarching supply-production-distribution problem in an 

integrated fashion across the entire supply chain.  Hong et al. (2018) summarize the 

research that focuses on the component operational problems as addressing: (i) 

production-distribution problems investigating production decisions, scheduling 

decisions, and distribution planning from production facilities to wholesalers or 

customers, (ii) location-allocation and routing problems identifying convenient 

location for facilities such as plants or stock points, and allocating and planning 

transportation routes for customers, and (iii) inventory-transportation problems 

addressing inventory control at storage facilities and transportation planning from 

production facilities to wholesalers or retailers and customers. 

 Hong et al. (2018) addressed a distribution-allocation problem in a two-stage 

supply chain.  They formulated an integer-programming model with variable and 

fixed transportation costs.  The objective was to minimize total supply chain costs 
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with the allocation of retailers to a distribution center and distribution centers to a 

manufacturing plant as the decision variables.  Given the presence of fixed costs, the 

model was solved using an ant colony optimization-based heuristic. 

 Devapriya, Ferrell, and Geismar (2017) addressed an extension of the 

integrated production-distribution scheduling problem.  They extended the 

standard problem that seeks to determine the optimal production batching and 

distribution scheduling by introducing a planning horizon constraint.  This 

constraint was necessary in their model as the product being produced and 

distributed was perishable.  Their solution methodology relied on a mixed integer 

program and a genetic algorithm heuristic.  Very small problems could be solved to 

optimality with the linear program, but larger problems required the metaheuristic. 

 Gao, Qi, and Lei (2015) studied the integrated production-distribution 

problem with a complicating factor that imposed a no-wait condition between the 

production and distribution of each batch.  Their work was motivated by a real-

world problem of producing a chemical ingredient that was so time-sensitive that it 

could not be inventoried, but had to be produced and shipped daily.  Their objective 

was to minimize the total operating hours required for the production and delivery 

of a set of customer orders to be delivered by a single vehicle.  Cheng, Leung, and Li 

(2015) also studied the integrated production-distribution problem where the 

delivery was handled by a third-party logistics provider.  Their objective was to 

minimize the total production and delivery costs for the manufacturer.  They 

proposed an ant-colony optimization to solve the production component and a first-
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fit-decreasing heuristic (commonly used in the bin-packing problem) to solve the 

distribution component. 

Motivated by real-world supply chain disruption cases, Pariazar and Sir 

(2018) studied a supply-distribution problem in the context of supply chain design 

and planning.  They developed a multi-objective stochastic model that explored the 

trade-offs between costs and risks.  Their problem setting was a supplier sourcing 

problem in a two-tiered supply chain with disruptions in supply availability and 

quality.  Their work demonstrated the impact of various disruption mitigation 

strategies on supply chain cost and risk. 

 Gao et al. (2018) investigated a product delivery-store network layout 

problem.  They attempted to capture the firm’s distribution cost, the consumer’s 

cost, and the total emission of greenhouse gasses.  They formulated several mixed 

integer nonlinear programming models.  Solving the optimization problem led them 

to conclude that there was sufficient “slack” in the distribution system such that 

total costs and emissions from both firms and consumers could be reduced without 

unduly burdening consumers. 

With respect to investigating problems at the supply chain level, Sawik 

(2016) studied an integrated supply-production-distribution-scheduling problem.  

In this problem, he used a stochastic mixed integer program to jointly select 

suppliers, schedule production, and schedule distribution in a multi-echelon supply 

chain.  The model’s two objective functions were the minimization of costs and the 

maximization of service level subject to disruption risk.  The findings highlighted the 

trade-off between cost and service level as three shipping methods were modelled 
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with different cost and service level profiles – batch shipping with single shipments 

of different orders, batch shipping with multiple shipments of different customer 

orders, and individual shipping of each customer order. 

 Xu (2016) developed an integrated optimization and simulation model to 

investigate supply chain planning with consideration of risk.  The model used a 

rolling horizon to re-plan production and distribution.  Xu investigated the effects of 

changing the length of the planning horizon when re-planning from 90 days every 

day as new information became available.  While the sum of the longest upstream 

and downstream lead times plus the production cycle time would seem like a sound 

starting point for the length of the planning horizon, Xu argued that such a horizon 

may be either too long for supply chains with international elements or may require 

too much overhead for analytic models to solve to optimality.  Thus, many 

organizations may choose horizons that are otherwise too short.  Further, Xu and 

Smith (2018) highlighted a value-added approach whereby the expected revenues 

were recognized as goods were shipped from manufacturing facilities to 

warehouses rather than when they were shipped from warehouses to customers.  

They demonstrated that such a value-added approach improved simulated supply 

chain performance. 

Risk Definitions 

 Risk is a difficult concept to define, with experience across various 

disciplines demonstrating the failure to arrive at agreement on one unified set of 

definitions (Aven, 2016).  Summarizing the work of the expert Committee of the 

Society of Risk Analysis, Aven emphasized that risk is generally characterized in 
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relation to the consequences of a future activity with respect to something that is 

valued.  He stated that said consequences are often seen in relation to some 

reference values (planned value, objectives, etc.), and the focus is normally on 

negative, undesirable consequences.  

Deviations, disruptions and disasters 

 Gaonkar and Viswanadham (2007) classified supply chain risk problems as 

manifesting in three broad categories: deviations, disruptions, and disasters.  They 

defined deviations as occurring when one or more parameters stray from their 

expected value without any changes to the underlying supply chain structure.  

Among the examples of “deviations” that they identified were variations in demand, 

costs and lead times.  They defined disruptions as occurring when production and 

logistics elements are unavailable due to more serious unexpected events caused by 

human or natural factors.  Among the examples of “disruptions” they discussed were 

earthquakes, contagious disease, and industrial actions leading to strikes.  Lastly, 

the defined disasters as irrecoverable shutdowns of the supply chain network due to 

unforeseen system-wide disruptions, and gave the example of terrorist action.  They 

concluded that it is generally possible to design a supply chain that can profitably 

operate through deviations and disruptions, but posited the impossibility of 

designing a network that is robust to disasters.   

Delays, distortions and disruptions 

 Following Gaonkar and Viswanadham (2004), Talluri et al. (2013) proposed 

a supply chain risk classification of delays, distortions and disruptions.  They 

described delays as recurrent risks related to time that can occur for reasons such 
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as variations in transportation or production lead times.  Distortions, by contrast, 

were described as related to quantities and occur when one or more parameters 

(e.g. order quantities) vary from their forecasted or expected values.  Disruptions, in 

this classification, occur when the supply chain is “unexpectedly transformed 

through non-availability of certain production, warehousing, distribution, or 

transportation options, such as equipment failure”.   

Mean variance 

 Harry Markowitz’s (1952) introduction of Modern Portfolio Theory ushered 

in the use of mean-variance as a way to conceptualize and model risk in the 

selection of individual securities when creating a portfolio of investments.  The 

mean return of individual securities, the volatility of individual security returns and 

the correlation of the various volatilities all matter in constructing the optimal 

portfolio.  In his formulation, risk was captured as the variance of the returns.  An 

efficient frontier can be estimated by plotting the return versus the variance.  The 

efficient frontier consists of all portfolios that provide the highest level of expected 

return for a given level of risk and the lowest level of risk for a given expected 

return.  The frontier shows the trade-off between risk (standard deviation of return) 

and return. 

A common criticism of the mean-variance approach is that it penalizes 

positive, upside variances as much as negative, downside variances which is 

inconsistent with the way many financial professionals (as well as supply chain 

managers) think of risk.  An alternative is to define a risk measure that only 

captures and penalizes downside risk.  Markowitz (1959) discussed the semi-
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variance which measures the variability of returns below the mean.  A number of 

researchers (e.g. Grootveld and Hallerbach, 1999) have questioned the efficacy of 

downside risk approaches and have highlighted a number of challenges that these 

approaches introduce, such as computational intensity since there are no time-

saving heuristics in computing aggregate, portfolio level risk. 

 The mean-variance approach for capturing risk has been used in operations 

research to address numerous problems in the presence of risk.  Choi, Li and Yan 

(2008) carried out a mean-variance analysis of the newsvendor problem allowing 

them to account for decision maker risk preference as they investigated optimal 

stocking given stochastic demand.  Risk averse, risk neutral and risk seeking 

attitudes resulted in significantly different optimal stocking policies when the risk 

attitude was modelled using a mean-variance approach.  

 Martinez-de-Albeniz and Simchi-Levi (2006) observed that the common 

approach of dealing with overstocking and shortages in supply chain planning is by 

introducing a newsvendor model whereby a shortage is assumed to lead to lost 

sales while overstocking leads to penalty holding costs or having to dispose of the 

inventory at a loss.  They noted that a drawback of this approach is that it assumes 

that decision-makers are risk-neutral and thus only optimizes the expected profit.  

To address this and allow for a variety of risk tolerances they described a mean-

variance approach.  They investigated the impact of using a portfolio of suppliers 

with each supply contract characterized by price and production capacity reserved 

by the supplier.  Their results demonstrated that there exists an efficient frontier 

bounded by the maximum expectation portfolio and the minimum variance 
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portfolio which fit a risk-neutral buyer and an infinitely risk-averse buyer, 

respectively. 

Risk Modeling 

Stochastic linear programming has been the primary method for designing 

supply chain networks subject to uncertain parameters.  Such models tend to be 

formulated as multi-stage models, with some variables set immediately and others 

set after uncertainty has been resolved.  An important limitation of stochastic linear 

programming is the assumed risk neutrality which leads to an inability to deal with 

risk aversion or decision-maker risk tolerance.   Pariazar and Sir (2018) developed a 

multi-objective stochastic linear programming model to address supplier selection 

and raw material inspection strategies subject to quantity and quality disruptions.  

They implemented a genetic algorithm metaheuristic to reduce the computational 

burden of solving the problem given the uncertainty in the parameters.  Sawik 

(2018) described a stochastic mixed integer program for supplier selection.  

Primary suppliers were selected in the first stage of the model before the 

occurrence of disruptions.  Recovery suppliers and recovery assembly plants were 

selected in the second stage during and after the disruptions.  Chen, Li and Ouyang 

(2011) proposed a nonlinear mixed-integer model that decomposed into a set of 

easier sub-problems and could solve to optimality the number and location of 

facilities across a set of disruption scenarios.  Snyder, Daskin and Teo (2007) 

described a two-stage stochastic linear programming model that accounted for 

parameter uncertainty by allowing the parameters to be represented by discrete 
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scenarios.  In their model, facility location was determined in the first stage while 

inventory levels were determined in the second stage.   

Robust optimization is a technique developed by Mulvey, Vanderbei and 

Zenios (1995) as an improvement to stochastic linear programming.  It combines 

goal programming with scenario analysis to arrive at a series of solutions that are 

increasingly less sensitive to realizations of the model data from a scenario set.  The 

optimization model has two components.  The structural component is 

deterministic, while the control component is subject to stochastic inputs.  The 

optimal solutions can be robust in two ways.  First, if the solution remains close to 

optimal for any realization in the solution set then it is referred to as solution 

robust.  Second, if the solution remains almost feasible for any realization in the 

solution set then it is referred to as model robust.  The technique has demonstrated 

the ability to provide good and stable solutions when accounting for risk in complex 

systems.  There are a number of key differences in the solutions obtained via robust 

optimization versus those obtained via stochastic linear programming.  First, robust 

optimization optimal solutions tend to be more stable across different scenarios 

than those obtained via stochastic linear programming.  Second, because the 

approach plans for worst case outcomes, optimal solution costs tend to be higher 

with robust optimization techniques than those arrived at by stochastic linear 

programming.  Third, in stochastic linear programming there exists a control 

variable that makes it possible to satisfy the constraints in each realized scenario, 

while in robust optimization infeasibility is allowed and handled via penalty.  

Robust optimization has been tested as an improvement over stochastic linear 



19 
 

programming in supply chain applications.  For example, Mulvey, Vanderbei and 

Zenios (1995) demonstrated the use of robust optimization to solve diet problems, 

power capacity expansion problems, scheduling problems, among other logistics 

problem types.  A drawback of robust optimization is its computational expense.  Yu 

and Li (2000) refined a technique to improve the efficiency of robust optimization 

by devising a more efficient linear transformation.  Their transformation required 

half as many deviation variables as the Mulvey, Vanderbei and Zenios approach.  

Consequently, their transformation resulted in faster run times while achieving 

similar results for a production-inventory-transportation problem and an aircraft 

scheduling problem.  Jabbarzadeh, Haughton, and Khosrojerdi (2018) used robust 

optimization to design a resilient multi-echelon, multi-product, and multi-period 

supply chain in the presence of uncertainty.  The number and location of facilities 

was determined in the first stage of their model.  Quantities and shipments decisions 

were determined in the second stage.  Their robust formulation minimized the sum 

of the expected value of the base problem and the maximum regret for the problem.  

The regret was calculated as the difference between the value of the solution under 

a given scenario and the value of the optimal solution under that scenario had the 

occurrence been anticipated in advance. 

Chance-constrained programming is a modeling technique that is 

increasingly being used in the literature to account for uncertainty in supply chain 

applications.  Bilsel and Ravindran (2011) implemented chance-constrained 

optimization to address a supplier allocation problem under uncertainty, where 

product demand, supplier capacity, and transportation costs were all stochastic, as 
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was the exogenous probability of disruption.  In their model, uncertainty was 

introduced into both right-hand-side and left-hand-side constraints.  Demand 

uncertainty affected the right-hand-side while capacity uncertainty affected the left-

hand-side and thus the technology matrix.  The key insight into their model was the 

derivation of deterministic equivalents for demand and capacity chance constraints.  

These equivalents were derived assuming normal probability distributions for 

model parameters.  The deterministic demand chance constraints were linear, but 

the capacity constraints were non-linear.  The non-linear constraints were 

linearized by the introduction of additional binary variables.  The models were then 

solved at a 0.95 level of reliability.  Li and Zabinsky (2011) implemented a multi-

objective stochastic supplier selection problem with business volume discounts.  

Their model sought to determine the minimum set of suppliers and optimal order 

quantities.  Their approach captured the trade-off between cost and system 

reliability by selecting suppliers from a set that varied along size (large versus 

small), location (local versus distant), cost (high versus low), and reliability (high 

versus low).  The model accounted for demand and supplier capacity uncertainty 

and assumed the two uncertainties were independent.  The model arrived at its 

solution by assuming a probability distribution of the stochastic variables and 

constraining the probability of not meeting demand.  Five objectives were defined in 

the problem: (i) minimize total purchasing and shipping costs, (ii) maximize 

probability of satisfying demand and staying within supplier capacity, (iii) minimize 

total number of selected suppliers, (iv) maximize quality of received components, 

and (v) minimize late deliveries. 
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Scenario analysis was used by Klibi and Martel (2012) to model risk in a 

supply chain network.  The authors used the term uncertainty interchangeably with 

risk and distinguished among three types of uncertainties: randomness, hazards, 

and deep uncertainty.  They conceptualized randomness as affecting single periods 

(due to random variables in business-as-usual operations), hazards as affecting 

multiple periods (low probability, high impact unusual situations), and deep 

uncertainty as having impacts over multiple periods (no known probability 

estimates exist).  They focused on modeling hazards to determine the impact of the 

hazards on the supply chain.  Hazards were the equivalent of disruption risks.  

Methodologically, given the stochastic nature of risk, the authors relied on discrete 

event simulation, augmenting the general approach with recent advances in 

catastrophe modeling, scenarios planning, and risk analysis to develop an integrated 

risk modeling approach.  In their approach, the information available on the future 

was presented in the form of a set of scenarios about how the future may unfold.  In 

order to make the modeling and analysis of hazards parsimonious and 

comprehensible, the authors combined hazards into a limited number of composite 

multi-hazards.  The generic impacts of the multi-hazards on the supply chain were 

then evaluated by addressing three questions: (i) What could go wrong? (ii) What 

were the consequences? (iii) What is the likelihood of that happening?  A three-

phase hazard modeling process was proposed to address each question. 

Simulation has also been a commonly used method to model supply chain 

risk due to its ability to handle stochastic inputs.  Rajagopal, Venkatesan, and Goh 

(2017) described a variety of simulation models including Monte Carlo simulation, 
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system dynamics, discrete event simulation, agent based modeling, and cellular 

automata.  Ge et al. (2016) integrated a simulation model into their optimization 

model in order to realistically model the nationwide Canadian wheat supply.  The 

output of their simulation model allowed them to examine testing strategies that 

efficiently balanced the trade-off between testing costs and contamination risk.  

Schmitt and Singh (2009, 2012) used simulation to model disruption risk in a supply 

chain.  Discrete event simulation was used to realistically model the impact of 

disruption events on facilities and transportation routes, while Monte Carlo 

simulation was used to generate the risk profiles that introduced the disruptions 

into the system.  The authors tested the impact of two mitigation strategies - 

inventory positioning and back-up facilities - to determine relative supply chain 

performance in the presence of disruption risk, with and without risk mitigation. 

Adverse Event Management 

An important consideration in managing risk in the supply chain is planning 

on how to manage the occurrence of disruptive events.  In this sense, event 

management provides the link between strategic planning relating to risk and the 

operational activities that need to be implemented in order to ensure that the 

supply chain continues to function in the face of disruption events.  Otto (2003) 

described the goal of supply chain event management (SCEM) as “to identify 

deviations and minimize their negative impacts before they are detrimental to 

customer satisfaction and operational efficiency”.  He discussed two actions that are 

critical to managing events in the supply chain: (i) eliminating the delay between 

event occurrence and decision-maker awareness of occurrence, and (ii) eliminating 
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the delay between decision-maker awareness and the generation of a satisfying 

response.  To meet these two critical actions, SCEM generates rules-based 

resolutions. 

Bearzotti, Salomone, and Chiotti (2012) introduced an autonomous approach 

for SCEM.  They focused on the activities that can be undertaken by supply chain 

partners once a disruption has occurred in the network.  Focusing on the software 

architecture needed by supply chain partners to manage disruptions, and 

recognizing that collaboration and coordination can be especially difficult in the face 

of disruptive events, they proposed a multi-agent approach that allows for 

corrective actions to be made autonomously in reaction to disruptive events.  Their 

approach assumed that a plan is already in place among the supply chain partners 

that determines, among other things, the way the partners will collaborate to fulfill 

customer needs.  It is then recognized that a disruptive event in the supply chain 

will cause a deviation to the plan.  In a normal supply chain, the challenge resides in 

getting supply chain partners to optimize their decision-making in order to mitigate 

the deviations that have already occurred and minimize further deviations.  The 

objective of their approach was to determine the optimal allocation of the slack 

already in the supply chain to the disrupted resources so as to minimize the 

negative effects of the disruption.  The innovative feaatures of their approach 

include designing the system as a distributed, collaborative, inter-organizational 

one, and building in functionality for the system to perform autonomous corrective 

actions in response to supply chain disruptions.  Their approach used a mediated 

Contract Net Protocol technique to coordinate the allocation of resources and 
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materials among supply chain partners.  The system began by taking the supply 

chain plan as a given, where the plan was that set of allocations of materials, 

resources, time periods and capacity necessary for the supply chain to execute on its 

objectives.  The plan included the slacks that were necessary to ensure a flexible and 

robust supply chain.  In the face of disruptions, the system generated a solution 

which was a set of control actions utilizing plan slacks to mitigate the effects of the 

disruption.  An important consideration was that the solution used the plan’s slack 

collaboratively among the supply chain partners.  The autonomous event 

management approach described by the authors was formulated to apply to 

frequent, low impact risks.  The solutions derived from the model were evaluated as 

being satisfactory 64% of the time thus leaving room for future improvement. 

Risk Mitigation Strategies 

Mohammaddust et al. (2017) identified a number of risk mitigation 

strategies that are commonly described in the literature including emergency stock, 

excess capacity, substitute suppliers and facilities, and supplier development.  They 

implemented four specific strategies in their model: (i) holding back-up stocks at the 

distribution center, (ii) holding back-up stocks at a centralized distribution center 

for risk pooling, (iii) reserving excess capacity in the facilities, and (iv) using other 

facilities in the network to back-up the primary facilities. 

Huang, Song, and Tong (2016) concluded that there are two fundamental 

strategies for mitigating random demand variability.  The two are (i) building 

reactive capacity, which they define as the ability to ramp up production above 

normal levels in response to demand surges, and (ii) holding safety stocks, either by 
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holding extra inventory at the firm’s warehouse or contracting with another vendor 

to hold inventory on behalf of the firm. 

Talluri et al. (2013) classified Chopra and Sodhi’s risk mitigation strategies 

into two categories: (i) redundancy, and (ii) flexibility.  In their classification, 

increasing capacity, redundant suppliers, and increasing inventory are considered 

redundancy strategies, while increasing responsiveness, increasing flexibility, 

aggregating demand, and increasing capability are considered flexibility strategies. 

According to Chopra and Sodhi (2004) the most generic supply chain risk 

mitigation strategy is the holding of reserves.  The authors identified three reserves 

as foundational: excess inventory, excess capacity and redundant suppliers.  In 

addition to these core reserves, they identified five augmented strategies to help 

managers mitigate risk: increased responsiveness, increased flexibility, aggregated 

or pooled demand, increased capability, and increased customer accounts.  These 

mitigation strategies are often expensive and can significantly reduce profits if 

deployed sub-optimally.     

Four risk mitigation strategies will be reviewed in more detail: 

• Inventory Positioning  

• Flexibility 

• Diversification 

• Strategic redundancy 

Inventory Positioning  

 Puga, Minner, and Tancrez (2018) studied safety stock placement in a 

location-inventory problem with demand uncertainty.  They analyzed the trade-offs 
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that influence the performance of various safety stock placement strategies, 

demonstrating that demand variability pooling and lead time pooling led to different 

conclusions as to which inventory placement strategy should be selected. 

Tomlin (2006) investigated the implementation of inventory control as a 

disruption management strategy by studying a reliable and an unreliable supplier in 

a single product setting, where both suppliers were capacity constrained.  The 

results showed that while inventory control can be an effective disruption 

management strategy, it tended to work poorly in cases of rare but long disruptions. 

 In their numerical analysis, Schmitt and Singh (2009) identified that the level 

of customer service in a supply chain pursuant to a disruption is dependent on 

inventory levels.  Specifically, it is dependent on the level of inventory immediately 

prior to the beginning of the disruption. 

Under postponement as an inventory positioning and production strategy, 

the final configuration of a product and its packaging are delayed to allow for 

modifications in response to uncertainties in final demand.  This minimizes 

inventory holding costs and obsolescence, but comes at the cost of foregoing scale 

economies.  Manuj and Mentzer (2008) discussed form and time postponement.  

Form postponement includes labeling, packaging, assembly, and manufacturing; 

while time postponement refers to the transportation of goods only after a customer 

order has been received.  They posited that delaying the commitment of resources 

in the face of uncertainty can lead to potential benefits. 

 In addition to being a means of inventory positioning, Tomlin and Tang 

(2008) identified postponement as a means of increasing flexibility in the supply 
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chain by shifting production quantities across different products.  Postponement 

can be useful in managing some demand risks.  Among demand risks, Thun and 

Hoenig (2011) identify demand forecasts and inefficient capacity utilization.   They 

further identified the holding of safety stocks as a risk management strategy 

employed in the German automotive industry.  In this case, postponement allows for 

managing safety stock to minimize obsolescence. 

Fan, Schwartz, and Voss (2014) used computational experiments from a two-

stage stochastic mixed-integer linear programming model to demonstrate that 

postponement could help mitigate risk and make a supply chain network more 

flexible when faced with stochastic catastrophic risks.  They concluded that 

postponement is especially advantageous if the probability of a disruption to the 

supply chain is high. 

Flexibility 

 In their literature review, Manders, Caniels, and Ghijsen (2017) distinguished 

between “flexibility in the supply chain” and “supply chain flexibility”.  In their view, 

the former “covers the many different flexibility dimensions used by the different 

members of the supply chain to improve their organizational performances and 

hopefully contribute to the overall supply chain flexibility goals” while the latter is 

“the ability of the supply chain to change or react to environmental uncertainty, to 

meet the increasing variety of customer expectations without excessive costs, time, 

organizational disruptions or performance losses”. 

Emaeilikia et al. (2016) described a flexible supply chain as one that can 

quickly adapt in the face of frequent uncertainties such as interruptions in supply, 
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demand, manufacturing, and logistics operations.  They identified a number of areas 

in which flexibility had been categorized including volume, delivery, operational 

design, storage, process, logistics, manufacturing, vendor, and sourcing.  For 

example, manufacturing flexibility may include manufacturing multiple product 

types at each plant, tactical production capacity expansion, or backlogging. 

Using survey data and structural equations modeling, Sreedevi and Saranga 

(2017) identified supply flexibility, manufacturing flexibility, and 

distribution/logistics flexibility as having a moderating influence in mitigating the 

three major supply chain risks – supply risk, manufacturing process risk, and 

delivery risk – that arise from environmental uncertainty.  Their study found that 

the benefit of flexibility was “contingent upon several factors, including the 

dimension of supply chain risk the firm is exposed to and the type of environment in 

which the firm is functioning”. 

Diversification 

 Diversification is a strategy whereby a firm distributes its key supply chain 

resources across various dimensions.   These factors include production facilities, 

intermediate goods and/or final output, markets, suppliers, and products.  For 

example, a firm may choose to locate its key manufacturing plants in different 

countries, or may choose to enter different markets for its final goods, or may 

choose to produce a mix of different goods.  This strategy is analogous in the natural 

world to genetic survival, where organisms are much more likely to survive and 

propagate in challenging environments if they have genetic diversity. 
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Diversification can be effective at limiting the negative impacts of disruption 

risks.  By spreading its reach across various countries and regions, a supply chain 

can limit the disruption that may be caused by localized natural disasters, bilateral 

trade disputes and expropriations by government entities. 

Manuj and Mentzer (2008) highlighted dual sourcing and multiple 

contracting as ways of hedging risk via diversification.  Specifically, dual sourcing 

can be used to hedge against risks of quality, quantity, disruption and price, while 

multiple contracting can shield against variability in performance and single 

supplier opportunism.  Thun and Hoenig (2011) confirmed the importance of 

multiple sourcing in an empirical study of the automotive industry in Germany and 

found dual and multiple sourcing to positively affect supply chain performance. 

 Pettit, Fiksel and Croxton (2010) discussed “dispersion” as the strategic 

decision by a firm to distribute or decentralize its assets.  This diversification can be 

implemented by distributing decision-making, capacity and assets; by decentralizing 

key resources; and by location-specific empowerment.  However, just as supply 

chain managers face trade-offs among costs so too do they face trade-offs among 

risks.  While dispersion can be effective in mitigating the risk of catastrophic failure 

in a consolidated enterprise, it nevertheless increases the risk of loss of control, 

which can itself lead to significant losses.  Dispersion may also increase transactions 

costs. 

Strategic Redundancy 

 Strategic redundancy refers to the integration of back-up resources and 

processes into the supply chain to prevent system failure.  Strategic redundancy 
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comes at a cost and reduces the leanness of the supply chain.  Among its benefits are 

potential contribution to higher service levels and continuing capacity in the event 

of disruptions. 

 Sawik (2018) demonstrated the use of primary and recovery suppliers and 

assembly plants as a risk mitigation strategy.  The results showed the value of 

strategic redundancy in mitigating disruption risks and optimizing the recovery 

process. 

Ivanov et al. (2016) highlighted the use of back-up suppliers as well as back-

up depots and transportation modes as disruption recovery strategies.  They 

modelled a supply chain with a number of characteristics, including (i) supply chain 

performance depended on perturbations, (ii) some supply chain elements became 

unavailable during disruptions, and (iii) some disrupted elements recovered over 

time.  They studied the trade-off between efficiency and resiliency when, among 

other risk mitigation measures, back-up suppliers and assembly capacity were built 

into the supply chain. 

 Chopra and Sodhi (2004) identified redundant suppliers as a mitigation 

strategy for managing procurement risk, inventory risk, and disruptions.  The idea 

was that it was improbable that all suppliers would suffer a disruption at the same 

time.  The authors proposed supplier redundancy as a good mitigation strategy for 

products with high holding costs and/or a high rate of obsolescence.  They pointed 

to Motorola as a company that follows this strategy, mitigating the cost of 

redundancy by using multiple suppliers for high-volume products and sole sourcing 

for low-volume products. 
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Norrman and Jennson (2004) discussed the example of a fire at the Ericsson 

plant in Albuquerque, NM that led to significant losses.   A sole source sub-supplier 

experienced a fire that interrupted the production of a vital chip for one of 

Ericsson’s key consumer products.   Nokia, an Ericsson competitor who also used 

the same supplier, had hedged against supplier risk by investing in parallel, 

alternative supply sources.  The disruption led to large loses at the un-hedged 

Ericsson, while the hedged Nokia gained market share largely at Ericsson’s expense.  
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Chapter 3:  Optimizing Model  

Mathematical Formulation for the Mixed Integer Linear Programming Model 

Optimizing Model Formulations 

Three versions of the optimizing model were formulated in order to facilitate 

a comparative study of the levers that drive the shape of the final solution: 

(i) Push Formulation:  Revenues are recognized when finished goods are 

shipped to warehouses from the manufacturing plant. 

(ii) Pull Formulation:  Revenues are recognized when finished goods are 

received at the warehouses, or, in the case of expedited deliveries, 

when shipped directly to customers from the manufacturing plants. 

(iii) Hybrid Formulation:  Revenues are recognized when deliveries are 

received at the warehouse.  Additionally, goods shipped from the 

manufacturing plant that are expected to arrive at the warehouse 

after the end of the horizon have their revenue recognized when 

shipped to the warehouse from the manufacturing plants. 

Optimizing Model for Procurement, Production Scheduling, and Distribution 

Decisions 

Daily shipment of raw materials from suppliers, production at the 

manufacturing plants, shipment to warehouses and aggregated deliveries to 

customers are determined with consideration of line capacities, lower and upper 

inventory limits at the plant and in warehouses, transit times to warehouses, and 

possible alternative sources of supply in the event of stock-outs at the warehouses.   

Parameters, decision variables, objectives and constraints are defined as follows: 
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Parameters (in alphabetical order): 

agrmcostPpWw = the raw material cost embedded in product p inventory at 
warehouse w.   
 
cleanhrsLlMm = time for cleaning and setup on line L at manufacturing plant M 
between production batches 
 
csPpWw = cost (per kg) of shortage of product p at warehouse w  
 
DemPpWwDd = Customer demand for product p (kg) at warehouse w on day d 
 
dempwhsew = average daily demand for product p at warehouse w  
 
gwloss = goodwill loss on unfilled demand recognized as a percentage of lost 
revenue.  Unfilled demand is placed on backorder 
 
icPpMm = inventory carrying cost ($/kg per day) for finished product p at 
manufacturing plant M 
 
icPpWw = inventory carrying cost ($/kg per day) for product p at warehouse w 
 
icRrMm = inventory carrying cost ($/kg per day) for raw material r at manufacturing 
plant M 
 
itcPpWw = cost of carrying product p ($/kg per day) in transit to warehouse w 
 
ItsPpWwDd= in transit shipments at time 0 (kg) of product p to arrive at warehouse 
w at end of day d 
 
idlepenLlMm = idle penalty per hour for Production Line L at manufacturing plant M 
considering allowed hours of operation  
 
kgperhrPpLlMm  = production rate (kg per hr) for product p on line L at 
manufacturing plant M  
 
maxinvPpMm= maximum inventory at manufacturing plant M for product p 
 
maxinvPpWw = maximum inventory of product p held at warehouse w (including 
outstanding orders) 
 
maxinvRrMm = maximum inventory at manufacturing plant M for raw material R 
 
maxshiftsLlMm = Maximum number of shifts per day to operate Line L at 
manufacturing plant M 
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maxshipPpMm = maximum shipment lot size of product p from manufacturing plant 
M 
 
mininvPpMm = minimum inventory at manufacturing plant M for product p 
 
mininvPpWw = minimum inventory of product p held at warehouse w (including 
outstanding orders) 
 
mininvRrMm = minimum inventory at manufacturing plant M for raw material R 
 
MXprodLlMm = Maximum daily throughput (kg) on line L at manufacturing plant M 
 
OvrPenaltyPpMm = daily penalty (per kg) for excess of product p inventory at 
manufacturing plant M 
 
OvrPenaltyRrMm = daily penalty (per kg) for excess raw material m inventory at 
manufacturing plant M 
 
OvrPenaltyPp = daily penalty (per kg) for excess product p inventory systemwide 
 
productcostPpMm = the production cost embedded in product p inventory at 
manufacturing plant M.  This is captured only for inventory p at manufacturing plant 
m that was in stock on day 1 of the horizon. 
 
productcostPpWw = the production cost embedded in product p inventory at 
warehouse w. 
 
pcPpWw = production cost (per kg) of product p delivered from warehouse w 
 
recipeRrPpLlMm = ratio representing the amount in kg of raw materials R required to 
produce 1 kg of product P on line l at plant m 
 
revPpMmWw = revenue (per kg) of product p delivered from manufacturing plant m to 
warehouse w when sold to customers from the warehouse 
revPpWw = revenue (per kg) of product p when delivered to customers from 
warehouse w 
 
rmcostRrSs = cost per kilogram of raw material r from supplier s 
 
scPpMmWw = Shipping cost (per kg) of shipments of product p from manufacturing 
plant m to warehouse w 
 
shiptimeWwMm = δ(w) = Shipping delay (days) to warehouse w from manufacturing 
plant M 
 



35 
 

shiptimeMmSs = δ(s) = Shipping delay (days) to manufacturing plant M from 
supplier S 
 
ShtPenaltyPpMm = daily penalty (per kg) for under-production leading to shortage of 
product p inventory at manufacturing plant M 
 
ShtPenaltyPp = daily penalty (per kg) for shortage of product p inventory 
systemwide 
 
ShtPenaltyRrMm = daily penalty (per kg) for shortage of raw material r inventory at 
plant m 
 
startinvPpMm = beginning inventory of product p on day 1 at manufacturing plant M  
 
startinvPpWw = beginning inventory of product p on day 1 at warehouse w  
 
startinvRrMm = beginning inventory of raw material r on day 1 at manufacturing 
plant M  
 
Decision Variables (in alphabetical order): 

IdelPpWwDd = deliveries (kg) of product p from warehouse w to customers in day d 
from inventory originally held at the warehouse at the beginning of the horizon 
 
IdleLlMmDd= number of hours idle on production line L at manufacturing plant M 
relative to hours in allowed number of shifts. 
 
InvPpMmDd = inventory of product p at manufacturing plant M at the beginning of 
day d  
 
InvPpWw Dd = inventory of product p held in warehouse w at beginning of day d 
 
InvRrMmDd = inventory of raw material r at manufacturing plant M at the beginning 
of day d  
 
LASTPpLlMmDd = 1 if product p is the last product produced on line L at 
manufacturing  
plant M on day d 
 
OOPpMmWwDd = outstanding orders of product p produced at manufacturing plant 
m for delivery to warehouse w at beginning of day d 
 
OORrMmDd = outstanding orders of raw material R for delivery to manufacturing 
plant M at beginning of day d 
 



36 
 

OPpMmWwDd = amt of product p produced at manufacturing plant m ordered on day 
d for delivery to warehouse w  
 
ORrMmDd = amt of raw material R ordered on day d for delivery to manufacturing 
plant M  
 
OSMPpMmDd = over-stockage (above max desired inventory) at manufacturing plant 
M for product p on day d 
 
OSMRrMmDd = over-stockage (above max desired inventory) at manufacturing plant 
M for raw material R on day d 
 
OSWPpWwDd= over-stockage (above max desired inventory) at the warehouse for 
product p on day d 
 
ProdPpLlMmDd = production (kg) of product p on line L at manufacturing plant M on 
day d 
 
ShpPpMmWwDd = shipment (kg) of product p from manufacturing plant M to 
warehouse w at end of day d 
 
ShpRrSsMmDd = shipment (kg) of raw material R from supplier S to manufacturing 
plant M at end of day d 
 
SULlMmDd= 1 if line 1 at manufacturing plant M is activated for production on day d; 
0 otherwise 
 
SUPpLlMmDd=1 if setup completed for product p on line L at manufacturing plant M 
in Day d; 0 otherwise 
 
TrPpWwDd = Product p (kg.) in transit to warehouse w at beginning of day d 
 
TrRrMmDd = Raw material R (kg.) in transit to manufacturing plant M at beginning of 
day d 
 
UFPpWwDd = amount of product p in kilograms at warehouse w on day d that is 
unfilled i.e. amount by which demand exceeds deliveries 
 
UseRrMmDd = amount (kg) of raw material R used at manufacturing plant M in day d 
 
USMPpMmDd = under-stockage (shortage from reorder point) at manufacturing plant 
M for product p on day d 
 
USMRrMmDd = under-stockage (shortage from reorder point) at manufacturing plant 
M for raw material R on day d 
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USWPpWwDd = under-stockage (shortage from reorder point) at the warehouse for 
product p on day d 
 
Additional levers: 

The model contains a number of levers that shape the solution process including: 

- Inventory lower bounds 

- Inventory upper bounds 

- Penalties on lost sales and excess inventory 

Notation  

Set   Description 
R{r}   Set of raw materials 
S{s}   Set of suppliers 
M{m}   Set of manufacturing plants 
P{p}   Set of products 
W{w}   Set of warehouses 
D{d}   Set of days in planning horizon 
SR{r}   Set of suppliers for raw material r 
RP{p}   Set of raw materials used in producing product p 
PM{m}   Set of products produced in manufacturing plant m 
PR{r}   Set of products require raw material r for production 
RM{m} Set of raw materials used in producing products at 

manufacturing plant m 
PW{w}  Set of products distributed through warehouse w 
WP{p}   Set of warehouses to which product p is delivered 
DRMS {r, s, m} Set of days on which raw material r from supplier s is 

scheduled to arrive at manufacturing plant m 
DFGS {p, m, w} Set of days on which product p from manufacturing plant m is 

scheduled to arrive at warehouse w 
 
Objective (NETCONTR) for Push Formulation: 

Push Formulation Net Profit Contribution = (Revenue from finished goods when 

shipped from plants to warehouses – Product shipping costs – Cost of lost sales – 

Product in transit costs – Product inventory holding costs at plants and warehouses 

– Production cost – Raw material inventory holding costs at plants – Raw material 

inventory shortage costs at plants – Raw material inventory overstocking costs at 
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plants – Product inventory shortage costs at plants and warehouses – Product 

inventory overstocking costs at plants and warehouses –Raw material shipping 

costs – Raw material in transit costs – Plant setup costs – Plant idle costs) 

"Push" 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒:          𝑀𝑎𝑥 [ ∑ ∑ ∑ ∑((𝑟𝑒𝑣𝑃𝑝𝑀𝑚𝑊𝑤 − 𝑠𝑐𝑃𝑝𝑀𝑚𝑊𝑤)

𝐷

𝑑=1

𝑊

𝑤=1

𝑀

𝑚=1

𝑃

𝑝=1

∗ 𝑆ℎ𝑝𝑃𝑝𝑀𝑚𝑊𝑤𝐷𝑑 − 𝑔𝑤𝑙𝑜𝑠𝑠 ∗ 𝑟𝑒𝑣𝑃𝑝𝑊𝑤  ∗ 𝑈𝐹𝑃𝑝𝑊𝑤𝐷𝑑

− 𝑖𝑐𝑃𝑝𝑊𝑤  ∗ 𝐼𝑛𝑣𝑃𝑝𝑊𝑤𝐷𝑑 − 𝑖𝑡𝑐𝑃𝑝𝑊𝑤  ∗ 𝑇𝑟𝑃𝑝𝑊𝑤𝐷𝑑 − 𝑆ℎ𝑡𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑃𝑝 ∗ 𝑈𝑆𝑊𝑃𝑝𝑊𝑤𝐷𝑑

− 𝑂𝑣𝑟𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑃𝑝 ∗ 𝑂𝑆𝑊𝑃𝑝𝑊𝑤𝐷𝑑)

− ∑ ∑ ∑ ∑ 𝑝𝑐𝑃𝑝𝑀𝑚

𝐷

𝑑=1

𝑀

𝑚=1

∗ 𝑃𝑟𝑜𝑑𝑃𝑝𝐿𝑙𝑀𝑚𝐷𝑑

𝐿

𝑙=1

𝑃

𝑝=1

− ∑ ∑ ∑ ∑ 𝑟𝑚𝑐𝑜𝑠𝑡𝑅𝑟𝑆𝑠

𝐷

𝑑=1

𝑀

𝑚=1

∗ 𝑆ℎ𝑝𝑅𝑟𝑆𝑠𝑀𝑚𝐷𝑑

𝑆

𝑠=1

𝑅

𝑟=1

− ∑ ∑ ∑(𝑖𝑐𝑃𝑝𝑀𝑚 ∗

𝐷

𝑑=1

𝐼𝑛𝑣𝑃𝑝𝑀𝑚𝐷𝑑

𝑀

𝑚=1

𝑃

𝑝=1

+ 𝑆ℎ𝑡𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑃𝑝𝑀𝑚 ∗ 𝑈𝑆𝑀𝑃𝑝𝑀𝑚𝐷𝑑

+ 𝑂𝑣𝑟𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑃𝑝𝑀𝑚 ∗ 𝑂𝑆𝑀𝑃𝑝𝑀𝑚𝐷𝑑)  

− ∑ ∑ ∑(𝑖𝑐𝑅𝑟𝑀𝑚 ∗

𝐷

𝑑=1

𝐼𝑛𝑣𝑅𝑟𝑀𝑚𝐷𝑑

𝑀

𝑚=1

𝑅

𝑟=1

+ 𝑆ℎ𝑡𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑅𝑟𝑀𝑚 ∗ 𝑈𝑆𝑀𝑅𝑟𝑀𝑚𝐷𝑑

+ 𝑂𝑣𝑟𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑅𝑟𝑀𝑚 ∗ 𝑂𝑆𝑀𝑅𝑟𝑀𝑚𝐷𝑑 + 𝑖𝑐𝑅𝑟𝑀𝑚 ∗ 𝑇𝑟𝑅𝑟𝑀𝑚𝐷𝑑)  

− ∑ ∑ ∑(𝑖𝑑𝑙𝑒𝑝𝑒𝑛𝐿𝑙𝑀𝑚 ∗

𝐷

𝑑=1

𝐼𝑑𝑙𝑒𝐿𝑙𝑀𝑚𝐷𝑑

𝑀

𝑚=1

𝐿

𝑙=1

+ 𝑖𝑑𝑙𝑒𝑝𝑒𝑛𝐿𝑙𝑀𝑚 ∗ 𝑐𝑙𝑒𝑎𝑛ℎ𝑟𝑠𝐿𝑙𝑀𝑚 ∗ 𝑆𝑈𝐿𝑙𝑀𝑚𝐷𝑑  )] 

Constraints: 

(1) 
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Cannot produce product p on line l at manufacturing plant m on day d unless the 
line has been set up for it (constraints ULPpLlMmDd) 
 
ProdPpLlMmDd   ≤  MXprodLlMm * SUPpLlMmDd      (2) 
for each line at each manufacturing plant on each day and each p ϵ PL{L}  
          
Sum of activity times for day d on line l at manufacturing plant m cannot exceed the 
operating time for the line (constraints TPRODLlMmDd). 
 
∑  p∊PL{L}  ((1/ kgperhrPpLlMm  ) * ProdPpLlMmDd  + cleanhrsLlMm * SUPpLlMmDd  )  (3) 

+ IdleLlMmDd  = 8 * maxshiftsLlMm          

  
  for each line and day 
 
Place order for product p to be produced at manufacturing plant m to ensure 
desired safety stock at warehouse w on day d (constraints MNOPpWwDd). 
 
∑  𝑚∊𝑀{𝑚} OPpMmWwDd  + ∑  𝑚∊𝑀 OOPpMmWwDd  + InvPpWw Dd   ≥   mininvPpWw  - 

USWPpWwDd   
 each day for each plant and warehouse and day                                                          (4) 
 

Restrict order of product p to be produced at manufacturing plant m to prevent 
overstock at warehouse w on day d (constraints MXOPpWwDd). 
 
∑  𝑚∊𝑀{𝑚} OPpMmWwDd + ∑  𝑚∊𝑀 OOPpMmWwDd  + InvPpWw Dd ≤  maxinvPpWw +  

OSWPpWwDd  

each day for each plant and warehouse and day                                                          (5) 
 
Note that the minimum inventory is set to cover demand in the current day with 
safety stock to allow for variation in delivery times for goods on order. 
 
Produce sufficient goods at manufacturing plant m to provide safety stock at the 
plant (constraints MNPRPpMmDd). 
 
∑  𝑙∊𝐿{𝑙} ProdPpLlMmDd + USMPpMmDd + InvPpMmDd  ≥  mininvPpMm                       (6)  

each day for each product (on its designated line) at each plant. 
 
Restrict production of product p (on designated line l at manufacturing plant m) on 
day d to no more than the outstanding orders (constraints MXPRPpMmDd). 
 
∑  𝑙∊𝐿{𝑙} ProdPpLlMmDd  ≤  ∑  𝑤∊𝑊  OOPpMmWwDd                       (7)  

each day for each product (on its designated line) at each plant. 
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Deliver goods from warehouse or expedite them from the plants to satisfy customer 
demand and acknowledge lost sales if inventory is insufficient (constraints 
DLVPpWwDd). 
 
DelPpWwDd  + IdelPpWwDd + UFPpWwDd =  DemPpWwDd            (8)  
 each day for each warehouse and each PW{w}. 
 
Limit shipments of product p from manufacturing plant m to warehouses or directly 
to customers as alternative shipments on day d  to the amount available in plant 
inventory, and also limits the shipment to the maximum shipment lot size  
(constraint SHPpMmDd). 
 
∑  𝑤∊𝑊  ShpPpMmWwDd   ≤  InvPpMmDd                (9)
 each day for each product.  
 
Account for inventory balance of products at the plants at end of day d (constraint 
IBPPpMmDd). 
 
InvPpMmDd+1 = InvPpMmDd  + ∑  𝑙∊𝐿{𝑙} ProdPpLlMmDd -  ∑  𝑤∊𝑊  ShpPpMmWwDd   

each day for each product (on its designated line) at each plant.                       (10) 
 
Account for inventory balance of products at the warehouse recognizing inbound 
shipping delays (constraint IBWPpWwDd). 
 
InvPpWw Dd+1  = InvPpWw Dd - DelPpWwDd  - IdelPpWwDd  - BdelPpWwDd +  
∑  𝑚∊𝑀{𝑚} (ShpPpMmWwDd-δ(w) + ItsPpMmWwDd) each day and each  PW{w}.      (11) 

 
Note that the ItsPpWwDd variables are defined only for  (p,w,d) combinations where 
there are goods in transit at the beginning of the planning horizon and are imposed 
in the model with upper and lower bounds set accordingly. 
 
Update outstanding orders for product p at warehouse w on day d (constraint 
OOUPpMmWwDd). 
 
OOPpMmWwDd+1  = OOPpMmWwDd + OPpMmWwDd - ShpPpMmWwDd-δ(w) + ItsPpMmWwDd  
each day for product p at warehouse w.                (12) 
 
Note that OOPpMMWwD1 should include sum of the  ItsPpMmWwDd values for each 
day with scheduled arrivals. 
 
Update goods in transit to reflect shipments and receipts (Constraints 
GITPpMmWwDd). 
 
TrPpMmWw Dd+1 = TrPpMmWw Dd +ShpPpMmWwDd  - ShpPpMmWwDd-δ(w)  - ItsPpMmWwDd    
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each day for product p at warehouse w.             (13) 
   
Note that TrPpWwD1 = is set to  sum of the ItsPpWwDd values for each day with 
scheduled arrivals.  
 
All variables are nonnegative and SUPpLlMmDd values would binary if separate setup 
is required for each product.  For now, we shall just assume there is a single setup 
required if a line at a manufacturing plant is to be activated for production during 
the day.    SUPpLlMmDd  in this formulation allocates production capacity to the 
individual products.  We therefore add a constraint that creates a single binary 
variable for each line at each manufacturing plant during the day that accounts for 
setup and cleaning time required for activating and shutting down the production 
line (Constraints LSULlMmDd) .   
 
∑  𝑝∊𝑃𝐿{𝐿}  SUPpLlMmDd ≤ SULlMmDd                 (14) 

for each line at each manufacturing plant on each day.    
 
SULlMmDd = (0,1).  If setup times are negligible, these binary constraints may be 
relaxed. 
 
To facilitate extraction of the solution in the report generator, we define variable 
ArrPpWwDd to be the goods that arrive at the warehouse in day d which will be 
shipped in this planning horizon and establish their equality in constraints that 
define inbound freight (Constraints IBFPpMmWwDd).       
 
ArrPpMmWwDd = ShpPpMmWwDd-δ(w)                   (15)  

 
Goods that arrive in a day may not be cross-docked and shipped out immediately.  
Such shipments must be placed in inventory and delayed until the next day. 
(constraints CDPpWwDd) 
 
DelPpWwDd+1  + IdelPpWwDd+1  + BdelPpWwDd+1  ≤  InvPpWwDd                  (16) 
 
The warehouse will pull goods from the manufacturing plants to fulfill orders from 
the warehouse i.e. the plant cannot push production to warehouse.  Product is 
shipped the day after ordering (constraint ORDPpMmWwDd). 
 
OPpMmWwDd   ≥ ShpPpMmWwDd+1                         (17) 
 

Create a variable to allow for extraction of the total amount of finished goods 
shipped from each plant across all warehouses via regular shipping (constraint 
SUMSHPpMmDd). 
 
TSHMPpMmDd  = ∑  𝑤∊𝑊{𝑤} ShpPpMmWwD d                 (18) 
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Place order for raw material r on day d to ensure desired safety stock at 
manufacturing plant m (constraints MNORrMmDd). 
 
∑  𝑠∊𝑆{𝑠} ORrSsMmDd  + ∑  𝑠∊𝑆{𝑠} OORrSsMmDd  + InvRrMmDd   ≥   mininvRrMm   -  USMRrMmDd   

 each day for each raw material at each plant            (19)  
 
Restrict order of raw material r on day d to prevent overstock at manufacturing 
plant m (constraints MXORrMmDd). 
 
∑  𝑠∊𝑆{𝑠} ORrSsMmDd  +  ∑  𝑠∊𝑆{𝑠} OORrSsMmDd  + InvRrMmDd    ≤     maxinvRrMm    +  

OSMRrMmDd  

each day for each raw material at each plant            (20) 
 
Restrict the amount of raw material r used at manufacturing plant m on day d to the 
amount of product manufactured (constraints EQRrSsMmDd). 
 
UseRrMmDd = ∑  𝑙∊𝐿{𝑙}  ( recipeRrPpLlMm  * ProdPpLlMmDd  )                (21)  

each day for each product  
 
Restrict the amount of raw material r used at manufacturing plant m on day d to not 
exceed the raw materials available at that plant at the end of the previous day 
(constraints MXURrMmDd). 
 
UseRrMmDd+1 ≤  InvRrMmDd                      (22) 
for each raw material at each manufacturing plant on each day                                            
    
Account for inventory balance of raw materials at the manufacturing plant 
recognizing inbound shipping delays (constraint IBMRrMmDd). 
 
InvRrMm Dd+1  = InvRrMmDd  +  ∑  𝑠∊𝑆{𝑠} ShpRrSsMmDd-δ(w) – UseRrMmDd              (23)  

each day   
 
Update outstanding orders for raw material r at manufacturing plant m on day d 
(constraint OOURrMmDd). 
 
OORrSsMmDd+1  =  OORrSsMmDd + ORrSsMmDd – ShpRrSsMmDd-δ(w)                          (24)  
each day for raw material r at manufacturing plant m. 
 
Update raw materials in transit to reflect shipments and receipts (Constraints 
RITRrMmDd). 
 
TrRrSsMmDd+1 = TrRrSsMmDd + ShpRrSsMmDd  - ShpRrSsMmDd-δ(w)                (25)   
each day for raw material r at manufacturing plant m. 
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To facilitate extraction of the solution in the report generator, we define variable 
ArrRrMmDd to be the raw materials that arrive at the plants on day d which were 
shipped in this planning horizon (Constraints IBFRrSsMmDd).       
 
ArrRrSsMmDd = ShpRrSsMmDd-δ(w)                            (26) 

        
Order raw materials from the suppliers to fulfill requirements at the plant.  Orders 
to ship on a day lag at an amount equal or less than the order (constraint 
ORDRrSsMmDd). 
 
ORrSsMmDd  ≥ ShpRrSsMmD d+1                                                 (27) 
 
Create a variable to allow for extraction of the total amount of finished goods 
produced in the plants across all lines (constraint SUMPRODPpMmDd). 
 
TPRDMPpMmDd  = ∑  𝑙∊𝐿{𝑙} ProdPpLlMmD                          (28) 

 
Update back ordered goods for newly unfilled orders as well as previous back 
orders that have just been filled (constraint BKOPpWwDd). 
 
BordPpWwDd+1  = BordPpWwDd + UFPpWwDd – BdelPpWwDd    (29) 
 
Ensure that the amount of finished goods delivered from back order is no more than 
the amount on back order the previous day, and that we begin with no goods on 
backorder in the system (constraint BLDPpWwDd). 
 
BdelPpWwDd+1  ≤ BordPpWwDd       (30) 
BordPpWwDd = 0 for d = 1 

Ensure that product inventory positioned at the warehouse used to satisfy customer 
demand does not exceed the amount positioned at the beginning of the horizon 
(constraint IDLVPpWwDd). 
 
∑  𝑑∊𝐷 IdelPpWwDd  ≤ InvPpWwD1       (31) 
 
Define a variable to capture any overstock of product inventory at the plant 
(constraint MXINVPpMmDd). 
 
InvPpMmDd  - OSMPpMmDd  ≤ maxinvPpMm                      (32) 
 
Restrict production of product p (on designated line l at manufacturing plant m) on 
day d to prevent overstock at the plant (constraints MXPRPpMmDd). 
 
∑  𝑙∊𝐿{𝑙} ProdPpLlMmDd  ≤  maxinvPpMm  + OSMPpMmDd              (33)  

each day for each product (on its designated line) at each plant. 
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Additional Pull and Hybrid Formulation Decision Variables: 

To the Push formulation decision variables previously described, the 

following decision variables were added to create the Pull and Hybrid formulations: 

BdelPpWwDd = deliveries of product p at warehouse w on day d that are fulfilled on 
backorder 
 
DelPpWwDd = regular deliveries of product p at warehouse w on day d 
 
Objective (NETCONTR) for Pull Formulation: 

Pull Formulation Net Profit Contribution = (Revenue from deliveries of on-time and 

backordered goods – Product shipping costs – Cost of lost sales – Product in transit 

costs – Product inventory holding costs at plants and warehouses – Production cost 

– Raw material inventory holding costs at plants – Raw material inventory shortage 

costs at plants – Raw material inventory overstocking costs at plants – Product 

inventory shortage costs at plants and warehouses – Product inventory 

overstocking costs at plants and warehouses –Raw material shipping costs – Raw 

material in transit costs – Plant setup costs – Plant idle costs)  

Objective (NETCONTR) for Hybrid Formulation: 

Hybrid Formulation Net Profit Contribution = (Revenue from deliveries of on-time 

and backordered goods + Revenue from finished goods when shipped from plants 

but which will not arrive at the warehouses during the planning horizon – Product 

shipping costs – Cost of lost sales – Product in transit costs – Product inventory 

holding costs at plants and warehouses – Production cost – Raw material inventory 

holding costs at plants – Raw material inventory shortage costs at plants – Raw 

material inventory overstocking costs at plants – Product inventory shortage costs 
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at plants and warehouses – Product inventory overstocking costs at plants and 

warehouses –Raw material shipping costs – Raw material in transit costs – Plant 

setup costs – Plant idle costs)  

"Pull" 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒:          𝑀𝑎𝑥 [ ∑ ∑ ∑(𝑟𝑒𝑣𝑃𝑝𝑊𝑤 ∗ (𝐷𝑒𝑙𝑃𝑝𝑊𝑤𝐷𝑑 +  𝐵𝑑𝑒𝑙𝑃𝑝𝑊𝑤𝐷𝑑)

𝐷

𝑑=1

𝑊

𝑤=1

𝑃

𝑝=1

+  (𝑟𝑒𝑣𝑃𝑝𝑊𝑤 − 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑐𝑜𝑠𝑡𝑃𝑝𝑊𝑤 −  𝑎𝑔𝑟𝑚𝑐𝑜𝑠𝑡𝑃𝑝𝑊𝑤 −  𝑠𝑐𝑃𝑝𝑊𝑤)

∗ 𝐼𝑑𝑒𝑙𝑃𝑝𝑊𝑤𝐷𝑑 − 𝑔𝑤𝑙𝑜𝑠𝑠 ∗ 𝑟𝑒𝑣𝑃𝑝𝑊𝑤  ∗ 𝑈𝐹𝑃𝑝𝑊𝑤𝐷𝑑

− 𝑖𝑐𝑃𝑝𝑊𝑤  ∗ 𝐼𝑛𝑣𝑃𝑝𝑊𝑤𝐷𝑑 − 𝑖𝑡𝑐𝑃𝑝𝑊𝑤  ∗ 𝑇𝑟𝑃𝑝𝑊𝑤𝐷𝑑 − 𝑆ℎ𝑡𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑃𝑝 ∗ 𝑈𝑆𝑊𝑃𝑝𝑊𝑤𝐷𝑑

− 𝑂𝑣𝑟𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑃𝑝 ∗ 𝑂𝑆𝑊𝑃𝑝𝑊𝑤𝐷𝑑)

−  ∑ ∑ ∑ ∑ 𝑠𝑐𝑃𝑝𝑀𝑚𝑊𝑤

𝐷

𝑑=1

𝑊

𝑤=1

∗ 𝑆ℎ𝑝𝑃𝑝𝑀𝑚𝑊𝑤𝐷𝑑

𝑀

𝑚=1

𝑃

𝑝=1

− ∑ ∑ ∑ ∑ 𝑝𝑐𝑃𝑝𝑀𝑚

𝐷

𝑑=1

𝑀

𝑚=1

∗ 𝑃𝑟𝑜𝑑𝑃𝑝𝐿𝑙𝑀𝑚𝐷𝑑

𝐿

𝑙=1

𝑃

𝑝=1

− ∑ ∑ ∑ ∑ 𝑟𝑚𝑐𝑜𝑠𝑡𝑅𝑟𝑆𝑠

𝐷

𝑑=1

𝑀

𝑚=1

∗ 𝑆ℎ𝑝𝑅𝑟𝑆𝑠𝑀𝑚𝐷𝑑

𝑆

𝑠=1

𝑅

𝑟=1

− ∑ ∑ ∑(𝑖𝑐𝑃𝑝𝑀𝑚 ∗

𝐷

𝑑=1

𝐼𝑛𝑣𝑃𝑝𝑀𝑚𝐷𝑑

𝑀

𝑚=1

𝑃

𝑝=1

+ 𝑆ℎ𝑡𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑃𝑝𝑀𝑚 ∗ 𝑈𝑆𝑀𝑃𝑝𝑀𝑚𝐷𝑑

+ 𝑂𝑣𝑟𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑃𝑝𝑀𝑚 ∗ 𝑂𝑆𝑀𝑃𝑝𝑀𝑚𝐷𝑑)  

− ∑ ∑ ∑(𝑖𝑐𝑅𝑟𝑀𝑚 ∗

𝐷

𝑑=1

𝐼𝑛𝑣𝑅𝑟𝑀𝑚𝐷𝑑

𝑀

𝑚=1

𝑅

𝑟=1

+ 𝑆ℎ𝑡𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑅𝑟𝑀𝑚 ∗ 𝑈𝑆𝑀𝑅𝑟𝑀𝑚𝐷𝑑

+ 𝑂𝑣𝑟𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑅𝑟𝑀𝑚 ∗ 𝑂𝑆𝑀𝑅𝑟𝑀𝑚𝐷𝑑 + 𝑖𝑐𝑅𝑟𝑀𝑚 ∗ 𝑇𝑟𝑅𝑟𝑀𝑚𝐷𝑑)  

− ∑ ∑ ∑(𝑖𝑑𝑙𝑒𝑝𝑒𝑛𝐿𝑙𝑀𝑚 ∗

𝐷

𝑑=1

𝐼𝑑𝑙𝑒𝐿𝑙𝑀𝑚𝐷𝑑

𝑀

𝑚=1

𝐿

𝑙=1

+ 𝑖𝑑𝑙𝑒𝑝𝑒𝑛𝐿𝑙𝑀𝑚 ∗ 𝑐𝑙𝑒𝑎𝑛ℎ𝑟𝑠𝐿𝑙𝑀𝑚 ∗ 𝑆𝑈𝐿𝑙𝑀𝑚𝐷𝑑  )] 
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"Hybrid" 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒:          𝑀𝑎𝑥 [ ∑ ∑ ∑(𝑟𝑒𝑣𝑃𝑝𝑊𝑤 ∗ (𝐷𝑒𝑙𝑃𝑝𝑊𝑤𝐷𝑑 + 𝐵𝑑𝑒𝑙𝑃𝑝𝑊𝑤𝐷𝑑)

𝐷

𝑑=1

𝑊

𝑤=1

𝑃

𝑝=1

+  (𝑟𝑒𝑣𝑃𝑝𝑊𝑤 − 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑐𝑜𝑠𝑡𝑃𝑝𝑊𝑤 −  𝑎𝑔𝑟𝑚𝑐𝑜𝑠𝑡𝑃𝑝𝑊𝑤 −  𝑠𝑐𝑃𝑝𝑊𝑤)

∗ 𝐼𝑑𝑒𝑙𝑃𝑝𝑊𝑤𝐷𝑑 − 𝑔𝑤𝑙𝑜𝑠𝑠 ∗ 𝑟𝑒𝑣𝑃𝑝𝑊𝑤  ∗ 𝑈𝐹𝑃𝑝𝑊𝑤𝐷𝑑

− 𝑖𝑐𝑃𝑝𝑊𝑤  ∗ 𝐼𝑛𝑣𝑃𝑝𝑊𝑤𝐷𝑑 − 𝑖𝑡𝑐𝑃𝑝𝑊𝑤  ∗ 𝑇𝑟𝑃𝑝𝑊𝑤𝐷𝑑 − 𝑆ℎ𝑡𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑃𝑝 ∗ 𝑈𝑆𝑊𝑃𝑝𝑊𝑤𝐷𝑑

− 𝑂𝑣𝑟𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑃𝑝 ∗ 𝑂𝑆𝑊𝑃𝑝𝑊𝑤𝐷𝑑)

+ ∑ ∑ ∑ ∑ 𝑟𝑒𝑣𝑃𝑝𝑊𝑤

𝑇

𝑑=𝑇−𝑚𝑖𝑛𝑙𝑡

𝑊

𝑤=1

∗ 𝑆ℎ𝑝𝑃𝑝𝑀𝑚𝑊𝑤𝐷𝑑

𝑀

𝑚=1

𝑃

𝑝=1

−  ∑ ∑ ∑ ∑ 𝑠𝑐𝑃𝑝𝑀𝑚𝑊𝑤

𝐷

𝑑=1

𝑊

𝑤=1

∗ 𝑆ℎ𝑝𝑃𝑝𝑀𝑚𝑊𝑤𝐷𝑑

𝑀

𝑚=1

𝑃

𝑝=1

− ∑ ∑ ∑ ∑ 𝑝𝑐𝑃𝑝𝑀𝑚

𝐷

𝑑=1

𝑀

𝑚=1

∗ 𝑃𝑟𝑜𝑑𝑃𝑝𝐿𝑙𝑀𝑚𝐷𝑑

𝐿

𝑙=1

𝑃

𝑝=1

− ∑ ∑ ∑ ∑ 𝑟𝑚𝑐𝑜𝑠𝑡𝑅𝑟𝑆𝑠

𝐷

𝑑=1

𝑀

𝑚=1

∗ 𝑆ℎ𝑝𝑅𝑟𝑆𝑠𝑀𝑚𝐷𝑑

𝑆

𝑠=1

𝑅

𝑟=1

− ∑ ∑ ∑(𝑖𝑐𝑃𝑝𝑀𝑚 ∗

𝐷

𝑑=1

𝐼𝑛𝑣𝑃𝑝𝑀𝑚𝐷𝑑

𝑀

𝑚=1

𝑃

𝑝=1

+ 𝑆ℎ𝑡𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑃𝑝𝑀𝑚 ∗ 𝑈𝑆𝑀𝑃𝑝𝑀𝑚𝐷𝑑

+ 𝑂𝑣𝑟𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑃𝑝𝑀𝑚 ∗ 𝑂𝑆𝑀𝑃𝑝𝑀𝑚𝐷𝑑)  

− ∑ ∑ ∑(𝑖𝑐𝑅𝑟𝑀𝑚 ∗

𝐷

𝑑=1

𝐼𝑛𝑣𝑅𝑟𝑀𝑚𝐷𝑑

𝑀

𝑚=1

𝑅

𝑟=1

+ 𝑆ℎ𝑡𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑅𝑟𝑀𝑚 ∗ 𝑈𝑆𝑀𝑅𝑟𝑀𝑚𝐷𝑑

+ 𝑂𝑣𝑟𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑅𝑟𝑀𝑚 ∗ 𝑂𝑆𝑀𝑅𝑟𝑀𝑚𝐷𝑑 + 𝑖𝑐𝑅𝑟𝑀𝑚 ∗ 𝑇𝑟𝑅𝑟𝑀𝑚𝐷𝑑)  

− ∑ ∑ ∑(𝑖𝑑𝑙𝑒𝑝𝑒𝑛𝐿𝑙𝑀𝑚 ∗

𝐷

𝑑=1

𝐼𝑑𝑙𝑒𝐿𝑙𝑀𝑚𝐷𝑑

𝑀

𝑚=1

𝐿

𝑙=1

+ 𝑖𝑑𝑙𝑒𝑝𝑒𝑛𝐿𝑙𝑀𝑚 ∗ 𝑐𝑙𝑒𝑎𝑛ℎ𝑟𝑠𝐿𝑙𝑀𝑚 ∗ 𝑆𝑈𝐿𝑙𝑀𝑚𝐷𝑑  )] 
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Timing of Recognition of Revenues and Costs 

• Revenues: on day of shipping from manufacturing plant for the Push 

Formulation, and when delivered to the customer from the warehouse 

for the Pull Formulation. 

• Production costs: on day of production at the manufacturing plant 

• Shipping costs: recognized daily while finished goods and raw 

materials are in transit 

• Inventory carrying costs:  inventory holding cost recognized daily 

while raw materials and finished goods are in the manufacturing plant 

inventory and when finished goods are in warehouse inventory  

• In-transit costs:  inventory holding cost recognized daily while 

finished goods and raw materials are in transit 

• Goodwill loss: 1% daily charge for loss of goodwill on all unfulfilled 

orders that are currently on back order 

Choice of different elements in the Objective Functions 

Different revenue recognition was utilized in the objective functions to drive 

the Push, Pull, and Hybrid strategies.  Alternatively, the goal of driving different 

strategies could have been accomplished by applying constraints on inventory.  Raw 

material and finished goods inventory constraints at the manufacturing plants and 

the warehouses could have been used to “push” product through the system to 

impose “leanness”.  However, while such an approach would result in the desired 

supply chain character, it would do so without regard to the economic 

consequences.  By embedding the elements in the objective function, the current 
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approach allows the economic consequences to drive the inventory and production 

strategies thus resulting in the appropriate supply chain character. 

Additional Considerations 

• Supply chain level:  Single level i.e. final goods are produced from raw 

materials with no intermediate assemblies (no parent-component 

relationships in the model). 

• Resource constraints: Production is strictly capacitated.  Inventory 

holding is also capacitated, but allowed to exceed capacity subject to 

overstock penalties. 

• Set-up structure: Simple i.e. period independent. 

• Demand: Static, deterministic. 

• Raw material source is infinite but subject to lead times 

• Product types: Bulk, high volume non-perishables.  The model 

formulation is most appropriate for bulk or high volume non-

perishables.  The model would need to be modified if it were to be 

used for perishables.  For example, an inventory aging variable with 

obsolescence could be introduced if perishables such as fresh food, 

flowers or certain medical products were under study. 

• Deterioration of items: None.  Consequently, neither constraints nor 

penalties on holding times are applied.  The model would need to be 

adjusted (e.g. by aging of inventories) if perishability or obsolescence 

were product characteristics that needed to be accounted for. 
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Chapter 4:  Optimizing Model Behavior 

 The first of the four research questions will be addressed in this chapter. 

• Q1: Do accounting policy and value-added metrics significantly affect 

production strategy and optimizing model solutions? 

Model Inputs 

 A sampling of the optimization model inputs includes: 

Unit Revenues (per kilogram): 
• Product 1 at Warehouses 1, 2, and 3 = $4.00 
• Product 1 at Warehouses 4, 5, and 6 = $3.90 
• Product 2 at all Warehouses                = $3.75 
• Product 3 at Warehouses 1, 2, and 3 = $8.25 
• Product 3 at Warehouses 4, 5, and 6 = $8.00 

 
Cost Parameters: 

• Production Cost per hour (pcPpWw) = $15 
• Idle cost (idlepenLlMm)= 2.5% of production cost 
• Shipping cost (scPpMmWw)= 15% of revenue 
• Inventory Carrying Cost at Warehouses (icPpWw) = 1% of product cost 

charged daily 
• Shortage penalty of raw material at the plant (ShtPenaltyRrMm) = 2% of 

product cost charged daily 
• Overage penalty of product system-wide (OvrPenaltyPp)= 1% of product cost 

charged daily 
• Goodwill loss (gwloss) = 1% of revenue charged daily while goods on back 

order 
 
Facilities: 

• Number of plants (Mm) = 2 
• Number of production lines per plant (Ll) = 3 
• Maximum number of production shifts per day per plant (maxshiftsLlMm) = 2 
• Maximum number of hours worked per shift per line per plant (mxhrsLlMm) 

= 8 
• Number of warehouses (Ww) = 6 
• Number of products (Pp) = 3 
• Number of raw materials (Rr) = 3 
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Additional Inputs: 
• Distinct product average demands = 18 (3 products by 6 warehouses) 
• Lead times: product 1 requires a 6-day lead time when shipped from 

manufacturing plants to warehouses, product 2 requires a 4-day lead time, 
and product 3 is generally expedited and requires a 2-day lead time 

• Lead times: supplier 1 ships to manufacturing plants with a 5-day lead time 
while supplier 2 ships with a 2-day lead time 

• Production ratio (recipeRrPpLlMm): number of kilograms of raw material r 
required to produce 1 kilogram of product p on line l of manufacturing plant 
m 

• Initial inventories (startinvRrMm, startinvPpMm, startinvPpWw) 
• Initial in-transit inventories (ItsPpWwDd) 
• Inventory limits (maxinvRrMm, maxinvPpMm, maxinvPpWw) 
• Production rates (kgperhrPpLlMm) 

 
Daily Demands at the Warehouses: 
 

 
 
Modeling Horizon 

 The optimization model was implemented with a fixed planning horizon 

without re-planning.  Multiple planning horizons were tested, including 30-day, 60-

day, 90-day and 120-day planning horizons.  Given that the model was implemented 

without re-planning, it was necessary to ensure that the horizon was sufficiently 

long to allow for the combination of maximum raw material and finished goods lead 

times.  The 90-day horizon was chosen as the most appropriate planning length. 

 

 

Product 1 Demands Product 2 Demands Product 3 Demands

P1W1 = 35 P2W1 = 36 P3W1 = 40

P1W2 = 35 P2W2 = 36 P3W2 = 40

P1W3 = 35 P2W3 = 36 P3W3 = 40

P1W4 = 35 P2W4 = 36 P3W4 = 40

P1W5 = 35 P2W5 = 36 P3W5 = 40

P1W6 = 35 P2W6 = 36 P3W6 = 40
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Model/Formulation Comparisons 

 The output of the optimization was a set of Procurement, Production, and 

Distribution Plans.  The following table provides a high-level summary of the 

resulting plans. 

 

 

 

Raw Material Plant Mean Daily Shipment

1 1 124

2 1 123

3 1 131

1 2 118

2 2 117

3 2 131

Product Plant Mean Daily Production

1 1 71

2 1 110

3 1 149

1 2 85

2 2 110

3 2 149

Product Warehouse Mean Daily Deliveries

1 1 35

1 2 35

1 3 35

1 4 35

1 5 35

1 6 35

2 1 34

2 2 34

2 3 32

2 4 34

2 5 33

2 6 34

3 1 40

3 2 39

3 3 40

3 4 39

3 5 39

3 6 40
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 The Procurement, Production, and Distribution plans from the Push, Pull, and 

Hybrid formulations were compared in further detail to determine the impact of 

formulation on the outputs of the optimizing model.   

Table 1: Summary of Push Formulation Raw Material Daily Procurement Schedule 

 

 

 

 

 

 

 

 

 

Raw Mat Plant Min Max Median Mean Std Dev Min Max Median Mean Std Dev

1 1 0 299 105 138 61 0 468 105 138 68

1 2 0 299 105 137 59 0 468 105 137 68

2 1 0 388 108 136 66 0 388 108 136 62

2 2 0 302 108 136 59 0 388 108 136 62

3 1 0 360 120 147 60 0 360 120 147 60

3 2 0 384 120 147 66 0 360 120 147 60

Raw Mat Plant Min Max Median Mean Std Dev Min Max Median Mean Std Dev

1 1 0 388 105 138 62 315 525 315 323 38

1 2 0 388 105 137 62 315 525 315 323 38

2 1 0 388 108 136 62 324 540 324 331 38

2 2 0 388 108 136 62 324 540 324 331 38

3 1 0 360 120 147 60 360 600 360 372 49

3 2 0 360 120 147 60 360 600 360 372 48

Daily New Orders Daily Shipments

Daily Arrivals Daily Inventory at Plants

Raw Material Procurement Schedule (PUSH)
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Table 2: Summary of Pull Formulation Raw Material Daily Procurement Schedule 

 

Table 3: Summary of Hybrid Formulation Raw Material Daily Procurement Schedule 

 

 

 

Raw Mat Plant Min Max Median Mean Std Dev Min Max Median Mean Std Dev

1 1 0 299 105 95 55 0 468 105 95 59

1 2 0 299 105 95 52 0 468 105 95 59

2 1 0 302 108 97 50 0 388 108 97 51

2 2 0 302 108 97 50 0 388 108 97 51

3 1 0 360 120 108 51 0 360 120 108 48

3 2 0 360 120 108 54 0 360 120 108 48

Raw Mat Plant Min Max Median Mean Std Dev Min Max Median Mean Std Dev

1 1 0 388 105 95 53 315 525 315 324 41

1 2 0 388 105 95 53 315 525 315 324 41

2 1 0 388 108 97 51 324 540 324 332 39

2 2 0 388 108 97 51 324 540 324 332 39

3 1 0 360 120 108 48 360 600 360 372 48

3 2 0 360 120 108 48 360 600 360 372 48

Raw Material Procurement Schedule (PULL)

Daily New Orders Daily Shipments

Daily Arrivals Daily Inventory at Plants

Raw Mat Plant Min Max Median Mean Std Dev Min Max Median Mean Std Dev

1 1 0 299 105 109 45 0 468 105 109 55

1 2 0 299 105 109 45 0 468 105 109 55

2 1 0 302 108 107 63 0 388 108 107 68

2 2 0 302 108 107 63 0 388 108 107 68

3 1 0 360 120 114 59 0 360 120 114 62

3 2 0 360 120 114 59 0 360 120 114 61

Raw Mat Plant Min Max Median Mean Std Dev Min Max Median Mean Std Dev

1 1 0 388 105 109 48 315 525 315 323 38

1 2 0 388 105 109 48 315 525 315 323 38

2 1 0 388 108 107 68 324 540 324 332 39

2 2 0 388 108 107 68 324 540 324 332 39

3 1 0 360 120 114 62 360 600 360 372 48

3 2 0 360 120 114 61 360 600 360 372 48

Raw Material Procurement Schedule (HYBRID)

Daily New Orders Daily Shipments

Daily Arrivals at Plants Daily Inventory at Plants
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Observations:  

• On average, the Push Formulation places the largest raw material orders 

resulting in higher shipments and inventory levels.  The Hybrid Formulation 

is intermediate between the Push and Pull Formulations. 

• The zero minimum daily raw material orders, shipment and arrival reflects 

the model not ordering raw materials towards the end of the horizon due to 

the lead time required to arrive at the plant and transform them into finished 

goods to generate revenues. 

Table 4: Summary of Push Formulation Daily Production Schedule 

 

 

 

 

 

 

 

Product Plant Min Max Median Mean Std Dev Min Max Median Mean Std Dev

1 1 0 194 105 140 53 0 1454 105 146 150

1 2 0 194 105 140 53 0 1454 105 146 151

2 1 0 194 108 138 53 0 1490 108 144 155

2 2 0 194 108 138 53 0 1490 108 144 153

3 1 0 194 120 150 48 46 1634 120 156 166

3 2 0 194 120 150 48 46 1634 120 156 163

Product Plant Min Max Median Mean Std Dev

1 1 315 1575 315 602 471

1 2 315 1575 315 596 466

2 1 324 1620 324 604 468

2 2 324 1620 324 593 458

3 1 360 1800 360 724 512

3 2 360 1800 360 777 561

Daily Production Daily Product Shipments

Daily Product Inventory

Production Schedule at the Plants (PUSH)
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Table 5: Summary of Pull Formulation Daily Production Schedule 

 

Table 6: Summary of Hybrid Formulation Daily Production Schedule 

 

Observation:  

• The Push Formulation results in the largest levels of production, shipment, 

and finished goods inventory at the plant, with the Pull Formulation resulting 

in the lowest levels. 

 

Product Plant Min Max Median Mean Std Dev Min Max Median Mean Std Dev

1 1 0 194 105 97 44 0 315 105 99 50

1 2 0 194 105 97 44 0 315 105 99 50

2 1 0 194 108 100 39 0 324 108 102 46

2 2 0 194 108 100 39 0 324 108 102 46

3 1 0 194 120 111 35 0 200 120 113 34

3 2 0 194 120 111 35 0 240 120 113 35

Product Plant Min Max Median Mean Std Dev

1 1 315 525 315 320 31

1 2 315 525 315 320 31

2 1 324 540 324 329 32

2 2 324 540 324 329 32

3 1 360 600 360 366 36

3 2 360 600 360 365 36

Daily Production Daily Product Shipments

Daily Product Inventory

Production Schedule at the Plants (PULL)

Product Plant Min Max Median Mean Std Dev Min Max Median Mean Std Dev

1 1 0 194 105 111 37 0 485 105 117 61

1 2 0 194 105 111 37 0 485 105 117 61

2 1 0 194 108 110 59 0 1490 108 116 183

2 2 0 194 108 110 59 0 1490 108 116 181

3 1 0 194 120 117 52 0 1302 120 123 156

3 2 0 194 120 117 52 0 1302 120 123 147

Product Plant Min Max Median Mean Std Dev

1 1 315 727 315 331 66

1 2 315 727 315 331 66

2 1 324 1,620 324 429 265

2 2 324 1,620 324 439 284

3 1 360 1,800 360 604 482

3 2 360 1800 360 594 477

Daily Production Daily Product Shipment

Daily Product Inventory

Production Schedule at the Plants (HYBRID)
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Table 7: Summary of Push Formulation Daily Distribution Schedule 

 

 

 

Product Warehouse Min Max Median Mean Std Dev Min Max Median Mean Std Dev

1 1 1 194 35 49 38 1 194 35 50 41

1 2 16 194 35 51 36 16 194 35 55 40

1 3 3 193 35 46 37 3 1307 35 66 147

1 4 35 159 35 46 30 35 159 35 49 32

1 5 7 232 35 48 36 16 242 35 50 38

1 6 5 219 35 48 36 16 1314 35 70 151

2 1 4 223 36 47 33 4 223 36 48 35

2 2 2 194 36 50 39 2 194 36 52 39

2 3 8 194 36 47 33 10 1474 36 69 166

2 4 6 208 36 50 33 6 208 36 51 33

2 5 0 194 36 48 33 8 194 36 50 33

2 6 11 205 36 50 31 11 1382 36 70 155

3 1 6 245 40 51 38 6 245 40 52 38

3 2 13 208 40 58 37 28 208 40 59 36

3 3 5 208 40 55 36 5 1514 40 77 172

3 4 5 184 40 51 31 5 184 40 52 31

3 5 12 194 40 52 33 12 194 40 52 33

3 6 6 175 40 52 33 6 1514 40 73 168

Product Warehouse Min Max Median Mean Std Dev Min Max Median Mean Std Dev

1 1 105 525 105 163 115 3 15 3 4.6 3.3

1 2 105 525 105 143 84 3 15 3 4.1 2.4

1 3 105 525 105 154 113 3 15 3 4.4 3.2

1 4 105 525 105 134 82 3 15 3 3.8 2.3

1 5 105 525 105 159 115 3 15 3 4.5 3.3

1 6 105 525 105 163 106 3 15 3 4.6 3

2 1 108 540 108 147 85 3 15 3 4.1 2.3

2 2 108 540 108 160 108 3 15 3 4.4 3

2 3 108 540 108 173 114 3 15 3 4.8 3.2

2 4 108 440 108 160 85 3 12 3 4.5 2.4

2 5 108 540 108 178 128 3 15 3 4.9 3.6

2 6 108 540 108 152 97 3 15 3 4.2 2.7

3 1 120 600 120 217 167 3 15 3 5.4 4.2

3 2 120 600 120 193 118 3 15 3 4.8 2.9

3 3 120 600 120 249 164 3 15 3 6.2 4.1

3 4 120 600 120 216 156 3 15 3 5.4 3.9

3 5 120 600 120 166 107 3 15 3 4.2 2.7

3 6 120 600 120 224 143 3 15 3 5.6 3.6

Product Inventory at Warehouses Demand Days of Product Inventory at Warehouses

Daily Distribution Schedule (PUSH)

Product Orders Placed from Warehosue to Plants Product Shipped to Warehouses from Plants
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Table 8: Summary of Pull Formulation Daily Distribution Schedule 

 

 

 

Product Warehouse Min Max Median Mean Std Dev Min Max Median Mean Std Dev

1 1 35 105 35 38 13 35 105 35 38 13

1 2 35 105 35 38 13 35 105 35 38 13

1 3 3 105 35 38 14 0 105 35 38 15

1 4 35 105 35 38 12 35 105 35 38 12

1 5 35 105 35 38 13 35 105 35 38 13

1 6 35 105 35 38 13 35 105 35 38 13

2 1 36 108 36 38 12 36 108 36 38 12

2 2 14 108 36 38 13 14 108 36 38 13

2 3 36 108 36 38 12 36 108 36 38 12

2 4 14 108 36 38 13 14 108 36 38 13

2 5 36 108 36 38 12 36 108 36 38 12

2 6 36 108 36 38 12 36 108 36 38 12

3 1 6 80 40 40 7 6 80 40 40 7

3 2 40 120 40 42 11 40 120 40 42 11

3 3 40 80 40 40 4 40 80 40 40 4

3 4 40 80 40 41 6 40 80 40 41 6

3 5 40 120 40 41 10 40 120 40 41 10

3 6 6 80 40 40 7 6 80 40 40 7

Product Warehouse Min Max Median Mean Std Dev Min Max Median Mean Std Dev

1 1 105 175 105 106 8 3 5 3 3 0.2

1 2 105 175 105 106 8 3 5 3 3 0.2

1 3 105 175 105 106 8 3 5 3 3 0.2

1 4 105 175 105 106 8 3 5 3 3 0.2

1 5 105 175 105 106 8 3 5 3 3 0.2

1 6 105 175 105 106 8 3 5 3 3 0.2

2 1 108 180 108 109 8 3 5 3 3 0.2

2 2 108 180 108 109 8 3 5 3 3 0.2

2 3 108 180 108 109 8 3 5 3 3 0.2

2 4 108 180 108 109 8 3 5 3 3 0.2

2 5 108 180 108 109 8 3 5 3 3 0.2

2 6 108 180 108 109 8 3 5 3 3 0.2

3 1 120 200 120 121 9 3 5 3 3 0.2

3 2 120 200 120 122 11 3 5 3 3.1 0.3

3 3 120 200 120 121 9 3 5 3 3 0.2

3 4 120 200 120 122 10 3 5 3 3 0.3

3 5 120 200 120 122 13 3 5 3 3.1 0.3

3 6 120 200 120 121 9 3 5 3 3 0.2

Product Inventory at Warehouses Demand Days of Product Inventory at Warehouses

Daily Distribution Schedule (PULL)

Product Orders Placed from Warehosue to Plants Product Shipped to Warehouses from Plants
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Table 9: Summary of Hybrid Formulation Daily Distribution Schedule 

 

 

 

 

Product Warehouse Min Max Median Mean Std Dev Min Max Median Mean Std Dev

1 1 16 105 35 37 12 16 210 35 41 23

1 2 35 105 35 38 13 35 380 35 42 39

1 3 11 94 35 37 11 11 226 35 41 25

1 4 19 105 35 38 11 19 380 35 42 39

1 5 35 105 35 37 11 35 245 35 41 26

1 6 16 105 35 39 15 16 151 35 41 21

2 1 4 371 36 48 50 0 500 36 53 74

2 2 36 432 36 51 60 36 486 36 57 79

2 3 36 504 36 51 64 36 504 36 52 64

2 4 18 504 36 50 62 36 504 36 51 62

2 5 8 432 36 52 65 8 500 36 58 83

2 6 36 432 36 50 54 36 486 36 55 75

3 1 34 240 40 50 40 34 462 40 53 59

3 2 6 240 40 49 41 6 480 40 52 61

3 3 16 268 40 49 38 16 360 40 50 46

3 4 6 240 40 50 38 6 391 40 52 51

3 5 12 240 40 49 38 12 431 40 52 55

3 6 28 268 40 49 39 28 480 40 52 59

Product Warehouse Min Max Median Mean Std Dev Min Max Median Mean Std Dev

1 1 105 175 105 106 8 3.0 5.0 3.0 3.0 0.2

1 2 105 175 105 106 8 3.0 5.0 3.0 3.0 0.2

1 3 105 175 105 106 8 3.0 5.0 3.0 3.0 0.2

1 4 105 175 105 106 8 3.0 5.0 3.0 3.0 0.2

1 5 105 175 105 106 8 3.0 5.0 3.0 3.0 0.2

1 6 105 175 105 106 8 3.0 5.0 3.0 3.0 0.2

2 1 108 500 108 139 82 3.0 14.0 3.0 3.9 2.3

2 2 108 486 108 137 88 3.0 14.0 3.0 3.8 2.4

2 3 108 504 108 139 96 3.0 14.0 3.0 3.9 2.7

2 4 108 504 108 127 62 3.0 14.0 3.0 3.5 1.7

2 5 108 500 108 131 84 3.0 14.0 3.0 3.6 2.3

2 6 108 486 108 147 101 3.0 14.0 3.0 4.1 2.8

3 1 120 462 120 128 44 3.0 12.0 3.0 3.2 1.1

3 2 120 480 120 128 46 3.0 12.0 3.0 3.2 1.2

3 3 120 360 120 126 30 3.0 9.0 3.0 3.2 0.7

3 4 120 511 120 130 51 3.0 13.0 3.0 3.2 1.3

3 5 120 551 120 130 56 3.0 14.0 3.0 3.2 1.4

3 6 120 480 120 128 46 3.0 12.0 3.0 3.2 1.2

Product Orders Placed from Warehouse to Plants Product Shipped to Warehouse from Plants

Daily Distribution Schedule (HYBRID)

Product Inventory at Warehouses Demand Days of Product Inventory at Warehouses 
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Observation:  

• Finished goods inventory held daily at the warehouse were highest for the 

Push Formulation and lowest for the Pull formulation throughout the 

horizon, with the Hybrid Formulation intermediate between the two. 

In addition to the foregoing comparison of the procurement, production and 

distribution schedules, the Push, Pull, and Hybrid Formulations were compared 

along four sets of performance metrics: 

• Net Profit Contribution  
• Capacity utilization 
• Fill rate 
• Leanness (days inventory) 

 
Capacity Utilization 
 

Capacity utilization in the plant was calculated as the amount of time that a 

given line is used for production divided by the total amount of time the line is 

available given the number of shifts available. 

Table 10: Summary of Push Formulation Daily Plant Capacity Utilization 

 

 

 

 

 

Plant Line Min Max Median Mean Std Dev

1 1 0% 100% 56% 73% 27%

1 2 0% 100% 57% 72% 26%

1 3 0% 100% 63% 78% 24%

2 1 0% 100% 56% 73% 27%

2 2 0% 100% 57% 72% 26%

2 3 0% 100% 63% 78% 24%

Plant Production Capacity Utilization (PUSH)
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Table 11: Summary of Pull Formulation Daily Plant Capacity Utilization 

 

Table 12: Summary of Hybrid Formulation Daily Plant Capacity Utilization 

 

Observation:  

• The Push Formulation has significantly higher plant production capacity 

utilization compared to the Pull and Hybrid Formulations.  This is due to the 

Push Formulation producing final goods up to the maximum inventory 

capacity, while the Pull Formulation seeks to produce enough to meet 

demand. 

 
 
 
 
 
 
 
 
 
 

Plant Line Min Max Median Mean Std Dev

1 1 0% 100% 56% 52% 22%

1 2 0% 100% 57% 53% 20%

1 3 0% 100% 63% 58% 18%

2 1 0% 100% 56% 52% 22%

2 2 0% 100% 57% 53% 20%

2 3 0% 100% 63% 58% 18%

Plant Production Capacity Utilization (PULL)

Plant Line Min Max Median Mean Std Dev

1 1 0% 100% 56% 58% 19%

1 2 0% 100% 57% 58% 30%

1 3 0% 100% 63% 61% 26%

2 1 0% 100% 56% 58% 19%

2 2 0% 100% 57% 58% 30%

2 3 0% 100% 63% 61% 26%

Plant Production Capacity Utilization (HYBRID)
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Fill Rate 
 

Fill rate was used as the measure of service level, where fill rate was defined 

as the ratio of deliveries to demand. 

 Table 13: Summary of Push Formulation Daily Warehouse Fill Rates 

 

 

 

 

 

 

 

 

 

Product Warehouse Median Mean Std Dev

1 1 100% 94% 23%

1 2 100% 94% 23%

1 3 100% 94% 23%

1 4 100% 94% 23%

1 5 100% 94% 23%

1 6 100% 94% 23%

2 1 100% 78% 40%

2 2 100% 74% 43%

2 3 100% 72% 42%

2 4 100% 76% 41%

2 5 100% 77% 42%

2 6 100% 72% 43%

3 1 100% 83% 37%

3 2 100% 87% 34%

3 3 100% 84% 36%

3 4 100% 83% 37%

3 5 100% 86% 34%

3 6 100% 84% 36%

Daily Product Fill Rates at Warehouses (PUSH)
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Table 14: Summary of Pull Formulation Daily Warehouse Fill Rates 

 

Table 15: Summary of Hybrid Formulation Daily Warehouse Fill Rates 

 

Product Warehouse Median Mean Std Dev

1 1 100% 94% 23%

1 2 100% 94% 23%

1 3 100% 94% 23%

1 4 100% 94% 23%

1 5 100% 94% 23%

1 6 100% 94% 23%

2 1 100% 78% 40%

2 2 100% 74% 43%

2 3 100% 72% 42%

2 4 100% 76% 41%

2 5 100% 77% 42%

2 6 100% 72% 43%

3 1 100% 83% 37%

3 2 100% 87% 34%

3 3 100% 84% 36%

3 4 100% 83% 37%

3 5 100% 86% 34%

3 6 100% 84% 36%

Daily Product Fill Rates at Warehouses (PULL)

Product Warehouse Median Mean Std Dev

1 1 100% 94% 23%

1 2 100% 94% 23%

1 3 100% 94% 23%

1 4 100% 94% 23%

1 5 100% 94% 23%

1 6 100% 94% 23%

2 1 100% 78% 40%

2 2 100% 74% 43%

2 3 100% 72% 42%

2 4 100% 76% 41%

2 5 100% 77% 42%

2 6 100% 72% 43%

3 1 100% 83% 37%

3 2 100% 87% 34%

3 3 100% 84% 36%

3 4 100% 83% 37%

3 5 100% 86% 34%

3 6 100% 84% 36%

Daily Product Fill Rates at Warehouses (HYBRID)
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Observation:  

• In aggregate, the Push Formulation resulted in the highest fill rates.  This is 

largely because the Push Formulation produced and shipped goods to the 

warehouses up to the maximum capacity, even when it would have been 

operationally preferable to hold inventory in the plant either as finished 

goods, work in process, or raw material. 

Leanness 
 

The amount of inventory in the system reflects the level of leanness of the 

supply chain and is measured as the number of days’ worth of inventory on hand i.e. 

given the average daily demand for a given product, the number of days of demand 

that can be satisfied out of current inventory at the warehouses.   

Given that inventory placement is an experimental variable in the simulation 

component of this analysis, we set the inventory reorder point for raw materials at 

plants, finished goods at plants, as well as finished goods at warehouses at zero.  

These levels will be varied in the computational experiments. 

Absent any overrides, an available optimal solution would be for the 

optimizing model to find a solution with zero ending inventories.  To ensure 

modeling of the supply chain as a going concern at the end of the planning horizon, 

minimum inventory constraints are introduced in the model. 
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Table 16: Push Formulation Ending Raw Material Inventory at Manufacturing Plants 

 
 
Table 17: Pull Formulation Ending Raw Material Inventory at Manufacturing Plants 

 
 
Table 18: Hybrid Formulation Ending Raw Material Inventory at Manufacturing 

Plants 

 
 
Observation:  

• As expected, the ending raw material inventories in all three Formulations 

are at the minimum inventory level. 

 

Raw Mat Plant Day Inventory

1 1 90 315

1 2 90 315

2 1 90 324

2 2 90 324

3 1 90 360

3 2 90 360

Ending Raw Material Inventory (PUSH)

Raw Mat Plant Day Inventory

1 1 90 315

1 2 90 315

2 1 90 324

2 2 90 324

3 1 90 360

3 2 90 360

Ending Raw Material Inventory (PULL)

Raw Mat Plant Day Inventory

1 1 90 315

1 2 90 315

2 1 90 324

2 2 90 324

3 1 90 360

3 2 90 360

Ending Raw Material Inventory (HYBRID)
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Table 19: Push Formulation Ending Product Inventory at Manufacturing Plants 

 
 
Table 20: Pull Formulation Ending Product Inventory at Manufacturing Plants 

 
 
Table 21: Hybrid Formulation Ending Product Inventory at Manufacturing Plants 

 
 
Observation:  

• The Push Formulation had a large non-zero finished goods inventory level at 

the end of the horizon which was then shipped on that day to recognize 

revenue.  The Hybrid Formulation, likewise, had a large non-zero finished 

goods inventory as product could still be shipped and revenue recognized as 

Product Plant Day Inventory Shipment

1 1 90 315 315

1 2 90 315 315

2 1 90 324 324

2 2 90 324 324

3 1 90 360 360

3 2 90 360 360

Ending Product Inventory at Plants (PUSH)

Product Plant Day Inventory Shipment

1 1 90 315 0

1 2 90 315 0

2 1 90 324 0

2 2 90 324 0

3 1 90 360 0

3 2 90 360 0

Ending Product Inventory at Plants (PULL)

Product Plant Day Inventory Shipment

1 1 90 436 436

1 2 90 436 436

2 1 90 906 906

2 2 90 906 906

3 1 90 526 526

3 2 90 526 526

Ending Product Inventory at Plants (HYBRID)
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long as it arrived at the warehouse on horizon end plus lead time.   As 

expected, the Pull Formulation had zero inventory at the end of the horizon 

as the lead time would not allow for goods shipped towards the end of the 

planning horizon to arrive at the warehouse within the planning horizon to 

allow for recognition of the revenue. 

Table 22: Push Formulation Ending Product Inventory at Warehouses 

 

 

 

 

 

 

 

Product Warehouse Day Inventory DaysInv InTransit DaysInTransit DaysMaxInv

1 1 90 525 15.0 75 2.1 15.0

1 2 90 525 15.0 75 2.1 15.0

1 3 90 525 15.0 75 2.1 15.0

1 4 90 495 14.1 75 2.1 15.0

1 5 90 525 15.0 75 2.1 15.0

1 6 90 525 15.0 75 2.1 15.0

2 1 90 532 14.8 30 0.8 15.0

2 2 90 540 15.0 30 0.8 15.0

2 3 90 540 15.0 30 0.8 15.0

2 4 90 524 14.6 30 0.8 15.0

2 5 90 484 13.4 30 0.8 15.0

2 6 90 512 14.2 30 0.8 15.0

3 1 90 600 15.0 0 0.0 15.0

3 2 90 600 15.0 0 0.0 15.0

3 3 90 600 15.0 0 0.0 15.0

3 4 90 600 15.0 0 0.0 15.0

3 5 90 600 15.0 0 0.0 15.0

3 6 90 600 15.0 0 0.0 15.0

Daily Product Fill Rates at Warehouses (PUSH)
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Table 23: Pull Formulation Ending Product Inventory at Warehouses 

 

Table 24a: Hybrid Formulation Ending Product Inventory at Warehouses at Day 90 

 

Product Warehouse Day Inventory DaysInv InTransit DaysInTransit DaysMaxInv

1 1 90 105 3.0 75 2.1 15.0

1 2 90 105 3.0 75 2.1 15.0

1 3 90 105 3.0 75 2.1 15.0

1 4 90 105 3.0 75 2.1 15.0

1 5 90 105 3.0 75 2.1 15.0

1 6 90 105 3.0 75 2.1 15.0

2 1 90 108 3.0 30 0.8 15.0

2 2 90 108 3.0 30 0.8 15.0

2 3 90 108 3.0 30 0.8 15.0

2 4 90 108 3.0 30 0.8 15.0

2 5 90 108 3.0 30 0.8 15.0

2 6 90 108 3.0 30 0.8 15.0

3 1 90 120 3.0 0 0.0 15.0

3 2 90 120 3.0 0 0.0 15.0

3 3 90 120 3.0 0 0.0 15.0

3 4 90 120 3.0 0 0.0 15.0

3 5 90 120 3.0 0 0.0 15.0

3 6 90 120 3.0 0 0.0 15.0

Daily Product Fill Rates at Warehouses (PULL)

Product Warehouse Day Inventory DaysInv InTransit DaysInTransit DaysMaxInv

1 1 90 105 3.0 75 2.1 15.0

1 2 90 105 3.0 75 2.1 15.0

1 3 90 105 3.0 75 2.1 15.0

1 4 90 105 3.0 75 2.1 15.0

1 5 90 105 3.0 75 2.1 15.0

1 6 90 105 3.0 75 2.1 15.0

2 1 90 108 3.0 30 0.8 15.0

2 2 90 108 3.0 30 0.8 15.0

2 3 90 108 3.0 30 0.8 15.0

2 4 90 108 3.0 30 0.8 15.0

2 5 90 108 3.0 30 0.8 15.0

2 6 90 108 3.0 30 0.8 15.0

3 1 90 320 8.0 0 0.0 15.0

3 2 90 240 6.0 0 0.0 15.0

3 3 90 308 7.7 0 0.0 15.0

3 4 90 332 8.3 0 0.0 15.0

3 5 90 240 6.0 0 0.0 15.0

3 6 90 296 7.4 0 0.0 15.0

Daily Product Fill Rates at Warehouses (HYBRID)
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Table 24b: Hybrid Formulation Ending Product Inventory at Warehouses at Day 100 

 

Observation:  

• The Push Formulation leads to significant finished goods inventory at the 

warehouses at the end of the horizon (day 90).  Pull Formulation results in 

minimal finished goods inventory at the end of the horizon.  The Hybrid 

Formulation reflects similar inventory to the Pull Formulation at day 90, but 

those inventories balloon to similar to Push levels at day 100 (note that lead 

times in the model range from 2-6 days). 

 

 

 

 

Product Warehouse Day Inventory DaysInv InTransit DaysInTransit DaysMaxInv

1 1 100 525 15.0 75 2.1 15.0

1 2 100 525 15.0 75 2.1 15.0

1 3 100 525 15.0 75 2.1 15.0

1 4 100 525 15.0 75 2.1 15.0

1 5 100 525 15.0 75 2.1 15.0

1 6 100 525 15.0 75 2.1 15.0

2 1 100 540 15.0 30 0.8 15.0

2 2 100 540 15.0 30 0.8 15.0

2 3 100 540 15.0 30 0.8 15.0

2 4 100 540 15.0 30 0.8 15.0

2 5 100 540 15.0 30 0.8 15.0

2 6 100 540 15.0 30 0.8 15.0

3 1 100 600 15.0 0 0.0 15.0

3 2 100 600 15.0 0 0.0 15.0

3 3 100 600 15.0 0 0.0 15.0

3 4 100 600 15.0 0 0.0 15.0

3 5 100 600 15.0 0 0.0 15.0

3 6 100 600 15.0 0 0.0 15.0

Daily Product Fill Rates at Warehouses (HYBRID)
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Table 25: Net Contribution to Profit 

  

Observations:  

• When recognizing revenues and costs using the cash flow method, the Pull 

Formulation results in the highest net contribution to profit.  This is because 

(i) the Push Formulation manufactures and ships the maximum amount of 

finished goods subject to maximum inventory levels at the warehouse thus 

incurring expenses, but not recognizing revenues since some of the inventory 

is not delivered to meet customer demand; (ii) the Hybrid Formulation 

manufactures and ships finished goods towards the end of the planning 

Component Push Pull Hybrid

Revenue 232,921 235,551 235,551

Raw Material Cost -102,224 -72,875 -80,170

Production Cost -123,229 -88,445 -97,148

Outbound Shipping Cost -19,056 -13,280 -15,224

Line Cleaning Cost -10,134 -10,134 -10,134

Net Contribution to Profit -21,722 50,817 32,875

Component Push Pull Hybrid

Revenue 232,921 235,551 235,551

Raw Material Cost -102,224 -72,875 -80,170

Production Cost -123,229 -88,445 -97,148

Outbound Shipping Cost -19,056 -13,280 -15,224

Line Cleaning Cost -10,134 -10,134 -10,134

Raw Material Carrying Cost -1,847 -1,850 -1,852

Product at Plant Carrying Cost -5,795 -2,920 -3,540

Product In-Transit Carrying Cost -4,633 -3,541 -3,708

Product at Warehouse Carrying Cost -4,410 -2,912 -3,219

Product Inventory Value Change at Plant -4,129 -4,129 2,819

Product Inventory Value Change In-Transit 41,863 0 19,736

Product Inventory Value Change at Warehouse 21,954 -4,442 -1,275

Net Contribution to Profit 21,281 31,023 41,836

Cash Flow Income Statement (in $K)

Accrual Income Statement (in $K)
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horizon to keep the system viable, but does not recognize the revenues 

associated with that production.  The Pull Formulation only produces and 

ships finished goods which will be delivered to customers to recognize 

revenue.  However, it depletes the system and does not leave the supply 

chain as a going concern. 

• When recognizing revenues and costs using the accrual method, the Hybrid 

Formulation results in the highest net contribution to profit.  Unlike the cash 

flow method, the accrual method accounts for all the expenses and costs 

including such non-cash costs as inventory carrying costs.  The Hybrid 

Formulation outperforms the Pull formulation primarily because the Hybrid 

Formulation accounts for the changes in the value of inventory.  The Hybrid 

Formulation manufactures and ships product towards the end of the horizon 

to keep the system viable which is valued and recognized in the Accrual 

method as inventory value change. 

Summary Findings from the Optimizing Model 

Given the cost structures in the supply chain setting laid out in this dissertation, the 

following optimization findings were obtained: 

• The Pull Formulation results in lower expected profitability primarily because 

revenue is recognized only upon receipt of finished goods at the warehouse 

and the model stops producing and shipping product that would not reach the 

warehouse before the end of the planning horizon.  It can leave the firm with 

insufficient inventory to meet demand at the end of the planning horizon 



71 
 

unless explicit constraints on ending inventories are added to the model to 

ensure sufficient safety stocks. 

• The Pull Formulation leads to a much leaner supply chain with respect to 

inventory. 

• The choice of accounting standard (cash flow versus accrual) provides a 

different signal as to the relative merits of the push, pull, and hybrid 

formulations. 

• Analysis of the optimization model results answers Research Question 1 (Do 

accounting policy and value-added metrics significantly affect production 

strategy and optimizing model solutions?) in the affirmative, consistent with 

Xu and Smith (2018).  While Xu and Smith implemented a rolling horizon 

planning model, the current work is a fixed horizon planning model. 
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Chapter 5:  Simulation Model Behavior 

Model Description 

Simulation is a methodology that is well suited for accounting for the 

stochastic nature of deviation and disruption risks.  The simulation model takes as 

its initial inputs, among other factors, the procurement plan, the production plan, 

and the distribution plan that were outputs of the optimization model.    

Raw material orders are shipped in accordance with the Procurement Plan 

that is an output of the optimization model and arrive randomly pursuant to 

stochastic lead times.  Production occurs as capacity and raw materials are available 

and as demand dictates.   Finished goods inventory is shipped daily as necessary 

with consideration of current product shortages at the warehouse.  Arrival dates are 

generated randomly pursuant to stochastic lead times when the shipments are 

released.  Shipment receipts at warehouses are processed on the day they arrive 

with updates to stock in transit and warehouse inventories. 

Steps in simulation model: 
 
1. Read in model parameters and initial conditions 

a. Channel information (for each warehouse and product combination) 

i. Average daily demand 

ii. Average time for delivery from plant to warehouse 

iii. Current amount on order 

iv. Current amount in transit 

v. Production line at the plant used to produce the product 

b. Production rates (for each production line and product produced on the 

line) 

c. Product changeover and cleaning times between product runs (for each 

line) 
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2. Set number of days to be simulated and initial conditions (for each production 

line) 

a. Current setup (product in process or cleaning) on each production line at 

beginning of the day 

b. Maximum number of 8-hour shifts to be operated 

3. Generate daily demands at each warehouse for each product (i.e., for each 

channel) 

4. Deliver product to customers from warehouse inventories in response to 

demand 

a. Ship up to amount ordered (with partial orders if allowed) 

b. Record lost sales for any unmet demands 

5. Update inventory  

6. Accumulate orders for each product at the plant 

7. Update Plant inventories with the day’s production and reduce raw materials by 

amount used in production 

8. Release shipments to a warehouse and set the arrival date based on lead time 

variates.  

9. Update plant raw material inventories, plant finished goods inventories, and 

goods in shipment to warehouses to reflect shipments that are released 

10. Identify raw material shipment arrivals at plants and finished goods arrivals at 

warehouses for the day 

11. Update plant raw material inventory, warehouse finished goods inventories, and 

goods in transit to reflect raw materials and goods received 

12. If simulation limit (in days) is reached, terminate simulation and generate 

performance reports; otherwise return to step 3 

 
Simulation Type 

The simulation type chosen for this study was a terminating simulation 

rather than a steady-state simulation.  This type of simulation was chosen because 

this study investigates the behavior of a firm’s supply chain over a particular period 
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of time.  The simulation begins on Day 1 and terminates on Day 90 which is the end 

of the planning horizon.  Numerous replications of the terminating simulations are 

run to simulate performance under different environments.  This is in contrast with 

a steady-state implementation which would have no specific starting and ending 

conditions, but would have a ramp up period and model performance would be 

extracted once the model arrived at stability.  The terminating approach was 

selected as it better emulates the most common corporate planning and 

performance-reporting practices which typically follow a quarterly cadence. 

Multivariate Normal Generation Process 

The simulation model contains 48 stochastic demand and lead time variables.  

There are 3 products fulfilled at each of 6 warehouses leading to 18 unique demand 

variables.  There are 2 manufacturing plants, with each plant assigned to fulfil 3 

warehouses with the products.  This leads to 18 unique product lead times.  Lastly, 

the 2 manufacturing plants each source 3 raw materials from 2 suppliers for a total 

of 12 unique raw material lead times. 

The stochastic variables are generated from a multivariate normal 

distribution.  Three key inputs are used to generate the distribution: (i) the average 

values of the variables as obtained from the deterministic Optimizing Model, (ii) a 

coefficient of variation (which is itself an experimental variable in the model), and 

(iii) correlation coefficients (also experimental variables in the simulation model).  

In this research, the same correlation coefficients are used for all pairs of variables.  

A sample size is selected reflecting the number of observations of each variable to 

be generated.  The 48 variables are generated such that each is expected to have a 
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mean across the sample equal to the input average value from the Optimizing Model, 

expected to have a sample standard deviation equal to the product of the input 

coefficient of variation and the input average value, and the sample correlation 

coefficient between any two variables is expected to be equal to the input 

correlation coefficient. 

Statistical Analysis of Simulation Variables – Correlation Structure 

 The 48 simulated variables were analyzed to investigate their fidelity to the 

input correlation structure.  For ease of presentation, given that a 48x48 matrix 

would be difficult to fit on one page, the correlation matrices of the sample variables 

are reported in the following charts as scatterplots.  Each dot in the scatterplots 

represents an element in the correlation matrix.  Specifically, there are 48 columns 

in the scatterplot (x-axis) each of which has 48 dots (along the y-axis).  The 2,304 

dots in the scatterplot represent the elements in the 48x48 correlation matrix.  In 

each of the scatterplots, “rho” is the correlation coefficient. 
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Chart 1: Scatterplot of Correlation Matrix with Rho 0.1 run for 90 observations 

 

Chart 2: Scatterplot of Correlation Matrix with Rho 0.1 run for 500 observations 
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Chart 3: Scatterplot of Correlation Matrix with Rho 0.1 run for 1,000 observations 

 

Observation:  

• It takes numerous iterations for the multivariate normal generation process 

to converge to the input correlation parameter.  That is, given an input 

correlation parameter of 0.1, the observed correlations from the multivariate 

normal process ranged from -0.2 to 0.4 for a 90 day iteration run, from -0.14 

to 0.24 for a 500 day iteration run, and from 0 to 0.2 for a 1,000 day iteration 

run. 
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Chart 4: Scatterplot of Correlation Matrix with Rho 0.5 run for 90 observations 

 

Chart 5: Scatterplot of Correlation Matrix with Rho 0.5 run for 500 observations 
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Chart 6: Scatterplot of Correlation Matrix with Rho 0.5 run for 1,000 observations 

 

Observation:  

• It takes numerous iterations for the multivariate normal generation process 

to converge to the input correlation parameter.  Given an input correlation 

parameter of 0.5, the observed correlations from the multivariate normal 

process ranged from 0.24 to 0.68 for a 90 day iteration run, from 0.4 to 0.59 

for a 500 day iteration run, and from 0.45 to 0.56 for a 1,000 day iteration 

run. 
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Chart 7: Scatterplot of Correlation Matrix with Rho 0.9 run for 90 observations 

 

Chart 8: Scatterplot of Correlation Matrix with Rho 0.9 run for 500 observations
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Chart 9: Scatterplot of Correlation Matrix with Rho 0.9 run for 1,000 observations

 

Observations:  

• It takes numerous iterations for the multivariate normal generation process 

to converge to the input correlation parameter.  Given an input correlation 

parameter of 0.9, the observed correlations from the multivariate normal 

process ranged from 0.83 to 0.94 for a 90 day iteration run, from 0.88 to 0.92 

for a 500 day iteration run, and from 0.89 to 0.91 for a 1,000 day iteration 

run. 

• The higher correlation runs (0.9) converge quicker than the lower 

correlation runs (0.1). 

• The 90 day planning horizon chosen for this dissertation has the limitation of 

having observed correlations that can deviate significantly from the input 
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correlation parameter.  To mitigate this limitation, the 90 day planning 

horizon used in the simulation model is run for 200 iterations (see next 

section for justification of the number of iterations) which results in better 

convergence. 

Convergence of Net Profit Contribution to steady state 

 The correlated normal variates were analyzed to determine their statistical 

properties.  Three levels of coefficient of variation and correlation coefficients were 

jointly tested: (i) 0.1, (ii) 0.5, and (iii) 0.9.  To obtain a sense of the time required to 

reach “steady state” for the multivariate normal relationships, three sample sizes 

were tested: (i) a 90 observation sample, (ii) a 500 observation sample, and (iii) a 

1,000 observation sample. 

Convergence tests were run to determine the appropriate number of 

iterations to run in each simulation.  A large number of 1,000 was selected a priori 

as the baseline number of iterations.  The simulation was run at 1,000 iterations and 

certain important outputs, primarily income statement performance metrics, were 

obtained.  The absolute percentage error between the model output at 1,000 

iterations and at various iterations from 50 to 950 in multiples of 50 were calculated 

and graphed. 
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Chart 10: Average Absolute Percentage Deviation of Net Profit Contribution from 
the 1,000-iteration result (Push Formulation – CV 0.5 – Correlation Coefficient 0.5) 
 

 

Chart 11: Net Profit Contribution Solution Error for 1,000 iterations (Pull 
Formulation – CV 0.5 – Correlation Coefficient 0.5) 
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Chart 12: Net Profit Contribution Solution Error for 1,000 iterations (Hybrid 
Formulation – CV 0.5 – Correlation Coefficient 0.5) 
 

 

Observation:  

• The income statement performance metrics largely converged by 200 

iterations, with the absolute percentage error relative to 1,000 iterations 

decreasing from approximately 3% at 50 iterations to approximately 

0.5% at 200 iterations (Hybrid Formulation).   
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Income Statements from Simulation Model 

Table 26: Net Contribution to Profit 

 

Observations:  

• The Hybrid Formulation is most stable and provides results that are superior 

to the Push and the Pull Formulations.  Thus, it will be used as the basis of the 

stochastic experiments. 

Summary Findings from the Simulation Model 

Simulation Findings: 
 

• Results tend to converge as the number of observations (iterations) 

increases.  Results thus have more reliability when they are arrived at when 

Component Push Pull Hybrid

Revenue 236,555 221,924 235,781

Raw Material Cost -101,891 -73,236 -79,691

Production Cost -116,711 -83,843 -92,073

Outbound Shipping Cost -18,072 -12,561 -14,459

Line Cleaning Cost -10,134 -10,134 -10,134

Net Contribution to Profit -10,253 42,150 39,424

Component Push Pull Hybrid

Revenue 236,555 221,924 235,781

Raw Material Cost -101,891 -73,236 -79,691

Production Cost -116,711 -83,843 -92,073

Outbound Shipping Cost -18,072 -12,561 -14,459

Line Cleaning Cost -10,134 -10,134 -10,134

Raw Material Carrying Cost -4,040 -3,867 -3,587

Product at Plant Carrying Cost -5,165 -3,013 -3,645

Product In-Transit Carrying Cost -4,615 -3,414 -3,933

Product at Warehouse Carrying Cost -2,982 -1,608 -1,653

Product Inventory Value Change at Plant -2,717 -2,009 1,777

Product Inventory Value Change In-Transit 34,011 1,068 14,242

Product Inventory Value Change at Warehouse 15,128 -9,977 -4,776

Net Contribution to Profit 19,367 19,330 37,849

Cash Flow Income Statement (in $K)

Accrual Income Statement (in $K)
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running large sample sizes.  However, there is a trade-off between reliability 

and the time and computational resources needed.   

• The higher the assumed input variability (coefficient of variation) the larger 

the number of observations (iterations) needed in order to converge.  Thus, 

for a given number of iterations higher coefficient of variation scenarios are 

less reliable than lower ones. 

• Analysis of the simulation model income statements affirms the optimization 

model answer to Research Question 1 (Do accounting policy and value-added 

metrics significantly affect production strategy and optimizing model 

solutions?) as “yes”. 
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Chapter 6:  Supply Chain Risk Analysis 

Computational Experiments 

Several computational experiments were conducted to determine the impact 

of risk on the modelled supply chain.  The experiments involved introducing 

variability in a number of key factors in the model. 

Deviations 

Deviations are realized in the model as what Hajmohammad and Vachon (2016) 

refer to as “speculative risks”.  These are risks which can result in a gain relative to 

the starting position. 

• Demand:  Average daily product demand at the warehouses is an input into 

the model (there are 3 products and 6 warehouses for 18 channel 

combinations.  The 18-daily product-warehouse demands are subject to 

variation.  Their variations are studied as an experimental factor.   The 

variations are investigated at a low setting (coefficient of variation = 0.3) and 

at a high setting (coefficient of variation = 0.7).  Additionally, the correlations 

of the variations of the product demands, as well as the product and raw 

material lead times are investigated at a low setting (correlation coefficient = 

0.3) and at a high setting (correlation coefficient = 0.7). The distribution from 

which demands are selected is adjusted-normal as the left tail is truncated to 

ensure no negative demands.  An adjusted-normal distribution was selected 

for demands over a Poisson distribution for ease of implementation and to 

allow for more straightforward and tractable correlations with the lead time 

variables. 
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• Lead times:  There are two sets of lead times in the model.  First, the delivery 

of raw materials from suppliers to manufacturing plants requires a lead time.  

Second, the delivery of finished goods from the manufacturing plants to the 

warehouses requires a separate lead time.   18-daily manufacturing plant to 

warehouse lead times, as well as the 12-daily supplier to manufacturing plant 

lead times are generated.  Their variations are investigated at a low setting 

(coefficient of variation = 0.3) and at a high setting (coefficient of variation = 

0.7).  Additionally, the correlations of the variations of the product demands, 

as well as the product and raw material lead times are investigated at a low 

setting (correlation coefficient = 0.3) and at a high setting (correlation 

coefficient = 0.7).  The distribution from which lead times are selected is 

adjusted-normal as the left tail is truncated to a minimum of 1 day lead time.  

An adjusted-normal distribution was selected for lead times over a lognormal 

distribution for ease of implementation and to allow for more 

straightforward and tractable correlations with the demand variables. 

Disruptions  

Disruptions are realized in the model as what Hajmohammad and Vachon 

(2016) refer to as “pure risks”.  These are risks which cannot result in a gain relative 

to the starting position. 

• Production:  The probability of a production disruption occurring is selected 

from a binomial distribution.  Low probability reflects a 1% chance of 

occurrence on any given day while high probability reflects a 5% chance.  

When a production disruption occurs, the severity can either be low (1 day) 
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or high (5 days).  For production that means that no transformation of raw 

materials to finished goods can occur for the specified period.  This is 

implemented by setting the production capacity to zero for the relevant 

period. 

• Distribution:  The probability of a distribution disruption occurring is 

selected from a binomial distribution.  Low probability reflects a 1% chance 

of occurrence on any given day while high probability reflects a 5% chance.  

When a distribution disruption occurs, the severity can either be low (1 day) 

or high (5 days).  Distribution disruptions are implemented as an additional 

lead time of the specified severity being added to the lead time obtained from 

the multivariate normal generation process. 

The disruption variables (probability and severity) are selected 

independently of the deviation variables (demand and lead time) i.e. the disruption 

variables are not introduced into the multi-variate normal generation process.  Thus, 

no correlation between the disruption variables and deviation variables is enforced. 

Simulation Process 

The simulation process is initialized with the deterministic Procurement, 

Production, and Distribution Plans.  Briefly, the simulation model begins with the 

Procurement plan from the MILP, which determines the expected amount of raw 

materials ordered and shipped on each day of the planning horizon.  While the MILP 

had deterministic lead times from suppliers to the manufacturing plant, the 

simulation model obtains stochastic lead times generated from the Multi Variate 

Normal (MVN) process.  Consequently, with respect to “deviation risk” raw 
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materials in the simulation model have different arrival times at the manufacturing 

plants compared to the MILP.  Additionally, with respect to “disruption risk” 

supplier disruptions are introduced following a binomial probability distribution 

each for probability of occurrence (low =1%, high = 5%) and severity of occurrence 

(low =1 day, high = 5 days).  For example, in the instance where a supplier 

disruption occurs and it is of a high severity level, then 5 days are added to the lead-

time for that shipment that was drawn from the MVN process. 

For production, the simulation model takes the MILP Production Plan as the 

starting point.  For any day where there are sufficient resources (raw materials, 

production capacity) to produce according to the deterministic Production Plan, 

production will follow that plan.  However, if there are insufficient resources e.g. 

raw materials are running low, then production on that day will occur up to the level 

supported by available resources.  Given the stochastic arrival of raw materials at 

the manufacturing plant, actual manufacturing output may deviate from the MILP 

plan.  Additionally, “disruption risk” is introduced into production following a 

binomial probability distribution each for probability of occurrence (low =1%, high 

= 5%) and severity of occurrence (low =1 day, high = 5 days).  For example, in the 

instance where a production disruption occurs and it is of a low severity level, then 

production capacity is eliminated for 1 day thus no transformation of raw materials 

to finished goods occurs during the disruption. 

For outbound distribution, the simulation model begins with the MILP 

Distribution plan.  For any day where there are sufficient finished goods at the 

manufacturing plant to ship according to the deterministic Distribution Plan, 
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shipping will follow that plan.  However, if the finished goods inventory is running 

low, quantity shipped on that day will occur up to the level supported by the amount 

of available inventory.  The simulation model will obtain that shipment’s lead-time 

from the manufacturing plant to the warehouse from the MVN process.  Further, 

“disruption risk” is introduced following a binomial probability distribution each for 

probability of occurrence (low =1%, high = 5%) and severity of occurrence (low =1 

day, high = 5 days).  For example, in the instance where an outbound shipping 

disruption occurs and it is of a high severity level, then 5 days are added to the lead-

time for that shipment that was drawn from the MVN process.  For delivery of 

finished goods at the warehouse, final demand is obtained from the MVN process.  

Simulated demand thus deviates from the MILP plan and is satisfied to the extent 

that sufficient inventory exists at the warehouse.  Otherwise, unfilled demand is 

placed on backorder.  Backorders are given priority in fulfillment on subsequent 

days relative to regular orders as finished goods arrive at the warehouse from the 

manufacturing plants. 

Simulation Experimental Plan  

 To get a baseline understanding of the impact of variation in demand and 

lead time, the correlation of these variables, as well as the random introduction of 

disruption, a set of stochastic scenarios was defined.  The multivariate normal 

process generated variables such that they would either have a low level of 

correlation (correlation coefficient of 0.3 among all variables) or a high level of 

correlation (correlation coefficient of 0.7 among all variables).  Additionally, 

disruption of the daily production plan was introduced either at a probability of 0 
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(no disruption), 1% (low disruption), and 5% (high disruption).   Independently, 

severity of disruption was modelled as days to recovery with one of three values: 0, 

1 (low), or 5 (high).   From the foregoing, a set of eight distinct scenarios was 

defined as in Tables 27a and 27b capturing various combinations of volatility, 

correlation, and disruption.  While this less-than-full-factorial design left open the 

possibility of confounding variables affecting the results in ways that were not 

controlled for and therefore not explicitly studied, the large number of parameters 

in the simulation model made a full factorial design impracticable.  That is, given the 

trade-off between modeling the supply chain as realistically as possible (with as 

many parameters as were necessary) versus implementing a design of experiment 

that eliminated all confounding factors, the choice was made to privilege the 

realistic modeling of the supply chain.  All observations and findings ensuing from 

the upcoming computational experiments are to be understood in light of the 

limitation that interactions among various factors in the simulation model cannot be 

explicitly disentangled. 

Table 27a: Description of Computational Experiments 

Scenario 

Mnemonic 

Description 

Sim 1 Low volatility of demand, raw material lead times, and finished goods lead 

times, with low correlation among them.  No disruptions. 

(VolLowCorrLowDisruptNone) 

Sim 2 High volatility of demand, raw material lead times, and finished goods lead 

times, with low correlation among them.  No disruptions. 

(VolHighCorrLowDisruptNone) 
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Sim 3 Low volatility of demand, raw material lead times, and finished goods lead 

times, with high correlation among them.  No disruptions. 

(VolLowCorrHighDisruptNone) 

Sim 4 High volatility of demand, raw material lead times, and finished goods lead 

times, with high correlation among them.  No disruptions. 

(VolHighCorrHighDisruptNone) 

Sim 5 Low volatility of demand, raw material lead times, and finished goods lead 

times, with low correlation among them.  Low disruptions. 

(VolLowCorrLowDisruptLow) 

Sim 6 Low volatility of demand, raw material lead times, and finished goods lead 

times, with low correlation among them.  High disruptions. 

(VolLowCorrLowDisruptHigh) 

Sim 7 High volatility of demand, raw material lead times, and finished goods lead 

times, with high correlation among them.  Low disruptions. 

(VolHighCorrHighDisruptLow) 

Sim 8 High volatility of demand, raw material lead times, and finished goods lead 

times, with high correlation among them.  High disruptions. 

(VolHighCorrHighDisruptHigh) 

 

Table 27b: Select Input Values for the Computational Experiments 

Mne-

monic 

Descriptor CV of 

Demand 

CV of 

Product 

Lead 

Time 

CV of 

Raw 

Mat 

Lead 

Time 

Corr 

Co-

efficient 

Disruption 

Probability 

Severity 

/ Time 

to 

Recover 

Sim 1 VolLowCorrLowDisruptNone 0.3 0.3 0.3 0.3 0 0 

Sim 2 VolHighCorrLowDisruptNone 0.7 0.7 0.7 0.3 0 0 

Sim 3 VolLowCorrHighDisruptNone 0.3 0.3 0.3 0.7 0 0 

Sim 4 VolHighCorrHighDisruptNone 0.7 0.7 0.7 0.7 0 0 

Sim 5 VolLowCorrLowDisruptLow 0.3 0.3 0.3 0.3 1% 1 day 
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Sim 6 VolLowCorrLowDisruptHigh 0.3 0.3 0.3 0.3 5% 5 days 

Sim 7 VolHighCorrHighDisruptLow 0.7 0.7 0.7 0.7 1% 1 day 

Sim 8 VolHighCorrHighDisruptHigh 0.7 0.7 0.7 0.7 5% 5 days 

 
Computational Experiments Results: Deviations 

Chart 13: Cash Flow Net Profit Contribution: Simulations 1-4 (No disruptions) 
 

 
 
In reading the boxplot, note that the bottom of the box reflects the lower quartile 
(Q1) value while the top of the box reflects the upper quartile (Q3) value.  The 
median is marked by the horizontal line in the box.  The whiskers, the two lines 
outside the box, extend to the highest and lowest observed values. 
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Table 28a: Cash Flow Net Profit Contribution by Scenario – No disruptions 
 

 
 
Chart 14: Accrual Net Profit Contribution: Simulations 1-4 (No disruptions) 

 

 
 
Table 28b: Accrual Net Profit Contribution by Scenario – No disruptions 
 

 
 
 
 

Mnemonic Descriptor Mean Std Dev Min Max

Sim 1 VolLow CorrLow DisruptNone 37,403 2,495 31,395 44,283

Sim 2 VolHigh CorrLow DisruptNone 42,081 3,870 27,840 51,017

Sim 3 VolLow CorrHighDisruptNone 38,007 3,577 29,325 47,946

Sim 4 VolHigh CorrHigh DisruptNone 41,942 4,960 25,316 52,377

Net Cash Flow Profit Contribution

Mnemonic Descriptor Mean Std Dev Min Max

Sim 1 VolLow CorrLow DisruptNone 36,769 4,175 27,070 49,748

Sim 2 VolHigh CorrLow DisruptNone 40,449 6,184 25,162 58,436

Sim 3 VolLow CorrHighDisruptNone 37,428 5,844 23,391 53,198

Sim 4 VolHigh CorrHigh DisruptNone 40,067 8,268 17,994 60,364

Net Accrual Profit Contribution
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Observations: 
 

• Holding the correlation coefficient constant, both the mean net profit 

contribution and the standard deviation of the net profit contribution 

increase with the coefficient of variation.  This is likely attributable to the 

positive skew introduced in the demand distribution by the adjusted normal 

distribution. 

• Holding the coefficient of variation constant, the correlation coefficient has 

modest impact on net profit contribution under both Cash Flow and Accrual 

Accounting. 

Computational Experiments Results: Disruptions 

Chart 15: Cash Flow Net Profit Contribution: Simulations 5-8 
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Table 29a: Cash Flow Net Profit Contribution by Scenario – with disruptions 

 

Chart 16: Accrual Net Profit Contribution: Simulations 5-8 

 
 
Table 29b: Accrual Net Profit Contribution by Scenario – with disruptions 

 

Mnemonic Descriptor Mean Std Dev Min Max

Sim 5 VolLow CorrLow DisruptLow 38,353 2,445 32,603 45,376

Sim 6 VolLow CorrLow DisruptHigh 25,586 7,397 7,842 37,432

Sim 7 VolHigh CorrHigh DisruptLow 42,027 4,659 26,748 51,852

Sim 8 VolHigh CorrHigh DisruptHigh 22,658 8,565 -3,286 37,241

Net Cash Flow Profit Contribution

Mnemonic Descriptor Mean Std Dev Min Max

Sim 5 VolLow CorrLow DisruptLow 37,338 4,113 27,730 49,060

Sim 6 VolLow CorrLow DisruptHigh 20,486 10,224 -5,010 39,444

Sim 7 VolHigh CorrHigh DisruptLow 39,802 8,067 18,555 58,196

Sim 8 VolHigh CorrHigh DisruptHigh 17,357 11,309 -16,280 38,062

Net Accrual Profit Contribution
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Observation:  

• The scenario with the highest disruption had significantly lower net profit 

contribution and higher standard deviation of net profit contribution.  Disruption 

effects dominate the effects due to the coefficient of variation and the correlation 

coefficient. 

Computational Experiments Findings  

Given the cost structures in the supply chain setting laid out in this dissertation, 

the following simulation findings were obtained: 

• Absent disruptions, the mean value of supply chain performance (mean 

net contribution to profit) and the variability of net contribution to profit 

increase with both coefficient of variation and with the correlation of 

coefficient, consistent with the expectation of “speculative” risks. 

• Disruptions decrease the mean net contribution to profit and increase the 

variability of net contribution to profit, consistent with the expectation of 

“pure” risks. 
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Chapter 7:  Supply Chain Risk Mitigation 

The remaining three research questions are addressed in this chapter: 

• Q2: Are the best risk mitigation strategies contingent on the nature of 

the particular risks (frequency, severity, correlation)?  Or, 

alternatively, are certain risk mitigation strategies globally optimal 

(dominate all others)? 

• Q3: Is there a portfolio effect among risk mitigation strategies?  That 

is, on a risk-adjusted basis, will a combination of mitigation strategies 

outperform each individual mitigation strategy? 

• Q4: Can a blend of risk mitigation strategies be constructed that 

constitute a Pareto efficient frontier with respect to the performance 

measure (net profit contribution) versus the risk measure (standard 

deviation of net profit contribution) thus providing a basis for trading 

off risk versus performance? 

The introduction of risk due to variability in demand, lead times, and 

disruptions leads to significant variability in performance.  Specifically, net profit 

contribution, service level, leanness, and capacity utilization vary considerably in 

the various iterations in each simulation.  To determine the impact of various risk 

mitigation strategies on the performance metrics, four strategies were investigated: 

(i) inventory placement, (ii) expediting, (iii) production flexibility, and (iv) a 

combination of inventory placement, expediting, and production flexibility. 
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Inventory Placement 

• Finished goods:  Two locations for holding finished goods inventory were 

studied: (i) the manufacturing plants, and (ii) the warehouses.   

• Raw materials:  raw materials inventory may be stored in the manufacturing 

plants over and above the amount determined to be optimal by the 

optimization model. 

Flexibility 

• Expediting:  One way of implementing supply chain flexibility in the model is 

allowing for deliveries to reach either the manufacturing plant (raw 

materials) or the warehouses (finished goods) much faster than the standard 

lead times.  A higher shipping cost is imposed on expedited raw materials and 

finished goods. 

• Production flexibility:  Another way of implementing supply chain flexibility in 

the model is allowing for production plan pre-emption i.e. the goods to be 

produced on any given day will be determined, in part, by the relative level of 

inventory of the various finished goods inventories at the warehouses with 

the goal of changing production plans to prioritize finished goods that are at 

low inventory levels in the simulations.  In the model this risk management 

strategy is implemented by beginning with the production plan from the 

optimizing model and revising it depending on the level of stochastic demand 

with consideration given to available production capacity.  
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Description of Risk Mitigation Heuristics 

The introduction of deviation and disruption risks can significantly reduce 

the amount of finished goods available at the warehouse for delivery to satisfy 

demand.  To study the impact of risk mitigation strategies, inventory placement, 

expediting, and production flexibility are introduced as follows: 

Inventory Placement: 

The simulation model begins with the MILP solution, which includes a given level of 

safety stock inventory for raw materials at the manufacturing plant, finished goods 

at the manufacturing plant, and finished goods at the warehouse (these were all 

initialized at 5 days’ worth of inventory).  To study the impact of inventory 

placement, each of the safety stock levels was raised by 3 days’ worth of inventory 

to investigate how well the increased inventory would cover the stochastic lead 

times and disruption events.  The cost of the additional inventory was also captured 

in the simulation. 

Expediting: 

Expediting was modelled as the shipment of finished goods from the manufacturing 

plant to the warehouse for delivery with a 1-day lead-time.  An expediting trigger 

was defined and was an experimental factor.  For example, an expediting trigger of 3 

meant that expediting was allowed when the On backorder orders at the warehouse 

from unmet demand reached 3 times the average daily demand.  When triggered, 

stochastic lead times as well as any potential disruption lead times that would 

otherwise be assigned to that shipment were overridden and expedited such that 

the shipment arrived at the warehouse for delivery to meet customer demand 1 day 
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after it was shipped from the manufacturing plant.  Shipping costs on expedited 

shipments were modelled as twice those of regular shipments. 

Production Flexibility: 

Production flexibility allowed the transformation of raw materials to finished goods 

to significantly deviate from the MILP Production plan.  Production flexibility was 

triggered when there was unmet demand at the warehouse that was leading to 

orders being placed on backorder.  Flexibility was implemented by allowing the 

production process to increase beyond the MILP plan subject to not exceeding 

overall plant capacity.  Additionally, if there was one product that was primarily low 

and on backorder while other products had inventory above their safety stock then 

production capacity was allocated to the low product in order to increase its 

production and increase its inventory levels. 

Risk Management Experimental Plan 

The four risk mitigation strategies were implemented to determine their 

impact on supply chain performance in the face of risk and were applied in each of 

the eight risk scenarios (scenarios are described in Tables 27a and 27b).  The 

objective was to determine (i) the impact of each risk mitigation strategy on the 

various stochastic scenarios, and (ii) to compare the relative performance of the risk 

mitigation strategies.  Eight case studies, as described in Table 30, were designed as 

the basis for investigating the risk mitigation strategies. 
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Table 30: Description of Case Studies 

Case 

# 

Simulation 

# 

Description 

I Sim 1 Low volatility of demand, raw material lead times and finished 

goods lead times, with low correlation among them.  No disruptions. 

II Sim 2 High volatility of demand, raw material lead times and finished 

goods lead times, with low correlation among them.  No disruptions. 

III Sim 3 Low volatility of demand, raw material lead times and finished 

goods lead times, with high correlation among them.  No 

disruptions. 

IV Sim 4 High volatility of demand, raw material lead times and finished 

goods lead times, with high correlation among them.  No 

disruptions. 

V Sim 5 Low volatility of demand, raw material lead times and finished 

goods lead times, with low correlation among them.  Low 

disruptions. 

VI Sim 6 Low volatility of demand, raw material lead times and finished 

goods lead times, with low correlation among them.  High 

disruptions. 

VII Sim 7 High volatility of demand, raw material lead times and finished 

goods lead times, with high correlation among them.  Low 

disruptions. 

VIII Sim 8 High volatility of demand, raw material lead times and finished 

goods lead times, with high correlation among them.  High 

disruptions. 

NOTE: Simulation # in Table 30 reflects the simulation identifier in Tables 27a and 
27b 
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The risk mitigation strategies were applied as treatments to the various cases as 

summarized below. 

Treatment A 

• Inventory placement: raw materials and finished goods at production plants, 
and finished goods at warehouses 
 

Treatment B 

• Expediting 
 

Treatment C 

• Production re-planning 
 
Treatment D 

• Inventory placement: raw materials and finished goods at production plants, 
and finished goods at warehouses 

• Expediting 
• Production re-planning 

 
Risk Mitigation Results  

 Simulations 1, 2, 3, 4, 5, 6, 7, and 8 were the foundations of the stochastic 

experiments.  These eight scenarios reflected risk acceptance because they do not 

involve the implementation of any risk mitigation strategies.  The results of each 

base simulation experiment were obtained and formed the basis for comparison to 

the results of each of the four risk mitigation strategies.  The risk mitigation 

strategies were implemented under the same conditions as the base simulation 

experiments.  The objective was to determine the impact of risk mitigation on the 

stochastic scenarios.  The mean net profit contribution and the standard deviation of 

the net profit contribution for each base scenario were compared to the 
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performance metrics of the appropriate risk mitigation strategies to determine the 

impact of the various risk mitigation strategies on the performance metrics. 

Statistical Analysis  

 Statistical analysis was employed to study the results for each of the eight 

case studies (each of which contains five scenarios – the base scenario plus the four 

risk mitigation scenarios).  Specifically, the objective was to test whether the mean 

Net Profit Contributions of the risk mitigation scenarios were statistically different 

from the mean Net Profit Contributions of the base case scenarios.  This would 

provide evidence for or against the hypothesis that the various risk mitigation 

scenarios had an impact on the supply chain in the face of deviation and disruption 

risks.  Prior to selecting an appropriate statistical analysis technique to test whether 

the mean performance metric was different across treatments, a number of 

observations of the data were made.  First, the Net Profit Contribution was deemed 

the continuous, response variable while the mnemonic that identified each scenario 

was the classification, independent variable.  Second, variances were recognized to 

be heterogeneous across scenarios.  The differences in variances were a result of (i) 

the input assumption (coefficient of variation was different across scenarios), (ii) 

random incidence and severity of disruption risk, and (iii) the consequence of the 

risk mitigation strategies.  Third, the data was balanced, with 200 observations for 

each scenario.  Given the foregoing data characteristics, especially its heterogeneity, 

three sets of statistical analyses were performed.   

 First, the parametric procedure Analysis of Variance (ANOVA) was used to 

test whether the risk mitigation results were statistically different.  Despite the 
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heterogeneity of the complete set of data, ANOVA was appropriate given that the 

data was studied in subsets whose differences in variance was much lower than that 

of the entire data set.  For example, Case I (simulations 1, 9, 10, 11, and 12) 

consisted of data obtained from simulations exposed to low coefficient of variation, 

low correlation, and no disruptions while case VIII (simulations 8, 37, 38, 39, and 

40) consisted of data obtained from simulations exposed to high coefficient of 

variation, high correlation, and high disruption.  ANOVA allowed us to determine 

whether any of the means of the scenarios in a given case were different (there were 

five scenarios in each case – the base scenario plus the four risk mitigation 

scenarios).  Additionally, the Waller-Duncan post hoc means comparison test was 

conducted.  This range test can identify which set of means among the various 

scenarios are significantly different from which other set and which sets of 

scenarios have means which are not significantly different.  This provided additional 

information beyond the F-test in the ANOVA.  The ANOVA F-test can lead us to 

conclude that the means of the various scenarios in the ANOVA are significantly 

different if even one pair is different.  The F-test does not identifying which pair or 

set is different.  The Waller-Duncan test groups the various scenarios so that we can 

tell which scenarios are significantly different and which ones are not significantly 

different from each other.  The ANOVA results are reported in Tables 31a through 

32h. 

Second, to confirm that the results of the ANOVA test were not biased by the 

heterogeneity of the data, a non-parametric procedure for analyzing the risk 

management results was also employed.  The procedure selected was the Kruskal-
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Wallis one-way analysis of variance.  This procedure is a generalization of the 

Wilcoxon rank-sum test where the response variables from test groups are 

aggregated and ranked without regard to group membership.  The ranks are then 

summed by group.  The test is computed by comparing the ranked sums.  In the 

current analysis, five groups (scenarios) of results are compared at a time.  The null 

hypothesis of the Kruskal-Wallis test is that the five scenarios are drawn at random 

from identical populations and so the summed ranks are expected to be similar.  

Failing to reject the null hypothesis would suggest that there is no significant 

difference in the data distribution among the five samples.  In that case, the 

conclusion may be drawn that the various risk mitigation strategies do not have a 

differential impact on the stochastic scenarios.  Rejecting the null hypothesis, by 

contrast, would call for the conclusion that the risk mitigation strategies lead to 

different Net Profit Contribution performance.  The Kruskal-Wallis one-way analysis 

of variance results are reported in Tables 33a through 34h. 

Third, in order to compare the results of the individual risk mitigation 

strategies to the base case (risk acceptance), pairwise T-test analyses were run to 

study the means of the various simulation results with allowance for unequal 

variances.  The goal was to identify which individual risk mitigation strategies were 

statistically significantly different from risk acceptance.  The “Sattertwaite” 

approximation of the standard errors does not assume that the variances of the two 

samples are equal and is thus the appropriate reading in cases of heterogeneity.  The 

T-test results are reported in Table 35. 
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Cases I-IV: Cash Flow Accounting 

 Cases I-IV reflect “speculative” risk scenarios where variation is introduced 

in demand and lead time, but with no disruptions.  The objective was to test the 

impact of risk mitigation in the face of different levels of deviations (demand 

volatility, lead time volatility, and different levels of correlation coefficients).  Case I 

reflects low volatility of demand, raw material lead times and finished goods lead 

times, with low correlation among them and no disruptions.  Case II reflects high 

volatility of demand, raw material lead times and finished goods lead times, with 

low correlation among them and no disruptions.  Case III reflects low volatility of 

demand, raw material lead times and finished goods lead times, with high 

correlation among them and no disruptions, while Case IV reflects high volatility of 

demand, raw material lead times and finished goods lead times, with high 

correlation among them and no disruptions.  The results for each case with the base 

simulation scenario and the four risk management treatments were as follows: 

Table 31a: Cash Flow Net Profit Contributions for Case I 

 

Mnemonic Descriptor Mean Std Dev Min Max

Sim 1 VolLow CorrLow DisruptNone 37,403 2,495 31,395 44,283

Sim 9 VolLow CorrLow DisruptNone - Invyes Expno Flexno 33,118 2,904 26,177 40,336

Sim 10 VolLow CorrLow DisruptNone - Invno Expyes Flexno 38,910 2,596 32,660 46,067

Sim 11 VolLow CorrLow DisruptNone - Invno Expno Flexyes 31,763 2,325 25,714 38,555

Sim 12 VolLow CorrLow DisruptNone - Invyes Expyes Flexyes 25,929 2,307 20,280 32,410

Net Cash Flow Profit Contribution
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Table 31b: Cash Flow Net Profit Contributions for Case II 

 

 

 

 

 

Source DF Sum of Squares Mean Square F Value Pr > F

Model 4 20,992,328,946  5,248,082,236 817 <.0001

Error 995 6,393,465,373    6,425,593        

Corrected Total 999 27,385,794,319  

R-Square Coeff Var  Root MSE  TotalCF Mean 

0.77 7.58 2,535                33,425            

Source DF  Anova SS  Mean Square F Value Pr > F

Mnemonic 4 20,992,328,946  5,248,082,236 817 <.0001

Case I 

ANOVA of Cash Flow Net Contribution

Dependent Variable: TotalCF   

The ANOVA Procedure

Mnemonic Descriptor Mean Std Dev Min Max

Sim 2 VolHigh CorrLow DisruptNone 42,081 3,870 27,840 51,017

Sim 13 VolHigh CorrLow DisruptNone - Invyes Expno Flexno 39,478 5,635 22,964 53,273

Sim 14 VolHigh CorrLow DisruptNone - Invno Expyes Flexno 44,080 4,054 29,162 53,441

Sim 15 VolHigh CorrLow DisruptNone - Invno Expno Flexyes 36,077 4,569 17,545 48,476

Sim 16 VolHigh CorrLow DisruptNone - Invyes Expyes Flexyes 30,620 4,670 13,733 42,745

Net Cash Flow Profit Contribution

Source DF

Sum of 

Squares Mean Square F Value Pr > F

Model 4 22,577,007,045 5,644,251,761 267 <.0001

Error 995 21,064,311,415 21,170,162      

Corrected Total 999 43,641,318,460 

R-Square Coeff Var  Root MSE  TotalCF Mean 

0.52 11.96 4,601                38,467            

Source DF  Anova SS  Mean Square F Value Pr > F

Mnemonic 4 22,577,007,045 5,644,251,761 267 <.0001

Case II

ANOVA of Cash Flow Net Contribution

Dependent Variable: TotalCF   

The ANOVA Procedure
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Table 31c: Cash Flow Net Profit Contributions for Case III 

 

 

Table 31d: Cash Flow Net Profit Contributions for Case IV 

 

Mnemonic Descriptor Mean Std Dev Min Max

Sim 3 VolLow CorrHighDisruptNone 38,007 3,577 29,325 47,946

Sim 17 VolLow CorrHigh DisruptNone - Invyes Expno Flexno 33,559 4,206 23,689 46,345

Sim 18 VolLow CorrHigh DisruptNone - Invno Expyes Flexno 40,361 3,799 31,141 50,915

Sim 19 VolLow CorrHigh DisruptNone - Invno Expno Flexyes 32,290 3,254 24,718 40,103

Sim 20 VolLow CorrHigh DisruptNone - Invyes Expyes Flexyes 26,453 3,347 18,882 34,796

Net Cash Flow Profit Contribution

Source DF

Sum of 

Squares Mean Square F Value Pr > F

Model 4 23,299,824,863 5,824,956,216 437 <.0001

Error 995 13,276,597,693 13,343,314      

Corrected Total 999 36,576,422,556 

R-Square Coeff Var  Root MSE  TotalCF Mean 

0.64 10.70 3,653                34,134            

Source DF  Anova SS  Mean Square F Value Pr > F

Mnemonic 4 23,299,824,863 5,824,956,216 437 <.0001

Case III

ANOVA of Cash Flow Net Contribution

Dependent Variable: TotalCF   

The ANOVA Procedure

Mnemonic Descriptor Mean Std Dev Min Max

Sim 4 VolHigh CorrHigh DisruptNone 41,942 4,960 25,316 52,377

Sim 21 VolHigh CorrHigh DisruptNone - Invyes Expno Flexno 40,231 7,842 20,063 57,712

Sim 22 VolHigh CorrHigh DisruptNone - Invno Expyes Flexno 44,712 5,287 26,988 55,836

Sim 23 VolHigh CorrHigh DisruptNone - Invno Expno Flexyes 36,219 6,146 21,133 49,994

Sim 24 VolHigh CorrHigh DisruptNone - Invyes Expyes Flexyes 31,091 6,460 15,641 47,747

Net Cash Flow Profit Contribution
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Chart 17: Comparison of Risk Mitigation Scenarios 

 

Observations:  

• In each case, the distribution of the Net Profit Contribution of the five 

scenarios, in aggregate, are significantly different. 

Source DF

Sum of 

Squares Mean Square F Value Pr > F

Model 4 22,588,524,673 5,647,131,168 146 <.0001

Error 995 38,517,900,392 38,711,458      

Corrected Total 999 61,106,425,065 

R-Square Coeff Var  Root MSE  TotalCF Mean 

0.37 16.02 6,222                38,839            

Source DF  Anova SS  Mean Square F Value Pr > F

Mnemonic 4 22,588,524,673 5,647,131,168 146 <.0001

Case IV

ANOVA of Cash Flow Net Contribution

Dependent Variable: TotalCF   

The ANOVA Procedure



112 
 

• In the presence of deviations (and absent disruptions), expediting as a risk 

management strategy dominates other alternatives. 

Cases V-VIII: Cash Flow Accounting 

 Cases V-VIII reflect a combination of “speculative” and “pure” risk scenarios 

where variation is introduced in demand and lead time as well as disruptions.  The 

objective is to test the impact of risk mitigation in the face of different levels of 

deviations (demand volatility, lead time volatility, and different levels of correlation 

coefficients) as well as different levels of disruptions.  Case V reflects low volatility 

of demand, raw material lead times and finished goods lead times, with low 

correlation among them and low disruptions.  Case VI reflects low volatility of 

demand, raw material lead times and finished goods lead times, with low correlation 

among them and high disruptions.  Case VII reflects high volatility of demand, raw 

material lead times and finished goods lead times, with high correlation among 

them and low disruptions, while Case VIII reflects high volatility of demand, raw 

material lead times and finished goods lead times, with high correlation among 

them and high disruptions.  The results for each case with the base simulation 

scenario and the four risk management treatments were as follows: 

Table 31e: Cash Flow Net Profit Contributions for Case V 

 

Mnemonic Descriptor Mean Std Dev Min Max

Sim 5 VolLow CorrLow DisruptLow 38,353 2,445 32,603 45,376

Sim 25 VolLow CorrLow DisruptLow - Invyes Expno Flexno 34,242 2,987 27,178 41,511

Sim 26 VolLow CorrLow DisruptLow - Invno Expyes Flexno 35,220 2,292 29,844 41,193

Sim 27 VolLow CorrLow DisruptLow - Invno Expno Flexyes 32,832 2,418 26,050 40,059

Sim 28 VolLow CorrLow DisruptLow - Invyes Expyes Flexyes 27,445 2,159 22,594 33,487

Net Cash Flow Profit Contribution
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Table 31f: Cash Flow Net Profit Contributions for Case VI 

 

 

 

 

Source DF

Sum of 

Squares Mean Square F Value Pr > F

Model 4 12,820,102,904 3,205,025,726 523 <.0001

Error 995 6,101,156,601   6,131,816        

Corrected Total 999 18,921,259,506 

R-Square Coeff Var  Root MSE  TotalCF Mean 

0.68 7.37 2,476                33,618            

Source DF  Anova SS  Mean Square F Value Pr > F

Mnemonic 4 12,820,102,904 3,205,025,726 523 <.0001

Case V

ANOVA of Cash Flow Net Contribution

Dependent Variable: TotalCF   

The ANOVA Procedure

Mnemonic Descriptor Mean Std Dev Min Max

Sim 6 VolLow CorrLow DisruptHigh 25,586 7,397 7,842 37,432

Sim 29 VolLow CorrLow DisruptHigh - Invyes Expno Flexno 38,751 5,967 23,631 50,073

Sim 30 VolLow CorrLow DisruptHigh - Invno Expyes Flexno 29,132 6,649 9,515 38,794

Sim 31 VolLow CorrLow DisruptHigh - Invno Expno Flexyes 30,392 6,886 12,480 42,464

Sim 32 VolLow CorrLow DisruptHigh - Invyes Expyes Flexyes 38,432 4,609 26,745 47,452

Net Cash Flow Profit Contribution

Source DF

Sum of 

Squares Mean Square F Value Pr > F

Model 4 27,570,867,884 6,892,716,971 170 <.0001

Error 995 40,434,897,741 40,638,088      

Corrected Total 999 68,005,765,626 

R-Square Coeff Var  Root MSE  TotalCF Mean 

0.41 19.64 6,375                32,459            

Source DF  Anova SS  Mean Square F Value Pr > F

Mnemonic 4 27,570,867,884 6,892,716,971 170 <.0001

Case VI

ANOVA of Cash Flow Net Contribution

Dependent Variable: TotalCF   

The ANOVA Procedure
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Table 31g: Cash Flow Net Profit Contributions for Case VII 

 

 

Table 31h: Cash Flow Net Profit Contributions for Case VIII 

 

Mnemonic Descriptor Mean Std Dev Min Max

Sim 7 VolHigh CorrHigh DisruptLow 42,027 4,659 26,748 51,852

Sim 33 VolHigh CorrHigh DisruptLow - Invyes Expno Flexno 41,147 7,703 20,910 58,156

Sim 34 VolHigh CorrHigh DisruptLow - Invno Expyes Flexno 38,939 6,067 21,253 49,279

Sim 35 VolHigh CorrHigh DisruptLow - Invno Expno Flexyes 37,061 6,056 22,171 49,365

Sim 36 VolHigh CorrHigh DisruptLow - Invyes Expyes Flexyes 29,262 5,794 11,806 46,466

Net Cash Flow Profit Contribution

Source DF

Sum of 

Squares Mean Square F Value Pr > F

Model 4 20,750,851,390 5,187,712,848 138 <.0001

Error 995 37,429,378,669 37,617,466      

Corrected Total 999 58,180,230,059 

R-Square Coeff Var  Root MSE  TotalCF Mean 

0.36 16.27 6,133                37,687            

Source DF  Anova SS  Mean Square F Value Pr > F

Mnemonic 4 20,750,851,390 5,187,712,848 138 <.0001

Case VII

ANOVA of Cash Flow Net Contribution

The ANOVA Procedure

Dependent Variable: TotalCF   

Mnemonic Descriptor Mean Std Dev Min Max

Sim 8 VolHigh CorrHigh DisruptHigh 22,658 8,565 -3,286 37,241

Sim 37 VolHigh CorrHigh DisruptHigh - Invyes Expno Flexno 36,643 7,528 12,826 51,024

Sim 38 VolHigh CorrHigh DisruptHigh - Invno Expyes Flexno 27,133 7,930 -3,278 39,010

Sim 39 VolHigh CorrHigh DisruptHigh - Invno Expno Flexyes 29,848 6,881 14,129 43,567

Sim 40 VolHigh CorrHigh DisruptHigh - Invyes Expyes Flexyes 39,936 5,984 20,546 50,228

Net Cash Flow Profit Contribution
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Chart 18: Comparison of Risk Mitigation Scenarios 

 

Observations:  

• In each case, the distribution of the Net Profit Contribution of the five 

scenarios, in aggregate, are significantly different. 

Source DF

Sum of 

Squares Mean Square F Value Pr > F

Model 4 39,454,545,442 9,863,636,360 179 <.0001

Error 995 54,937,952,757 55,214,023      

Corrected Total 999 94,392,498,198 

R-Square Coeff Var  Root MSE  TotalCF Mean 

0.42 23.78 7,431                31,243            

Source DF  Anova SS  Mean Square F Value Pr > F

Mnemonic 4 39,454,545,442 9,863,636,360 179 <.0001

Case VIII

ANOVA of Cash Flow Net Contribution

The ANOVA Procedure

Dependent Variable: TotalCF   
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• Under high disruption, every risk management strategy dominates risk 

acceptance. 

• Under low disruption, risk acceptance dominates risk mitigation. 

Cases I-IV: Accrual Accounting 

 Cases I-IV reflect “speculative” scenarios where variation is introduced in 

demand and lead time, but with no disruptions.  The objective is to test the impact of 

risk mitigation in the face of different levels of deviations (demand volatility, lead 

time volatility, and different levels of correlation coefficients).  Case I reflects low 

volatility of demand, raw material lead times and finished goods lead times, with 

low correlation among them and no disruptions.  Case II reflects high volatility of 

demand, raw material lead times and finished goods lead times, with low correlation 

among them and no disruptions.  Case III reflects low volatility of demand, raw 

material lead times and finished goods lead times, with high correlation among 

them and no disruptions, while Case IV reflects high volatility of demand, raw 

material lead times and finished goods lead times, with high correlation among 

them and no disruptions.  The results for each case with the base simulation 

scenario and the four risk management treatments were as follows: 

Table 32a: Accrual Net Profit Contributions for Case I 

 

Mnemonic Descriptor Mean Std Dev Min Max

Sim 1 VolLow CorrLow DisruptNone 36,769 4,175 27,070 49,748

Sim 9 VolLow CorrLow DisruptNone - Invyes Expno Flexno 33,700 3,986 25,024 48,104

Sim 10 VolLow CorrLow DisruptNone - Invno Expyes Flexno 39,300 2,622 32,987 46,528

Sim 11 VolLow CorrLow DisruptNone - Invno Expno Flexyes 30,677 2,347 25,760 39,109

Sim 12 VolLow CorrLow DisruptNone - Invyes Expyes Flexyes 32,090 1,786 27,817 37,602

Net Accrual Profit Contribution



117 
 

 

Table 32b: Accrual Net Profit Contributions for Case II 

 

 

 

 

 

Source DF

Sum of 

Squares Mean Square F Value Pr > F

Model 4 9,849,397,407   2,462,349,352    252 <.0001

Error 995 9,728,526,652   9,777,414          

Corrected Total 999 19,577,924,059 

R-Square Coeff Var  Root MSE  TotalACC Mean 

0.50 9.06 3,127                34,507               

Source DF  Anova SS  Mean Square F Value Pr > F

Mnemonic 4 9,849,397,407   2,462,349,352    252 <.0001

ANOVA of Accrual Net Contribution

The ANOVA Procedure

Dependent Variable: TotalACC   

Case I 

Mnemonic Descriptor Mean Std Dev Min Max

Sim 2 VolHigh CorrLow DisruptNone 40,449 6,184 25,162 58,436

Sim 13 VolHigh CorrLow DisruptNone - Invyes Expno Flexno 38,674 6,773 23,877 60,026

Sim 14 VolHigh CorrLow DisruptNone - Invno Expyes Flexno 44,653 4,107 29,542 54,136

Sim 15 VolHigh CorrLow DisruptNone - Invno Expno Flexyes 34,217 4,368 24,735 51,319

Sim 16 VolHigh CorrLow DisruptNone - Invyes Expyes Flexyes 34,607 3,184 26,342 45,728

Net Accrual Profit Contribution

Source DF

Sum of 

Squares Mean Square F Value Pr > F

Model 4 15,037,925,065 3,759,481,266      144 <.0001

Error 995 25,910,174,580 26,040,376          

Corrected Total 999 40,948,099,645 

R-Square Coeff Var  Root MSE  TotalACC Mean 

0.37 13.25 5,103                38,520                 

Source DF  Anova SS  Mean Square F Value Pr > F

Mnemonic 4 15,037,925,065 3,759,481,266      144 <.0001

ANOVA of Accrual Net Contribution

The ANOVA Procedure

Dependent Variable: TotalACC   

Case II
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Table 32c: Accrual Net Profit Contributions for Case III 

 

 

Table 32d: Accrual Net Profit Contributions for Case IV 

 

Mnemonic Descriptor Mean Std Dev Min Max

Sim 3 VolLow CorrHighDisruptNone 37,428 5,844 23,391 53,198

Sim 17 VolLow CorrHigh DisruptNone - Invyes Expno Flexno 34,164 5,387 21,108 50,994

Sim 18 VolLow CorrHigh DisruptNone - Invno Expyes Flexno 41,571 3,913 32,075 52,443

Sim 19 VolLow CorrHigh DisruptNone - Invno Expno Flexyes 31,064 3,357 24,106 43,368

Sim 20 VolLow CorrHigh DisruptNone - Invyes Expyes Flexyes 32,212 2,345 25,941 39,248

Net Accrual Profit Contribution

Source DF

Sum of 

Squares Mean Square F Value Pr > F

Model 4 14,526,403,666 3,631,600,917     191 <.0001

Error 995 18,955,099,561 19,050,351         

Corrected Total 999 33,481,503,227 

R-Square Coeff Var  Root MSE  TotalACC Mean 

0.43 12.37 4,365               35,288                

Source DF  Anova SS  Mean Square F Value Pr > F

Mnemonic 4 14,526,403,666 3,631,600,917     191 <.0001

ANOVA of Accrual Net Contribution

The ANOVA Procedure

Dependent Variable: TotalACC   

Case III

Mnemonic Descriptor Mean Std Dev Min Max

Sim 4 VolHigh CorrHigh DisruptNone 40,067 8,268 17,994 60,364

Sim 21 VolHigh CorrHigh DisruptNone - Invyes Expno Flexno 39,187 9,542 19,976 69,124

Sim 22 VolHigh CorrHigh DisruptNone - Invno Expyes Flexno 46,232 5,467 27,906 57,734

Sim 23 VolHigh CorrHigh DisruptNone - Invno Expno Flexyes 34,409 6,163 21,196 58,213

Sim 24 VolHigh CorrHigh DisruptNone - Invyes Expyes Flexyes 34,586 4,641 22,753 53,438

Net Accrual Profit Contribution
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Chart 19: Comparison of Risk Mitigation Scenarios 

 

Observations:  

• In each case, the distribution of the Net Profit Contribution of the five 

scenarios, in aggregate, are significantly different. 

Source DF

Sum of 

Squares Mean Square F Value Pr > F

Model 4 18,795,600,183 4,698,900,046    94 <.0001

Error 995 49,514,001,330 49,762,815         

Corrected Total 999 68,309,601,513 

R-Square Coeff Var  Root MSE  TotalACC Mean 

0.28 18.14 7,054               38,896               

Source DF  Anova SS  Mean Square F Value Pr > F

Mnemonic 4 18,795,600,183 4,698,900,046    94 <.0001

ANOVA of Accrual Net Contribution

The ANOVA Procedure

Dependent Variable: TotalACC   

Case IV
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• In the presence of deviations (and absent disruptions), expediting as a risk 

management strategy dominates other alternatives. 

Cases V-VII: Accrual Accounting 

 Cases V-VII reflect a combination of “speculative” and “pure” risk scenarios 

where variation is introduced in demand and lead time as well as disruptions.  The 

objective is to test the impact of risk mitigation in the face of different levels of 

deviations (demand volatility, lead time volatility, and different levels of correlation 

coefficients) as well as different levels of disruptions.  Case V reflects low volatility 

of demand, raw material lead times and finished goods lead times, with low 

correlation among them and low disruptions.  Case VI reflects low volatility of 

demand, raw material lead times and finished goods lead times, with low correlation 

among them and high disruptions.  Case VII reflects high volatility of demand, raw 

material lead times and finished goods lead times, with high correlation among 

them and low disruptions, while Case VIII reflects high volatility of demand, raw 

material lead times and finished goods lead times, with high correlation among 

them and high disruptions.  The results for each case with the base simulation 

scenario and the four risk management treatments were as follows: 

Table 32e: Accrual Net Profit Contributions for Case V 

 

Mnemonic Descriptor Mean Std Dev Min Max

Sim 5 VolLow CorrLow DisruptLow 37,338 4,113 27,730 49,060

Sim 25 VolLow CorrLow DisruptLow - Invyes Expno Flexno 34,053 3,914 25,115 47,989

Sim 26 VolLow CorrLow DisruptLow - Invno Expyes Flexno 24,498 1,108 21,615 27,277

Sim 27 VolLow CorrLow DisruptLow - Invno Expno Flexyes 30,957 2,456 25,981 40,026

Sim 28 VolLow CorrLow DisruptLow - Invyes Expyes Flexyes 25,489 992 22,641 28,673

Net Accrual Profit Contribution
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Table 32f: Accrual Net Profit Contributions for Case VI 

 

 

 

 

 

Source DF Sum of Squares Mean Square F Value Pr > F

Model 4 24,143,823,443   6,035,955,861   746 <.0001

Error 995 8,053,432,133     8,093,902         

Corrected Total 999 32,197,255,576   

R-Square Coeff Var  Root MSE 

 

TotalACC Mean 

0.75 9.34 2,845                 30,467             

Source DF  Anova SS  Mean Square F Value Pr > F

Mnemonic 4 24,143,823,443   6,035,955,861   746 <.0001

ANOVA of Accrual Net Contribution

The ANOVA Procedure

Dependent Variable: TotalACC   

Case V

Mnemonic Descriptor Mean Std Dev Min Max

Sim 6 VolLow CorrLow DisruptHigh 20,486 10,224 -5,010 39,444

Sim 29 VolLow CorrLow DisruptHigh - Invyes Expno Flexno 31,855 8,935 8,725 49,111

Sim 30 VolLow CorrLow DisruptHigh - Invno Expyes Flexno 25,126 9,213 681 41,639

Sim 31 VolLow CorrLow DisruptHigh - Invno Expno Flexyes 25,126 9,213 681 41,639

Sim 32 VolLow CorrLow DisruptHigh - Invyes Expyes Flexyes 20,805 5,974 5,713 28,150

Net Accrual Profit Contribution

Source DF Sum of Squares Mean Square F Value Pr > F

Model 4 37,424,526,441  9,356,131,610    130 <.0001

Error 995 71,687,770,542  72,048,011         

Corrected Total 999 109,112,296,983 

R-Square Coeff Var  Root MSE  TotalACC Mean 

0.34 38.06 8,488                 22,300               

Source DF  Anova SS  Mean Square F Value Pr > F

Mnemonic 4 37,424,526,441  9,356,131,610    130 <.0001

ANOVA of Accrual Net Contribution

The ANOVA Procedure

Dependent Variable: TotalACC   

Case VI



122 
 

Table 32g: Accrual Net Profit Contributions for Case VII 

 

 

Table 32h: Accrual Net Profit Contributions for Case VIII 

 

Mnemonic Descriptor Mean Std Dev Min Max

Sim 7 VolHigh CorrHigh DisruptLow 39,802 39,802 39,802 39,802

Sim 33 VolHigh CorrHigh DisruptLow - Invyes Expno Flexno 39,264 39,264 39,264 39,264

Sim 34 VolHigh CorrHigh DisruptLow - Invno Expyes Flexno 25,628 25,628 25,628 25,628

Sim 35 VolHigh CorrHigh DisruptLow - Invno Expno Flexyes 34,632 34,632 34,632 34,632

Sim 36 VolHigh CorrHigh DisruptLow - Invyes Expyes Flexyes 27,101 27,101 27,101 27,101

Net Accrual Profit Contribution

Source DF Sum of Squares Mean Square F Value Pr > F

Model 4 35,380,796,968  8,845,199,242     208 <.0001

Error 995 42,306,912,124  42,519,510         

Corrected Total 999 77,687,709,092  

R-Square Coeff Var  Root MSE  TotalACC Mean 

0.46 19.59 6,521                33,285                

Source DF  Anova SS  Mean Square F Value Pr > F

Mnemonic 4 35,380,796,968  8,845,199,242     208 <.0001

ANOVA of Accrual Net Contribution

The ANOVA Procedure

Dependent Variable: TotalACC   

Case VII

Mnemonic Descriptor Mean Std Dev Min Max

Sim 8 VolHigh CorrHigh DisruptHigh 17,357 11,309 -16,280 38,062

Sim 37 VolHigh CorrHigh DisruptHigh - Invyes Expno Flexno 29,336 10,544 -2,555 52,101

Sim 38 VolHigh CorrHigh DisruptHigh - Invno Expyes Flexno 10,006 8,986 -26,215 25,230

Sim 39 VolHigh CorrHigh DisruptHigh - Invno Expno Flexyes 24,135 9,005 373 42,105

Sim 40 VolHigh CorrHigh DisruptHigh - Invyes Expyes Flexyes 22,842 6,122 4,060 30,986

Net Accrual Profit Contribution
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Chart 20: Comparison of Risk Mitigation Scenarios 

 

Observations:  

• In each case, the distribution of the Net Profit Contribution of the five 

scenarios, in aggregate, are significantly different. 

• Under low disruption, risk acceptance dominates risk mitigation. 

Source DF Sum of Squares Mean Square F Value Pr > F

Model 4 43,299,974,479   10,824,993,620   123 <.0001

Error 995 87,234,398,949   87,672,763          

Corrected Total 999 130,534,373,428 

R-Square Coeff Var  Root MSE  TotalACC Mean 

0.33 45.16 9,363                 20,735                

Source DF  Anova SS  Mean Square F Value Pr > F

Mnemonic 4 43,299,974,479   10,824,993,620   123 <.0001

ANOVA of Accrual Net Contribution

The ANOVA Procedure

Dependent Variable: TotalACC   

Case VIII
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• Under high disruption, risk mitigation dominates risk acceptance except for 

the expediting strategy under conditions of high correlation and coefficient of 

variation. 

Efficient Frontier Analysis 

Assuming a trade-off between risk and return, a Pareto-efficient frontier can 

be constructed to investigate whether certain risk mitigation strategies provide the 

best combination of risk and return characteristics.  In this analysis, the net profit 

contribution performance measure (return) is graphed against the standard 

deviation of net profit contribution (risk).  To the extent that a risk-return trade-off 

exists, the efficient frontier will be upward slopping.  The scenarios (whether risk-

mitigated or risk-accepted) that form the outer edge of the frontier will possess the 

best combination of risk and return characteristics. 

 For each of the forty scenarios - 8 base risk-accepted scenarios and 32 (8x4) 

risk- mitigation scenarios – the mean Net Profit Contribution and the Variance of the 

Net Profit Contribution were obtained in order to graph an efficient frontier.  
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Chart 21: Efficient Frontier – Cash Flow Net Profit Contribution  
 

 
 

 

Observations:  

• The non-dominated scenarios form an upward-sloping efficient frontier. 

• Expediting as a risk mitigating strategy appears to be the most efficient as it is 

the most common strategy on the frontier 
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Chart 22: Efficient Frontier – Accrual Net Profit Contribution 
 

 

 

Observations:  

• The non-dominated scenarios form an upward-sloping efficient frontier. 
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• Expediting as a risk mitigating strategy appears to be the most efficient as it is 

the most common strategy on the frontier.  The combination of all risk 

mitigation strategies is the only other scenario that appears on the frontier.  

• All base scenarios (i.e. without risk mitigation) are dominated. 

Risk Management Findings 

Given the cost structures in the supply chain setting laid out in this dissertation, the 

following risk management findings were obtained: 

• In response to Research Question 2 (Are the best risk mitigation strategies 

contingent on the nature of the particular risks - frequency, severity, 

correlation?  Or, alternatively, are certain risk mitigation strategies globally 

optimal?), the results uphold contingency theory, suggesting that the best 

risk management strategy depends on the type of risk being faced. 

Specifically, “speculative” risks are best risk accepted while “pure” risks are 

best risk mitigated. 

• In response to Research Question 3 (Is there a portfolio effect among risk 

mitigation strategies?  That is, on a risk-adjusted basis, will a combination of 

mitigation strategies outperform each individual mitigation strategy?), the 

results do not support a portfolio effect among risk mitigation strategies.  

The efficient frontier suggests that expediting as a single risk management 

strategy outperforms the combination of all risk mitigation strategies on a 

risk-adjusted basis. 

• In response to Research Question 4 (Can a blend of risk mitigation strategies 

be constructed that constitute a Pareto efficient frontier with respect to the 
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performance measure versus the risk measure thus providing a basis for 

trading off risk versus performance?), the results reveal that the risk 

mitigation outcomes form an efficient frontier.  

• Risk mitigation strategies are robust to accounting standard.  
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Chapter 8:  Summary of Research Findings 

The objective of this dissertation has been to develop and test an approach that 

will quantify the level of disruption risk in the supply chain, evaluate the cost and 

impact of risk mitigation strategies, validate event management protocols pre-

implementation, and optimize across a portfolio of risk mitigation strategies.  The 

following questions have been addressed: 

• Q1: Do accounting policy and value-added metrics significantly affect 

production strategy and optimizing model solutions? 

• Q2: Are the best risk mitigation strategies contingent on the nature of 

the particular risks (frequency, severity, correlation)?  Or, 

alternatively, are certain risk mitigation strategies globally optimal 

(dominate all others)? 

• Q3: Is there a portfolio effect among risk mitigation strategies?  That 

is, on a risk-adjusted basis, will a combination of mitigation strategies 

outperform each individual mitigation strategy? 

• Q4: Can a blend of risk mitigation strategies be constructed that 

constitute a Pareto efficient frontier with respect to the performance 

measure (net profit contribution) versus the risk measure (standard 

of net profit contribution) thus providing a basis for trading off risk 

versus performance? 

The specific results of this type of analysis depend on the cost structure of 

the firm and on the costs of implementing the set of selected risk mitigation 
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strategies.  Given the cost structures in the supply chain setting laid out in this 

dissertation, the results have demonstrated: 

• Q1: Yes, accounting policy and value-added metrics significantly affect 

production strategy and optimizing model solutions. 

• Q2: Yes, contingency theory is upheld. 

• Q3: No, there is no clear portfolio effect among risk mitigation 

strategies 

• Q4: Yes, risk mitigation results constitute an upward-sloping Pareto-

efficient frontier. 

Specifically, this research has identified the following set of findings: 
 
Optimization Findings 
 

• The Pull Formulation results in lower expected profitability primarily because 

revenue is recognized only upon receipt of finished goods at the warehouse 

and the model stops producing and shipping product that would not reach the 

warehouse before the end of the planning horizon.  It can leave the firm with 

insufficient inventory to meet demand at the end of the planning horizon 

unless explicit constraints on ending inventories are added to the model to 

ensure sufficient safety stocks. 

• The Pull Formulation leads to a much leaner supply chain with respect to 

inventory. 

• The choice of accounting standard (cash flow versus accrual) provides a 

different signal as to the relative merits of the push, pull, and hybrid 

formulations. 
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• Analysis of the optimization model results answers Research Question 1 (Do 

accounting policy and value-added metrics significantly affect production 

strategy and optimizing model solutions?) in the affirmative, consistent with 

Xu and Smith (2018).  While Xu and Smith implemented a rolling horizon 

planning model, the current work is a fixed horizon planning model. 

Simulation Findings 
 

• Results tend to converge as the number of observations (iterations) 

increases.  Results thus have more reliability when they are arrived at when 

running large sample sizes.  However, there is a trade-off between reliability 

and the time and computational resources needed.    

• The higher the assumed input variability (coefficient of variation) the larger 

the number of observations (iterations) needed in order to converge.  Thus, 

for a given number of iterations higher coefficient of variation scenarios are 

less reliable than lower ones. 

• Analysis of the simulation model income statements affirms the optimization 

model answer to Research Question 1 (Do accounting policy and value-added 

metrics significantly affect production strategy and optimizing model 

solutions?) as “yes”. 

Stochastic Experiment Findings 
 

• Absent disruptions, the mean value of supply chain performance (mean net 

contribution to profit) and the variability of net contribution to profit 

increase with both coefficient of variation and with the correlation of 

coefficient, consistent with the expectation of “speculative” risks. 
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• Disruptions decrease the mean net contribution to profit and increase the 

variability of net contribution to profit, consistent with the expectation of 

“pure” risks. 

Risk Management Findings 

• In response to Research Question 2 (Are the best risk mitigation strategies 

contingent on the nature of the particular risks - frequency, severity, 

correlation?  Or, alternatively, are certain risk mitigation strategies globally 

optimal?), the results uphold contingency theory, suggesting that the best 

risk management strategy depends on the type of risk being faced. 

Specifically, “speculative” risks are best risk accepted while “pure” risks are 

best risk managed 

• In response to Research Question 3 (Is there a portfolio effect among risk 

mitigation strategies?  That is, on a risk-adjusted basis, will a combination of 

mitigation strategies outperform each individual mitigation strategy?), the 

results do not support a portfolio effect among risk mitigation strategies.  

The efficient frontier suggests that expediting as a single risk management 

strategy outperforms the combination of all risk mitigation strategies on a 

risk-adjusted basis. 

• In response to Research Question 4 (Can a blend of risk mitigation strategies 

be constructed that constitute a Pareto efficient frontier with respect to the 

performance measure versus the risk measure thus providing a basis for 

trading off risk versus performance?), the results reveal that the risk 

management outcomes form an efficient frontier. 
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• Risk mitigation strategies are robust to accounting standard. 

The current work and foregoing findings are of importance to supply chain 

practitioners and academics alike.  Recognizing the dependence of the specific 

findings on the cost structure of the supply chain, practitioners will take note of the 

benefits of value-added metrics in the optimization modeling as well as the impact 

of accounting policy on decision making, while academics will be interested to note 

that certain foundational theoretical frameworks (contingency theory) are 

supported by numerical analysis of realistic supply chains while others (portfolio 

theory) are not supported. 

Future Work 

• The current model tests the impact of risk mitigation strategies via discrete 

event simulation.  Future work will plan on testing the impact of risk 

mitigation strategies in the optimization model by adding deterministic 

buffers to delivery lead times and safety stocks, and investigating 

deterministic sensitivities to the buffers. 

• Current work has been limited to investigating four risk mitigation 

strategies, namely inventory placement, expediting, production flexibility, 

and their combination.  Future work will examine a wider set of strategies.  

For example, diversification (both geographic and organizational) can be 

introduced by limiting the shares of business allocated to the suppliers in the 

current model. 

• Risk mitigation strategies were implemented without regard to budget 

constraints and manager risk tolerances.  Future work will study whether the 
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introduction of explicit budget constraints alters the relative merits of the 

various risk mitigation strategies. 

• The optimizing model could be reformulated to optimize on a rolling horizon 

(rather than the current fixed horizon).  Such a reformulated rolling horizon 

model could revise plans stochastically and allow for comparison of 

performance with solutions obtained using the heuristic rules for 

reallocating productive resources and managing inventory in the simulation 

component of the current model. 

• The optimizing and simulation models could be reformulated to be more 

generally applicable to a wider set of product types.  The current models are 

formulated to handle non-perishable products.  The models could be 

modified (e.g. by introducing the aging of inventory and penalty obsolescence 

costs) to handle perishable products. 

• Choi, Chiu, and Chan (2016) called for more studies on the “value of risk 

reduction” (VRR) to help companies estimate the feasibility of their risk 

mitigation strategies.  They argue that there are very few studies in the 

literature that fit this bill.  The pair-wise comparison between the risk and 

performance of the base simulations and the risk mitigation scenarios in the 

current work begins to address this issue.  Further extensions will be 

designed to more frontally address this challenge. 
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Table 33a: Kruskal-Wallis Test of Cash Flow Net Profit Contributions for Case I 

 

 

Table 33b: Kruskal-Wallis Test of Cash Flow Net Profit Contributions for Case II 

 

Mnemonic Descriptor Mean Std Dev Min Max

Sim 1 VolLow CorrLow DisruptNone 37,403 2,495 31,395 44,283

Sim 9 VolLow CorrLow DisruptNone - Invyes Expno Flexno 33,118 2,904 26,177 40,336

Sim 10 VolLow CorrLow DisruptNone - Invno Expyes Flexno 38,910 2,596 32,660 46,067

Sim 11 VolLow CorrLow DisruptNone - Invno Expno Flexyes 31,763 2,325 25,714 38,555

Sim 12 VolLow CorrLow DisruptNone - Invyes Expyes Flexyes 25,929 2,307 20,280 32,410

Net Cash Flow Profit Contribution

Sum of Expected Std Dev Mean

Scores Under H0 Under H0 Score

Sim 1 200 146,424 100,100 3,653 732

Sim 10 200 162,823 100,100 3,653 814

Sim 11 200 75,865 100,100 3,653 379 Chi-Square 763.3

Sim 12 200 22,544 100,100 3,653 113 DF 4

Sim 9 200 92,844 100,100 3,653 464 Pr > Chi-Square <.0001

Kruskal-Wallis Test - Cash Flow Net Contribution For Case I 

Wilcoxon Scores (Rank Sums) for Variable TotalCF

Classified by Variable Mnemonic

Mnemonic N

Kruskal-Wallis Test

Mnemonic Descriptor Mean Std Dev Min Max

Sim 2 VolHigh CorrLow DisruptNone 42,081 3,870 27,840 51,017

Sim 13 VolHigh CorrLow DisruptNone - Invyes Expno Flexno 39,478 5,635 22,964 53,273

Sim 14 VolHigh CorrLow DisruptNone - Invno Expyes Flexno 44,080 4,054 29,162 53,441

Sim 15 VolHigh CorrLow DisruptNone - Invno Expno Flexyes 36,077 4,569 17,545 48,476

Sim 16 VolHigh CorrLow DisruptNone - Invyes Expyes Flexyes 30,620 4,670 13,733 42,745

Net Cash Flow Profit Contribution
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Table 33c: Kruskal-Wallis Test of Cash Flow Net Profit Contributions for Case III 

 

 

Table 33d: Kruskal-Wallis Test of Cash Flow Net Profit Contributions for Case IV 

 

Sum of Expected Std Dev Mean

Scores Under H0 Under H0 Score

Sim 13 200 106,673 100,100 3,653 533

Sim 14 200 150,918 100,100 3,653 755

Sim 15 200 75,396 100,100 3,653 377 Chi-Square 517.7

Sim 16 200 34,430 100,100 3,653 172 DF 4

Sim 2 200 133,083 100,100 3,653 665 Pr > Chi-Square <.0001

Kruskal-Wallis Test

Kruskal-Wallis Test - Cash Flow Net Contribution For Case II 

Wilcoxon Scores (Rank Sums) for Variable TotalCF

Classified by Variable Mnemonic

Mnemonic N

Mnemonic Descriptor Mean Std Dev Min Max

Sim 3 VolLow CorrHighDisruptNone 38,007 3,577 29,325 47,946

Sim 17 VolLow CorrHigh DisruptNone - Invyes Expno Flexno 33,559 4,206 23,689 46,345

Sim 18 VolLow CorrHigh DisruptNone - Invno Expyes Flexno 40,361 3,799 31,141 50,915

Sim 19 VolLow CorrHigh DisruptNone - Invno Expno Flexyes 32,290 3,254 24,718 40,103

Sim 20 VolLow CorrHigh DisruptNone - Invyes Expyes Flexyes 26,453 3,347 18,882 34,796

Net Cash Flow Profit Contribution

Sum of Expected Std Dev Mean

Scores Under H0 Under H0 Score

Sim 17 200 93,268 100,100 3,653 466

Sim 18 200 159,875 100,100 3,653 799

Sim 19 200 79,104 100,100 3,653 396 Chi-Square 643.2

Sim 20 200 28,633 100,100 3,653 143 DF 4

Sim 3 200 139,620 100,100 3,653 698 Pr > Chi-Square <.0001

Kruskal-Wallis Test - Cash Flow Net Contribution For Case III

Wilcoxon Scores (Rank Sums) for Variable TotalCF

Classified by Variable Mnemonic

Mnemonic N

Kruskal-Wallis Test

Mnemonic Descriptor Mean Std Dev Min Max

Sim 4 VolHigh CorrHigh DisruptNone 41,942 4,960 25,316 52,377

Sim 21 VolHigh CorrHigh DisruptNone - Invyes Expno Flexno 40,231 7,842 20,063 57,712

Sim 22 VolHigh CorrHigh DisruptNone - Invno Expyes Flexno 44,712 5,287 26,988 55,836

Sim 23 VolHigh CorrHigh DisruptNone - Invno Expno Flexyes 36,219 6,146 21,133 49,994

Sim 24 VolHigh CorrHigh DisruptNone - Invyes Expyes Flexyes 31,091 6,460 15,641 47,747

Net Cash Flow Profit Contribution
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Table 33e: Kruskal-Wallis Test of Cash Flow Net Profit Contributions for Case V 

 

 

Table 33f: Kruskal-Wallis Test of Cash Flow Net Profit Contributions for Case VI 

 

Sum of Expected Std Dev Mean

Scores Under H0 Under H0 Score

Sim 21 200 107,852 100,100 3,653 539

Sim 22 200 145,710 100,100 3,653 729

Sim 23 200 77,980 100,100 3,653 390 Chi-Square 374.1

Sim 24 200 44,957 100,100 3,653 225 DF 4

Sim 4 200 124,001 100,100 3,653 620 Pr > Chi-Square <.0001

Kruskal-Wallis Test

Kruskal-Wallis Test - Cash Flow Net Contribution For Case IV 

Wilcoxon Scores (Rank Sums) for Variable TotalCF

Classified by Variable Mnemonic

Mnemonic N

Mnemonic Descriptor Mean Std Dev Min Max

Sim 5 VolLow CorrLow DisruptLow 38,353 2,445 32,603 45,376

Sim 25 VolLow CorrLow DisruptLow - Invyes Expno Flexno 34,242 2,987 27,178 41,511

Sim 26 VolLow CorrLow DisruptLow - Invno Expyes Flexno 35,220 2,292 29,844 41,193

Sim 27 VolLow CorrLow DisruptLow - Invno Expno Flexyes 32,832 2,418 26,050 40,059

Sim 28 VolLow CorrLow DisruptLow - Invyes Expyes Flexyes 27,445 2,159 22,594 33,487

Net Cash Flow Profit Contribution

Sum of Expected Std Dev Mean

Scores Under H0 Under H0 Score

Sim 25 200 106,061 100,100 3,653 530

Sim 26 200 121,808 100,100 3,653 609

Sim 27 200 84,297 100,100 3,653 421 Chi-Square 650.7

Sim 28 200 23,354 100,100 3,653 117 DF 4

Sim 5 200 164,980 100,100 3,653 825 Pr > Chi-Square <.0001

Kruskal-Wallis Test - Cash Flow Net Contribution For Case V 

Wilcoxon Scores (Rank Sums) for Variable TotalCF

Classified by Variable Mnemonic

Mnemonic N

Kruskal-Wallis Test

Mnemonic Descriptor Mean Std Dev Min Max

Sim 6 VolLow CorrLow DisruptHigh 25,586 7,397 7,842 37,432

Sim 29 VolLow CorrLow DisruptHigh - Invyes Expno Flexno 38,751 5,967 23,631 50,073

Sim 30 VolLow CorrLow DisruptHigh - Invno Expyes Flexno 29,132 6,649 9,515 38,794

Sim 31 VolLow CorrLow DisruptHigh - Invno Expno Flexyes 30,392 6,886 12,480 42,464

Sim 32 VolLow CorrLow DisruptHigh - Invyes Expyes Flexyes 38,432 4,609 26,745 47,452

Net Cash Flow Profit Contribution



139 
 

 

Table 33g: Kruskal-Wallis Test of Cash Flow Net Profit Contributions for Case VII 

 

 

Table 33h: Kruskal-Wallis Test of Cash Flow Net Profit Contributions for Case VIII 

 

Sum of Expected Std Dev Mean

Scores Under H0 Under H0 Score

Sim 29 200 146,756 100,100 3,653 734

Sim 30 200 74,168 100,100 3,653 371

Sim 31 200 83,896 100,100 3,653 419 Chi-Square 452.5

Sim 32 200 144,890 100,100 3,653 724 DF 4

Sim 6 200 50,790 100,100 3,653 254 Pr > Chi-Square <.0001

Kruskal-Wallis Test

Kruskal-Wallis Test - Cash Flow Net Contribution For Case VI 

Wilcoxon Scores (Rank Sums) for Variable TotalCF

Classified by Variable Mnemonic

Mnemonic N

Mnemonic Descriptor Mean Std Dev Min Max

Sim 7 VolHigh CorrHigh DisruptLow 42,027 4,659 26,748 51,852

Sim 33 VolHigh CorrHigh DisruptLow - Invyes Expno Flexno 41,147 7,703 20,910 58,156

Sim 34 VolHigh CorrHigh DisruptLow - Invno Expyes Flexno 38,939 6,067 21,253 49,279

Sim 35 VolHigh CorrHigh DisruptLow - Invno Expno Flexyes 37,061 6,056 22,171 49,365

Sim 36 VolHigh CorrHigh DisruptLow - Invyes Expyes Flexyes 29,262 5,794 11,806 46,466

Net Cash Flow Profit Contribution

Sum of Expected Std Dev Mean

Scores Under H0 Under H0 Score

Sim 33 200 123,449 100,100 3,653 617

Sim 34 200 109,225 100,100 3,653 546

Sim 35 200 93,514 100,100 3,653 468 Chi-Square 344.7

Sim 36 200 38,453 100,100 3,653 192 DF 4

Sim 7 200 135,859 100,100 3,653 679 Pr > Chi-Square <.0001

Kruskal-Wallis Test - Cash Flow Net Contribution For Case VII 

Wilcoxon Scores (Rank Sums) for Variable TotalCF

Classified by Variable Mnemonic

Mnemonic N

Kruskal-Wallis Test

Mnemonic Descriptor Mean Std Dev Min Max

Sim 8 VolHigh CorrHigh DisruptHigh 22,658 8,565 -3,286 37,241

Sim 37 VolHigh CorrHigh DisruptHigh - Invyes Expno Flexno 36,643 7,528 12,826 51,024

Sim 38 VolHigh CorrHigh DisruptHigh - Invno Expyes Flexno 27,133 7,930 -3,278 39,010

Sim 39 VolHigh CorrHigh DisruptHigh - Invno Expno Flexyes 29,848 6,881 14,129 43,567

Sim 40 VolHigh CorrHigh DisruptHigh - Invyes Expyes Flexyes 39,936 5,984 20,546 50,228

Net Cash Flow Profit Contribution
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Table 34a: Kruskal-Wallis Test of Accrual Net Profit Contributions for Case I 

 

 

Table 34b: Kruskal-Wallis Test of Accrual Net Profit Contributions for Case II 

Sum of Expected Std Dev Mean

Scores Under H0 Under H0 Score

Sim 37 200 133,751 100,100 3,653 669

Sim 38 200 73,780 100,100 3,653 369

Sim 39 200 88,663 100,100 3,653 443 Chi-Square 452.0

Sim 40 200 154,958 100,100 3,653 775 DF 4

Sim 8 200 49,348 100,100 3,653 247 Pr > Chi-Square <.0001

Kruskal-Wallis Test

Kruskal-Wallis Test - Cash Flow Net Contribution For Case VIII 

Wilcoxon Scores (Rank Sums) for Variable TotalCF

Classified by Variable Mnemonic

Mnemonic N

Mnemonic Descriptor Mean Std Dev Min Max

Sim 1 VolLow CorrLow DisruptNone 36,769 4,175 27,070 49,748

Sim 9 VolLow CorrLow DisruptNone - Invyes Expno Flexno 33,700 3,986 25,024 48,104

Sim 10 VolLow CorrLow DisruptNone - Invno Expyes Flexno 39,300 2,622 32,987 46,528

Sim 11 VolLow CorrLow DisruptNone - Invno Expno Flexyes 30,677 2,347 25,760 39,109

Sim 12 VolLow CorrLow DisruptNone - Invyes Expyes Flexyes 32,090 1,786 27,817 37,602

Net Accrual Profit Contribution

Sum of Expected Std Dev Mean

Scores Under H0 Under H0 Score

Sim 1 200 130,440 100,100 3,653 652

Sim 10 200 162,640 100,100 3,653 813

Sim 11 200 46,740 100,100 3,653 234 Chi-Square 520.8

Sim 12 200 69,632 100,100 3,653 348 DF 4

Sim 9 200 91,048 100,100 3,653 455 Pr > Chi-Square <.0001

Kruskal-Wallis Test

Kruskal-Wallis Test - Accrual Net Contribution For Case I 

Wilcoxon Scores (Rank Sums) for Variable TotalACC

Classified by Variable Mnemonic

Mnemonic N
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Table 34c: Kruskal-Wallis Test of Accrual Net Profit Contributions for Case III 

 

 

Table 34d: Kruskal-Wallis Test of Accrual Net Profit Contributions for Case IV 

Mnemonic Descriptor Mean Std Dev Min Max

Sim 2 VolHigh CorrLow DisruptNone 40,449 6,184 25,162 58,436

Sim 13 VolHigh CorrLow DisruptNone - Invyes Expno Flexno 38,674 6,773 23,877 60,026

Sim 14 VolHigh CorrLow DisruptNone - Invno Expyes Flexno 44,653 4,107 29,542 54,136

Sim 15 VolHigh CorrLow DisruptNone - Invno Expno Flexyes 34,217 4,368 24,735 51,319

Sim 16 VolHigh CorrLow DisruptNone - Invyes Expyes Flexyes 34,607 3,184 26,342 45,728

Net Accrual Profit Contribution

Sum of Expected Std Dev Mean

Scores Under H0 Under H0 Score

Sim 13 200 101,408 100,100 3,653 507

Sim 14 200 156,625 100,100 3,653 783

Sim 15 200 60,164 100,100 3,653 301 Chi-Square 385.6

Sim 16 200 63,931 100,100 3,653 320 DF 4

Sim 2 200 118,372 100,100 3,653 592 Pr > Chi-Square <.0001

Kruskal-Wallis Test - Accrual Net Contribution For Case II 

Wilcoxon Scores (Rank Sums) for Variable TotalACC

Classified by Variable Mnemonic

Mnemonic N

Kruskal-Wallis Test

Mnemonic Descriptor Mean Std Dev Min Max

Sim 3 VolLow CorrHighDisruptNone 37,428 5,844 23,391 53,198

Sim 17 VolLow CorrHigh DisruptNone - Invyes Expno Flexno 34,164 5,387 21,108 50,994

Sim 18 VolLow CorrHigh DisruptNone - Invno Expyes Flexno 41,571 3,913 32,075 52,443

Sim 19 VolLow CorrHigh DisruptNone - Invno Expno Flexyes 31,064 3,357 24,106 43,368

Sim 20 VolLow CorrHigh DisruptNone - Invyes Expyes Flexyes 32,212 2,345 25,941 39,248

Net Accrual Profit Contribution

Sum of Expected Std Dev Mean

Scores Under H0 Under H0 Score

Sim 17 200 90,690 100,100 3,653 453

Sim 18 200 162,107 100,100 3,653 811

Sim 19 200 55,158 100,100 3,653 276 Chi-Square 441.6

Sim 20 200 69,955 100,100 3,653 350 DF 4

Sim 3 200 122,590 100,100 3,653 613 Pr > Chi-Square <.0001

Kruskal-Wallis Test

Kruskal-Wallis Test - Accrual Net Contribution For Case III 

Wilcoxon Scores (Rank Sums) for Variable TotalACC

Classified by Variable Mnemonic

Mnemonic N
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Table 34e: Kruskal-Wallis Test of Accrual Net Profit Contributions for Case V 

 

 

Table 34f: Kruskal-Wallis Test of Accrual Net Profit Contributions for Case VI 

Mnemonic Descriptor Mean Std Dev Min Max

Sim 4 VolHigh CorrHigh DisruptNone 40,067 8,268 17,994 60,364

Sim 21 VolHigh CorrHigh DisruptNone - Invyes Expno Flexno 39,187 9,542 19,976 69,124

Sim 22 VolHigh CorrHigh DisruptNone - Invno Expyes Flexno 46,232 5,467 27,906 57,734

Sim 23 VolHigh CorrHigh DisruptNone - Invno Expno Flexyes 34,409 6,163 21,196 58,213

Sim 24 VolHigh CorrHigh DisruptNone - Invyes Expyes Flexyes 34,586 4,641 22,753 53,438

Net Accrual Profit Contribution

Sum of Expected Std Dev Mean

Scores Under H0 Under H0 Score

Sim 21 200 101,007 100,100 3,653 505

Sim 22 200 153,031 100,100 3,653 765

Sim 23 200 67,731 100,100 3,653 339 Chi-Square 292.2

Sim 24 200 69,438 100,100 3,653 347 DF 4

Sim 4 200 109,293 100,100 3,653 546 Pr > Chi-Square <.0001

Kruskal-Wallis Test - Accrual Net Contribution For Case IV 

Wilcoxon Scores (Rank Sums) for Variable TotalACC

Classified by Variable Mnemonic

Mnemonic N

Kruskal-Wallis Test

Mnemonic Descriptor Mean Std Dev Min Max

Sim 5 VolLow CorrLow DisruptLow 37,338 4,113 27,730 49,060

Sim 25 VolLow CorrLow DisruptLow - Invyes Expno Flexno 34,053 3,914 25,115 47,989

Sim 26 VolLow CorrLow DisruptLow - Invno Expyes Flexno 24,498 1,108 21,615 27,277

Sim 27 VolLow CorrLow DisruptLow - Invno Expno Flexyes 30,957 2,456 25,981 40,026

Sim 28 VolLow CorrLow DisruptLow - Invyes Expyes Flexyes 25,489 992 22,641 28,673

Net Accrual Profit Contribution

Sum of Expected Std Dev Mean

Scores Under H0 Under H0 Score

Sim 25 200 140,666 100,100 3,653 703

Sim 26 200 30,297 100,100 3,653 151

Sim 27 200 113,323 100,100 3,653 567 Chi-Square 805.0

Sim 28 200 50,621 100,100 3,653 253 DF 4

Sim 5 200 165,593 100,100 3,653 828 Pr > Chi-Square <.0001

Kruskal-Wallis Test

Kruskal-Wallis Test - Accrual Net Contribution For Case V 

Wilcoxon Scores (Rank Sums) for Variable TotalACC

Classified by Variable Mnemonic

Mnemonic N
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Table 34g: Kruskal-Wallis Test of Accrual Net Profit Contributions for Case VII 

 

 

Table 34h: Kruskal-Wallis Test of Accrual Net Profit Contributions for Case VIII 

Mnemonic Descriptor Mean Std Dev Min Max

Sim 6 VolLow CorrLow DisruptHigh 20,486 10,224 -5,010 39,444

Sim 29 VolLow CorrLow DisruptHigh - Invyes Expno Flexno 31,855 8,935 8,725 49,111

Sim 30 VolLow CorrLow DisruptHigh - Invno Expyes Flexno 25,126 9,213 681 41,639

Sim 31 VolLow CorrLow DisruptHigh - Invno Expno Flexyes 25,126 9,213 681 41,639

Sim 32 VolLow CorrLow DisruptHigh - Invyes Expyes Flexyes 20,805 5,974 5,713 28,150

Net Accrual Profit Contribution

Sum of Expected Std Dev Mean

Scores Under H0 Under H0 Score

Sim 29 200 152,567 100,100 3,653 763

Sim 30 200 47,081 100,100 3,653 235

Sim 31 200 119,018 100,100 3,653 595 Chi-Square 365.6

Sim 32 200 88,704 100,100 3,653 444 DF 4

Sim 6 200 93,130 100,100 3,653 466 Pr > Chi-Square <.0001

Kruskal-Wallis Test - Accrual Net Contribution For Case VI 

Wilcoxon Scores (Rank Sums) for Variable TotalACC

Classified by Variable Mnemonic

Mnemonic N

Kruskal-Wallis Test

Mnemonic Descriptor Mean Std Dev Min Max

Sim 7 VolHigh CorrHigh DisruptLow 39,802 39,802 39,802 39,802

Sim 33 VolHigh CorrHigh DisruptLow - Invyes Expno Flexno 39,264 39,264 39,264 39,264

Sim 34 VolHigh CorrHigh DisruptLow - Invno Expyes Flexno 25,628 25,628 25,628 25,628

Sim 35 VolHigh CorrHigh DisruptLow - Invno Expno Flexyes 34,632 34,632 34,632 34,632

Sim 36 VolHigh CorrHigh DisruptLow - Invyes Expyes Flexyes 27,101 27,101 27,101 27,101

Net Accrual Profit Contribution

Sum of Expected Std Dev Mean

Scores Under H0 Under H0 Score

Sim 33 200 137,322 100,100 3,653 687

Sim 34 200 44,359 100,100 3,653 222

Sim 35 200 116,982 100,100 3,653 585 Chi-Square 508.4

Sim 36 200 57,894 100,100 3,653 289 DF 4

Sim 7 200 143,943 100,100 3,653 720 Pr > Chi-Square <.0001

Kruskal-Wallis Test

Kruskal-Wallis Test - Accrual Net Contribution For Case VII 

Wilcoxon Scores (Rank Sums) for Variable TotalACC

Classified by Variable Mnemonic

Mnemonic N
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Table 35: Pairwise T-Test Analyses 

 

Mnemonic Descriptor Mean Std Dev Min Max

Sim 8 VolHigh CorrHigh DisruptHigh 17,357 11,309 -16,280 38,062

Sim 37 VolHigh CorrHigh DisruptHigh - Invyes Expno Flexno 29,336 10,544 -2,555 52,101

Sim 38 VolHigh CorrHigh DisruptHigh - Invno Expyes Flexno 10,006 8,986 -26,215 25,230

Sim 39 VolHigh CorrHigh DisruptHigh - Invno Expno Flexyes 24,135 9,005 373 42,105

Sim 40 VolHigh CorrHigh DisruptHigh - Invyes Expyes Flexyes 22,842 6,122 4,060 30,986

Net Accrual Profit Contribution

Sum of Expected Std Dev Mean

Scores Under H0 Under H0 Score

Sim 37 200 144,246 100,100 3,653 721

Sim 38 200 44,540 100,100 3,653 223

Sim 39 200 118,263 100,100 3,653 591 Chi-Square 341.8

Sim 40 200 109,264 100,100 3,653 546 DF 4

Sim 8 200 84,187 100,100 3,653 421 Pr > Chi-Square <.0001

Kruskal-Wallis Test - Accrual Net Contribution For Case VIII 

Wilcoxon Scores (Rank Sums) for Variable TotalACC

Classified by Variable Mnemonic

Mnemonic N

Kruskal-Wallis Test

Mnemonic N Mean Std Dev Std Err Minimum Maximum

Sim 1 200 36,769 4,175 295 27,070 49,748

Sim 9 200 33,700 3,986 282 25,024 48,104

Diff (1-2) 3,069 4,081 408

Mnemonic Method Mean Std Dev

Sim 1 36,769 36,187 37,351 4,175 3,802 4,630

Sim 9 33,700 33,144 34,256 3,986 3,630 4,420

Diff (1-2) Pooled 3,069 2,267 3,872 4,081 3,817 4,386

Diff (1-2) Satterthwaite 3,069 2,267 3,872

Method Variances DF t Value Pr > |t|

Pooled Equal 398.0 7.5 <.0001

Satterthwaite Unequal 397.2 7.5 <.0001

95% CL Mean 95% CL Std Dev
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Mnemonic N Mean Std Dev Std Err Minimum Maximum

Sim 1 200 36,769 4,175 295 27,070 49,748

Sim 10 200 39,300 2,622 185 32,987 46,528

Diff (1-2) -2,530 3,486 349

Mnemonic Method Mean Std Dev

Sim 1 36,769 36,187 37,351 4,175 3,802 4,630

Sim 10 39,300 38,934 39,665 2,622 2,388 2,907

Diff (1-2) Pooled -2,530 -3,216 -1,845 3,486 3,260 3,746

Diff (1-2) Satterthwaite -2,530 -3,216 -1,845

Method Variances DF t Value Pr > |t|

Pooled Equal 398.0 -7.3 <.0001

Satterthwaite Unequal 334.8 -7.3 <.0001

95% CL Mean 95% CL Std Dev

Mnemonic N Mean Std Dev Std Err Minimum Maximum

Sim 1 200 36,769 4,175 295 27,070 49,748

Sim 11 200 30,677 2,347 166 25,760 39,109

Diff (1-2) 6,092 3,387 339

Mnemonic Method Mean Std Dev

Sim 1 36,769 36,187 37,351 4,175 3,802 4,630

Sim 11 30,677 30,350 31,004 2,347 2,137 2,603

Diff (1-2) Pooled 6,092 5,427 6,758 3,387 3,167 3,639

Diff (1-2) Satterthwaite 6,092 5,426 6,759

Method Variances DF t Value Pr > |t|

Pooled Equal 398.0 18.0 <.0001

Satterthwaite Unequal 313.4 18.0 <.0001

95% CL Mean 95% CL Std Dev

Mnemonic N Mean Std Dev Std Err Minimum Maximum

Sim 1 200 36,769 4,175 295 27,070 49,748

Sim 12 200 32,090 1,786 126 27,818 37,602

Diff (1-2) 4,679 3,211 321

Mnemonic Method Mean Std Dev

Sim 1 36,769 36,187 37,351 4,175 3,802 4,630

Sim 12 32,090 31,841 32,339 1,786 1,626 1,980

Diff (1-2) Pooled 4,679 4,048 5,310 3,211 3,002 3,451

Diff (1-2) Satterthwaite 4,679 4,047 5,311

Method Variances DF t Value Pr > |t|

Pooled Equal 398.0 14.6 <.0001

Satterthwaite Unequal 269.5 14.6 <.0001

95% CL Mean 95% CL Std Dev
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Mnemonic N Mean Std Dev Std Err Minimum Maximum

Sim 13 200 38,674 6,773 479 23,877 60,026

Sim 2 200 40,449 6,184 437 25,162 58,436

Diff (1-2) -1,775 6,485 649

Mnemonic Method Mean Std Dev

Sim 13 38,674 37,730 39,619 6,773 6,168 7,511

Sim 2 40,449 39,587 41,311 6,184 5,632 6,858

Diff (1-2) Pooled -1,775 -3,050 -500 6,485 6,065 6,970

Diff (1-2) Satterthwaite -1,775 -3,050 -500

Method Variances DF t Value Pr > |t|

Pooled Equal 398.0 -2.7 0.01

Satterthwaite Unequal 394.8 -2.7 0.01

95% CL Mean 95% CL Std Dev

Mnemonic N Mean Std Dev Std Err Minimum Maximum

Sim 14 200 44,653 4,107 290 29,542 54,136

Sim 2 200 40,449 6,184 437 25,162 58,436

Diff (1-2) 4,204 5,249 525

Mnemonic Method Mean Std Dev

Sim 14 44,653 44,081 45,226 4,107 3,740 4,554

Sim 2 40,449 39,587 41,311 6,184 5,632 6,858

Diff (1-2) Pooled 4,204 3,172 5,236 5,249 4,909 5,641

Diff (1-2) Satterthwaite 4,204 3,172 5,237

Method Variances DF t Value Pr > |t|

Pooled Equal 398.0 8.0 <.0001

Satterthwaite Unequal 345.9 8.0 <.0001

95% CL Mean 95% CL Std Dev

Mnemonic N Mean Std Dev Std Err Minimum Maximum

Sim 15 200 34,217 4,368 309 24,735 51,319

Sim 2 200 40,449 6,184 437 25,162 58,436

Diff (1-2) -6,232 5,354 535

Mnemonic Method Mean Std Dev

Sim 15 34,217 33,608 34,826 4,368 3,977 4,843

Sim 2 40,449 39,587 41,311 6,184 5,632 6,858

Diff (1-2) Pooled -6,232 -7,284 -5,179 5,354 5,006 5,753

Diff (1-2) Satterthwaite -6,232 -7,285 -5,179

Method Variances DF t Value Pr > |t|

Pooled Equal 398.0 -11.6 <.0001

Satterthwaite Unequal 358.0 -11.6 <.0001

95% CL Mean 95% CL Std Dev
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Mnemonic N Mean Std Dev Std Err Minimum Maximum

Sim 16 200 34,607 3,184 225 26,342 45,728

Sim 2 200 40,449 6,184 437 25,162 58,436

Diff (1-2) -5,842 4,919 492

Mnemonic Method Mean Std Dev

Sim 16 34,607 34,163 35,051 3,184 2,900 3,531

Sim 2 40,449 39,587 41,311 6,184 5,632 6,858

Diff (1-2) Pooled -5,842 -6,809 -4,875 4,919 4,599 5,286

Diff (1-2) Satterthwaite -5,842 -6,810 -4,874

Method Variances DF t Value Pr > |t|

Pooled Equal 398.0 -11.9 <.0001

Satterthwaite Unequal 297.6 -11.9 <.0001

95% CL Mean 95% CL Std Dev

Mnemonic N Mean Std Dev Std Err Minimum Maximum

Sim 17 200 34,164 5,387 381 21,108 50,994

Sim 3 200 37,428 5,844 413 23,391 53,198

Diff (1-2) -3,264 5,620 562

Mnemonic Method Mean Std Dev

Sim 17 34,164 33,413 34,915 5,387 4,906 5,974

Sim 3 37,428 36,613 38,243 5,844 5,322 6,480

Diff (1-2) Pooled -3,264 -4,369 -2,159 5,620 5,255 6,040

Diff (1-2) Satterthwaite -3,264 -4,369 -2,159

Method Variances DF t Value Pr > |t|

Pooled Equal 398.0 -5.8 <.0001

Satterthwaite Unequal 395.4 -5.8 <.0001

95% CL Mean 95% CL Std Dev

Mnemonic N Mean Std Dev Std Err Minimum Maximum

Sim 18 200 41,572 3,913 277 32,075 52,443

Sim 3 200 37,428 5,844 413 23,391 53,198

Diff (1-2) 4,144 4,973 497

Mnemonic Method Mean Std Dev

Sim 18 41,572 41,026 42,117 3,913 3,563 4,339

Sim 3 37,428 36,613 38,243 5,844 5,322 6,480

Diff (1-2) Pooled 4,144 3,166 5,121 4,973 4,650 5,344

Diff (1-2) Satterthwaite 4,144 3,166 5,122

Method Variances DF t Value Pr > |t|

Pooled Equal 398.0 8.3 <.0001

Satterthwaite Unequal 347.6 8.3 <.0001

95% CL Mean 95% CL Std Dev
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Mnemonic N Mean Std Dev Std Err Minimum Maximum

Sim 19 200 31,064 3,357 237 24,106 43,368

Sim 3 200 37,428 5,844 413 23,391 53,198

Diff (1-2) -6,364 4,766 477

Mnemonic Method Mean Std Dev

Sim 19 31,064 30,596 31,532 3,357 3,058 3,723

Sim 3 37,428 36,613 38,243 5,844 5,322 6,480

Diff (1-2) Pooled -6,364 -7,301 -5,427 4,766 4,456 5,121

Diff (1-2) Satterthwaite -6,364 -7,302 -5,426

Method Variances DF t Value Pr > |t|

Pooled Equal 398.0 -13.4 <.0001

Satterthwaite Unequal 317.5 -13.4 <.0001

95% CL Mean 95% CL Std Dev

Mnemonic N Mean Std Dev Std Err Minimum Maximum

Sim 20 200 32,212 2,345 166 25,941 39,249

Sim 3 200 37,428 5,844 413 23,391 53,198

Diff (1-2) -5,216 4,452 445

Mnemonic Method Mean Std Dev

Sim 20 32,212 31,885 32,539 2,345 2,135 2,600

Sim 3 37,428 36,613 38,243 5,844 5,322 6,480

Diff (1-2) Pooled -5,216 -6,092 -4,341 4,452 4,163 4,785

Diff (1-2) Satterthwaite -5,216 -6,093 -4,340

Method Variances DF t Value Pr > |t|

Pooled Equal 398.0 -11.7 <.0001

Satterthwaite Unequal 261.5 -11.7 <.0001

95% CL Mean 95% CL Std Dev

Mnemonic N Mean Std Dev Std Err Minimum Maximum

Sim 21 200 39,187 9,542 675 19,976 69,124

Sim 4 200 40,067 8,268 585 17,994 60,364

Diff (1-2) -880 8,928 893

Mnemonic Method Mean Std Dev

Sim 21 39,187 37,857 40,518 9,542 8,689 10,581

Sim 4 40,067 38,914 41,220 8,268 7,529 9,169

Diff (1-2) Pooled -880 -2,635 875 8,928 8,348 9,594

Diff (1-2) Satterthwaite -880 -2,636 875

Method Variances DF t Value Pr > |t|

Pooled Equal 398.0 -1.0 0.32

Satterthwaite Unequal 390.1 -1.0 0.32

95% CL Mean 95% CL Std Dev
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Mnemonic N Mean Std Dev Std Err Minimum Maximum

Sim 22 200 46,232 5,467 387 27,906 57,735

Sim 4 200 40,067 8,268 585 17,994 60,364

Diff (1-2) 6,165 7,009 701

Mnemonic Method Mean Std Dev

Sim 22 46,232 45,470 46,994 5,467 4,979 6,063

Sim 4 40,067 38,914 41,220 8,268 7,529 9,169

Diff (1-2) Pooled 6,165 4,787 7,543 7,009 6,554 7,532

Diff (1-2) Satterthwaite 6,165 4,786 7,543

Method Variances DF t Value Pr > |t|

Pooled Equal 398.0 8.8 <.0001

Satterthwaite Unequal 345.1 8.8 <.0001

95% CL Mean 95% CL Std Dev

Mnemonic N Mean Std Dev Std Err Minimum Maximum

Sim 23 200 34,409 6,163 436 21,196 58,213

Sim 4 200 40,067 8,268 585 17,994 60,364

Diff (1-2) -5,658 7,292 729

Mnemonic Method Mean Std Dev

Sim 23 34,409 33,550 35,269 6,163 5,612 6,834

Sim 4 40,067 38,914 41,220 8,268 7,529 9,169

Diff (1-2) Pooled -5,658 -7,092 -4,225 7,292 6,819 7,836

Diff (1-2) Satterthwaite -5,658 -7,092 -4,224

Method Variances DF t Value Pr > |t|

Pooled Equal 398.0 -7.8 <.0001

Satterthwaite Unequal 368.0 -7.8 <.0001

95% CL Mean 95% CL Std Dev

Mnemonic N Mean Std Dev Std Err Minimum Maximum

Sim 24 200 34,587 4,641 328 22,753 53,438

Sim 4 200 40,067 8,268 585 17,994 60,364

Diff (1-2) -5,481 6,705 670

Mnemonic Method Mean Std Dev

Sim 24 34,587 33,939 35,234 4,641 4,227 5,147

Sim 4 40,067 38,914 41,220 8,268 7,529 9,169

Diff (1-2) Pooled -5,481 -6,799 -4,163 6,705 6,269 7,205

Diff (1-2) Satterthwaite -5,481 -6,800 -4,162

Method Variances DF t Value Pr > |t|

Pooled Equal 398.0 -8.2 <.0001

Satterthwaite Unequal 313.1 -8.2 <.0001

95% CL Mean 95% CL Std Dev
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Mnemonic N Mean Std Dev Std Err Minimum Maximum

Sim 25 200 34,053 3,914 277 25,115 47,990

Sim 5 200 37,338 4,113 291 27,730 49,060

Diff (1-2) -3,285 4,014 401

Mnemonic Method Mean Std Dev

Sim 25 34,053 33,507 34,599 3,914 3,564 4,340

Sim 5 37,338 36,764 37,911 4,113 3,745 4,561

Diff (1-2) Pooled -3,285 -4,074 -2,496 4,014 3,754 4,314

Diff (1-2) Satterthwaite -3,285 -4,074 -2,496

Method Variances DF t Value Pr > |t|

Pooled Equal 398.0 -8.2 <.0001

Satterthwaite Unequal 397.0 -8.2 <.0001

95% CL Mean 95% CL Std Dev

Mnemonic N Mean Std Dev Std Err Minimum Maximum

Sim 26 200 24,498 1,108 78 21,615 27,277

Sim 5 200 37,338 4,113 291 27,730 49,060

Diff (1-2) -12,840 3,012 301

Mnemonic Method Mean Std Dev

Sim 26 24,498 24,343 24,652 1,108 1,009 1,228

Sim 5 37,338 36,764 37,911 4,113 3,745 4,561

Diff (1-2) Pooled -12,840 -13,432 -12,248 3,012 2,816 3,237

Diff (1-2) Satterthwaite -12,840 -13,434 -12,247

Method Variances DF t Value Pr > |t|

Pooled Equal 398.0 -42.6 <.0001

Satterthwaite Unequal 227.7 -42.6 <.0001

95% CL Mean 95% CL Std Dev

Mnemonic N Mean Std Dev Std Err Minimum Maximum

Sim 27 200 30,957 2,456 174 25,981 40,026

Sim 5 200 37,338 4,113 291 27,730 49,060

Diff (1-2) -6,380 3,387 339

Mnemonic Method Mean Std Dev

Sim 27 30,957 30,615 31,300 2,456 2,236 2,723

Sim 5 37,338 36,764 37,911 4,113 3,745 4,561

Diff (1-2) Pooled -6,380 -7,046 -5,715 3,387 3,167 3,640

Diff (1-2) Satterthwaite -6,380 -7,047 -5,714

Method Variances DF t Value Pr > |t|

Pooled Equal 398.0 -18.8 <.0001

Satterthwaite Unequal 324.9 -18.8 <.0001

95% CL Mean 95% CL Std Dev
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Mnemonic N Mean Std Dev Std Err Minimum Maximum

Sim 28 200 25,489 992 70 22,641 28,673

Sim 5 200 37,338 4,113 291 27,730 49,060

Diff (1-2) -11,849 2,991 299

Mnemonic Method Mean Std Dev

Sim 28 25,489 25,351 25,627 992 903 1,100

Sim 5 37,338 36,764 37,911 4,113 3,745 4,561

Diff (1-2) Pooled -11,849 -12,437 -11,261 2,991 2,797 3,215

Diff (1-2) Satterthwaite -11,849 -12,438 -11,259

Method Variances DF t Value Pr > |t|

Pooled Equal 398.0 -39.6 <.0001

Satterthwaite Unequal 222.1 -39.6 <.0001

95% CL Mean 95% CL Std Dev

Mnemonic N Mean Std Dev Std Err Minimum Maximum

Sim 29 200 31,855 8,935 632 8,725 49,111

Sim 6 200 20,486 10,224 723 -5,010 39,444

Diff (1-2) 11,369 9,601 960

Mnemonic Method Mean Std Dev

Sim 29 31,855 30,609 33,101 8,935 8,137 9,908

Sim 6 20,486 19,061 21,912 10,224 9,310 11,337

Diff (1-2) Pooled 11,369 9,481 13,256 9,601 8,978 10,318

Diff (1-2) Satterthwaite 11,369 9,481 13,256

Method Variances DF t Value Pr > |t|

Pooled Equal 398.0 11.8 <.0001

Satterthwaite Unequal 391.0 11.8 <.0001

95% CL Mean 95% CL Std Dev

Mnemonic N Mean Std Dev Std Err Minimum Maximum

Sim 30 200 13,227 7,437 526 -8,904 25,440

Sim 6 200 20,486 10,224 723 -5,010 39,444

Diff (1-2) -7,259 8,940 894

Mnemonic Method Mean Std Dev

Sim 30 13,227 12,190 14,264 7,437 6,773 8,247

Sim 6 20,486 19,061 21,912 10,224 9,310 11,337

Diff (1-2) Pooled -7,259 -9,017 -5,502 8,940 8,360 9,607

Diff (1-2) Satterthwaite -7,259 -9,017 -5,501

Method Variances DF t Value Pr > |t|

Pooled Equal 398.0 -8.1 <.0001

Satterthwaite Unequal 363.5 -8.1 <.0001

95% CL Mean 95% CL Std Dev
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Mnemonic N Mean Std Dev Std Err Minimum Maximum

Sim 31 200 25,126 9,213 652 681 41,639

Sim 6 200 20,486 10,224 723 -5,010 39,444

Diff (1-2) 4,640 9,732 973

Mnemonic Method Mean Std Dev

Sim 31 25,126 23,841 26,411 9,213 8,390 10,217

Sim 6 20,486 19,061 21,912 10,224 9,310 11,337

Diff (1-2) Pooled 4,640 2,727 6,553 9,732 9,100 10,458

Diff (1-2) Satterthwaite 4,640 2,726 6,553

Method Variances DF t Value Pr > |t|

Pooled Equal 398.0 4.8 <.0001

Satterthwaite Unequal 393.8 4.8 <.0001

95% CL Mean 95% CL Std Dev

Mnemonic N Mean Std Dev Std Err Minimum Maximum

Sim 32 200 20,805 5,974 422 5,713 28,150

Sim 6 200 20,486 10,224 723 -5,010 39,444

Diff (1-2) 319 8,373 837

Mnemonic Method Mean Std Dev

Sim 32 20,805 19,972 21,638 5,974 5,441 6,625

Sim 6 20,486 19,061 21,912 10,224 9,310 11,337

Diff (1-2) Pooled 319 -1,327 1,965 8,373 7,830 8,998

Diff (1-2) Satterthwaite 319 -1,328 1,966

Method Variances DF t Value Pr > |t|

Pooled Equal 398.0 0.4 0.70

Satterthwaite Unequal 320.7 0.4 0.70

95% CL Mean 95% CL Std Dev

Mnemonic N Mean Std Dev Std Err Minimum Maximum

Sim 33 200 39,264 9,357 662 21,272 67,432

Sim 7 200 39,802 8,068 571 18,555 58,197

Diff (1-2) -539 8,736 874

Mnemonic Method Mean Std Dev

Sim 33 39,264 37,959 40,568 9,357 8,521 10,376

Sim 7 39,802 38,678 40,927 8,068 7,347 8,946

Diff (1-2) Pooled -539 -2,256 1,179 8,736 8,169 9,388

Diff (1-2) Satterthwaite -539 -2,256 1,179

Method Variances DF t Value Pr > |t|

Pooled Equal 398.0 -0.6 0.54

Satterthwaite Unequal 389.6 -0.6 0.54

95% CL Mean 95% CL Std Dev
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Mnemonic N Mean Std Dev Std Err Minimum Maximum

Sim 34 200 25,628 3,372 239 16,053 32,937

Sim 7 200 39,802 8,068 571 18,555 58,197

Diff (1-2) -14,174 6,183 618

Mnemonic Method Mean Std Dev

Sim 34 25,628 25,158 26,099 3,372 3,071 3,740

Sim 7 39,802 38,678 40,927 8,068 7,347 8,946

Diff (1-2) Pooled -14,174 -15,390 -12,959 6,183 5,782 6,645

Diff (1-2) Satterthwaite -14,174 -15,392 -12,957

Method Variances DF t Value Pr > |t|

Pooled Equal 398.0 -22.9 <.0001

Satterthwaite Unequal 266.5 -22.9 <.0001

95% CL Mean 95% CL Std Dev

Mnemonic N Mean Std Dev Std Err Minimum Maximum

Sim 35 200 34,632 6,287 445 21,094 58,173

Sim 7 200 39,802 8,068 571 18,555 58,197

Diff (1-2) -5,170 7,232 723

Mnemonic Method Mean Std Dev

Sim 35 34,632 33,756 35,509 6,287 5,726 6,972

Sim 7 39,802 38,678 40,927 8,068 7,347 8,946

Diff (1-2) Pooled -5,170 -6,592 -3,748 7,232 6,763 7,772

Diff (1-2) Satterthwaite -5,170 -6,592 -3,748

Method Variances DF t Value Pr > |t|

Pooled Equal 398.0 -7.2 <.0001

Satterthwaite Unequal 375.6 -7.2 <.0001

95% CL Mean 95% CL Std Dev

Mnemonic N Mean Std Dev Std Err Minimum Maximum

Sim 36 200 27,101 3,010 213 20,411 34,640

Sim 7 200 39,802 8,068 571 18,555 58,197

Diff (1-2) -12,702 6,089 609

Mnemonic Method Mean Std Dev

Sim 36 27,101 26,681 27,521 3,010 2,741 3,337

Sim 7 39,802 38,678 40,927 8,068 7,347 8,946

Diff (1-2) Pooled -12,702 -13,899 -11,505 6,089 5,693 6,543

Diff (1-2) Satterthwaite -12,702 -13,901 -11,502

Method Variances DF t Value Pr > |t|

Pooled Equal 398.0 -20.9 <.0001

Satterthwaite Unequal 253.3 -20.9 <.0001

95% CL Mean 95% CL Std Dev
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Mnemonic N Mean Std Dev Std Err Minimum Maximum

Sim 37 200 29,336 10,544 746 -2,555 52,101

Sim 8 200 17,357 11,309 800 -16,280 38,062

Diff (1-2) 11,979 10,933 1,093

Mnemonic Method Mean Std Dev

Sim 37 29,336 27,866 30,806 10,544 9,602 11,692

Sim 8 17,357 15,781 18,934 11,309 10,298 12,540

Diff (1-2) Pooled 11,979 9,830 14,128 10,933 10,223 11,749

Diff (1-2) Satterthwaite 11,979 9,830 14,128

Method Variances DF t Value Pr > |t|

Pooled Equal 398.0 11.0 <.0001

Satterthwaite Unequal 396.1 11.0 <.0001

95% CL Mean 95% CL Std Dev

Mnemonic N Mean Std Dev Std Err Minimum Maximum

Sim 38 200 10,006 8,986 635 -26,215 25,230

Sim 8 200 17,357 11,309 800 -16,280 38,062

Diff (1-2) -7,351 10,214 1,021

Mnemonic Method Mean Std Dev

Sim 38 10,006 8,753 11,259 8,986 8,183 9,965

Sim 8 17,357 15,781 18,934 11,309 10,298 12,540

Diff (1-2) Pooled -7,351 -9,359 -5,343 10,214 9,551 10,976

Diff (1-2) Satterthwaite -7,351 -9,360 -5,343

Method Variances DF t Value Pr > |t|

Pooled Equal 398.0 -7.2 <.0001

Satterthwaite Unequal 378.7 -7.2 <.0001

95% CL Mean 95% CL Std Dev

Mnemonic N Mean Std Dev Std Err Minimum Maximum

Sim 39 200 24,135 9,005 637 373 42,105

Sim 8 200 17,357 11,309 800 -16,280 38,062

Diff (1-2) 6,778 10,222 1,022

Mnemonic Method Mean Std Dev

Sim 39 24,135 22,880 25,391 9,005 8,200 9,986

Sim 8 17,357 15,781 18,934 11,309 10,298 12,540

Diff (1-2) Pooled 6,778 4,768 8,787 10,222 9,558 10,985

Diff (1-2) Satterthwaite 6,778 4,768 8,788

Method Variances DF t Value Pr > |t|

Pooled Equal 398.0 6.6 <.0001

Satterthwaite Unequal 379.0 6.6 <.0001

95% CL Mean 95% CL Std Dev
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Mnemonic N Mean Std Dev Std Err Minimum Maximum

Sim 40 200 22,842 6,122 433 4,060 30,986

Sim 8 200 17,357 11,309 800 -16,280 38,062

Diff (1-2) 5,485 9,093 909

Mnemonic Method Mean Std Dev

Sim 40 22,842 21,989 23,696 6,122 5,575 6,789

Sim 8 17,357 15,781 18,934 11,309 10,298 12,540

Diff (1-2) Pooled 5,485 3,697 7,272 9,093 8,503 9,772

Diff (1-2) Satterthwaite 5,485 3,696 7,274

Method Variances DF t Value Pr > |t|

Pooled Equal 398.0 6.0 <.0001

Satterthwaite Unequal 306.4 6.0 <.0001

95% CL Mean 95% CL Std Dev
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