1,691 research outputs found

    Prediction and comparison of downlink electric-field and uplink localised SAR values for realistic indoor wireless planning

    Get PDF
    In this paper, for the first time a heuristic network calculator for both whole-body exposure due to indoor base station antennas or access points (downlink exposure) and localised exposure due to the mobile device (uplink exposure) in indoor wireless networks is presented. As an application, three phone call scenarios are investigated (Universal Mobile Telecommunications System (UMTS) macrocell, UMTS femtocell andWiFi voice-over-IP) and compared with respect to the electric-field strength and localised specific absorption rate (SAR) distribution. Prediction models are created and successfully validated with an accuracy of 3 dB. The benefits of the UMTS power control mechanisms are demonstrated. However, dependent on the macrocell connection quality and on the user's average phone call connection time, also the macrocell solution might be preferential from an exposure point of view for the considered scenario

    A Genetic Algorithm with Location Intelligence Method for Energy Optimization in 5G Wireless Networks

    Get PDF
    The exponential growth in data traffic due to the modernization of smart devices has resulted in the need for a high-capacity wireless network in the future. To successfully deploy 5G network, it must be capable of handling the growth in the data traffic. The increasing amount of traffic volume puts excessive stress on the important factors of the resource allocation methods such as scalability and throughput. In this paper, we define a network planning as an optimization problem with the decision variables such as transmission power and transmitter (BS) location in 5G networks. The decision variables lent themselves to interesting implementation using several heuristic approaches, such as differential evolution (DE) algorithm and Real-coded Genetic Algorithm (RGA). The key contribution of this paper is that we modified RGA-based method to find the optimal configuration of BSs not only by just offering an optimal coverage of underutilized BSs but also by optimizing the amounts of power consumption. A comparison is also carried out to evaluate the performance of the conventional approach of DE and standard RGA with our modified RGA approach. The experimental results showed that our modified RGA can find the optimal configuration of 5G/LTE network planning problems, which is better performed than DE and standard RGA

    Joint minimization of uplink and downlink whole-body exposure dose in indoor wireless networks

    Get PDF
    The total whole-body exposure dose in indoor wireless networks is minimized. For the first time, indoor wireless networks are designed and simulated for a minimal exposure dose, where both uplink and downlink are considered. The impact of the minimization is numerically assessed for four scenarios: two WiFi configurations with different throughputs, a Universal Mobile Telecommunications System (UMTS) configuration for phone call traffic, and a Long-Term Evolution (LTE) configuration with a high data rate. Also, the influence of the uplink usage on the total absorbed dose is characterized. Downlink dose reductions of at least 75% are observed when adding more base stations with a lower transmit power. Total dose reductions decrease with increasing uplink usage for WiFi due to the lack of uplink power control but are maintained for LTE and UMTS. Uplink doses become dominant over downlink doses for usages of only a few seconds for WiFi. For UMTS and LTE, an almost continuous uplink usage is required to have a significant effect on the total dose, thanks to the power control mechanism

    Hybrid multi-objective network planning optimization algorithm

    Get PDF

    Joint Minimization of Uplink and Downlink Whole-Body Exposure Dose in Indoor Wireless Networks

    Get PDF
    • 

    corecore