113 research outputs found

    Semidefinite representation for convex hulls of real algebraic curves

    Full text link
    We show that the closed convex hull of any one-dimensional semi-algebraic subset of R^n has a semidefinite representation, meaning that it can be written as a linear projection of the solution set of some linear matrix inequality. This is proved by an application of the moment relaxation method. Given a nonsingular affine real algebraic curve C and a compact semialgebraic subset K of its R-points, the preordering P(K) of all regular functions on C that are nonnegative on K is known to be finitely generated. We prove that P(K) is stable, meaning that uniform degree bounds exist for weighted sum of squares representations of elements of P(K). We also extend this last result to the case where K is only virtually compact. The main technical tool for the proof of stability is the archimedean local-global principle. As a consequence of our results we prove that every convex semialgebraic subset of R^2 has a semidefinite representation.Comment: v2: 19 pp (Section 6 is new); v3: 19 pp (small issues fixed); v4: updated and slightly expande

    Optimal Control Theory for Continuous Variable Quantum Gates

    Full text link
    We apply the methodology of optimal control theory to the problem of implementing quantum gates in continuous variable systems with quadratic Hamiltonians. We demonstrate that it is possible to define a fidelity measure for continuous variable (CV) gate optimization that is devoid of traps, such that the search for optimal control fields using local algorithms will not be hindered. The optimal control of several quantum computing gates, as well as that of algorithms composed of these primitives, is investigated using several typical physical models and compared for discrete and continuous quantum systems. Numerical simulations indicate that the optimization of generic CV quantum gates is inherently more expensive than that of generic discrete variable quantum gates, and that the exact-time controllability of CV systems plays an important role in determining the maximum achievable gate fidelity. The resulting optimal control fields typically display more complicated Fourier spectra that suggest a richer variety of possible control mechanisms. Moreover, the ability to control interactions between qunits is important for delimiting the total control fluence. The comparative ability of current experimental protocols to implement such time-dependent controls may help determine which physical incarnations of CV quantum information processing will be the easiest to implement with optimal fidelity.Comment: 39 pages, 11 figure

    A Semidefinite Approach for Truncated K-Moment Problems

    Full text link
    A truncated moment sequence (tms) of degree d is a vector indexed by monomials whose degree is at most d. Let K be a semialgebraic set.The truncated K-moment problem (TKMP) is: when does a tms y admit a positive Borel measure supported? This paper proposes a semidefinite programming (SDP) approach for solving TKMP. When K is compact, we get the following results: whether a tms y of degree d admits a K-measure or notcan be checked via solving a sequence of SDP problems; when y admits no K-measure, a certificate will be given; when y admits a K-measure, a representing measure for y would be obtained from solving the SDP under some necessary and some sufficient conditions. Moreover, we also propose a practical SDP method for finding flat extensions, which in our numerical experiments always finds a finitely atomic representing measure for a tms when it admits one

    Linear Optimization with Cones of Moments and Nonnegative Polynomials

    Full text link
    Let A be a finite subset of N^n and R[x]_A be the space of real polynomials whose monomial powers are from A. Let K be a compact basic semialgebraic set of R^n such that R[x]_A contains a polynomial that is positive on K. Denote by P_A(K) the cone of polynomials in R[x]_A that are nonnegative on K. The dual cone of P_A(K) is R_A(K), the set of all A-truncated moment sequences in R^A that admit representing measures supported in K. Our main results are: i) We study the properties of P_A(K) and R_A(K) (like interiors, closeness, duality, memberships), and construct a convergent hierarchy of semidefinite relaxations for each of them. ii) We propose a semidefinite algorithm for solving linear optimization problems with the cones P_A(K) and R_A(K), and prove its asymptotic and finite convergence; a stopping criterion is also given. iii) We show how to check whether P_A(K) and R_A(K) intersect affine subspaces; if they do, we show to get get a point in the intersections; if they do not, we prove certificates for the non-intersecting

    Quantum Control Landscapes

    Full text link
    Numerous lines of experimental, numerical and analytical evidence indicate that it is surprisingly easy to locate optimal controls steering quantum dynamical systems to desired objectives. This has enabled the control of complex quantum systems despite the expense of solving the Schrodinger equation in simulations and the complicating effects of environmental decoherence in the laboratory. Recent work indicates that this simplicity originates in universal properties of the solution sets to quantum control problems that are fundamentally different from their classical counterparts. Here, we review studies that aim to systematically characterize these properties, enabling the classification of quantum control mechanisms and the design of globally efficient quantum control algorithms.Comment: 45 pages, 15 figures; International Reviews in Physical Chemistry, Vol. 26, Iss. 4, pp. 671-735 (2007

    On the Number of Zeros of Abelian Integrals: A Constructive Solution of the Infinitesimal Hilbert Sixteenth Problem

    Full text link
    We prove that the number of limit cycles generated by a small non-conservative perturbation of a Hamiltonian polynomial vector field on the plane, is bounded by a double exponential of the degree of the fields. This solves the long-standing tangential Hilbert 16th problem. The proof uses only the fact that Abelian integrals of a given degree are horizontal sections of a regular flat meromorphic connection (Gauss-Manin connection) with a quasiunipotent monodromy group.Comment: Final revisio
    corecore