3,689 research outputs found

    Estimating Blood Pressure from Photoplethysmogram Signal and Demographic Features using Machine Learning Techniques

    Full text link
    Hypertension is a potentially unsafe health ailment, which can be indicated directly from the Blood pressure (BP). Hypertension always leads to other health complications. Continuous monitoring of BP is very important; however, cuff-based BP measurements are discrete and uncomfortable to the user. To address this need, a cuff-less, continuous and a non-invasive BP measurement system is proposed using Photoplethysmogram (PPG) signal and demographic features using machine learning (ML) algorithms. PPG signals were acquired from 219 subjects, which undergo pre-processing and feature extraction steps. Time, frequency and time-frequency domain features were extracted from the PPG and their derivative signals. Feature selection techniques were used to reduce the computational complexity and to decrease the chance of over-fitting the ML algorithms. The features were then used to train and evaluate ML algorithms. The best regression models were selected for Systolic BP (SBP) and Diastolic BP (DBP) estimation individually. Gaussian Process Regression (GPR) along with ReliefF feature selection algorithm outperforms other algorithms in estimating SBP and DBP with a root-mean-square error (RMSE) of 6.74 and 3.59 respectively. This ML model can be implemented in hardware systems to continuously monitor BP and avoid any critical health conditions due to sudden changes.Comment: Accepted for publication in Sensor, 14 Figures, 14 Table

    Cuffless Blood Pressure in clinical practice: challenges, opportunities and current limits.

    Get PDF
    Background: Cuffless blood pressure measurement technologies have attracted significant attention for their potential to transform cardiovascular monitoring.Methods: This updated narrative review thoroughly examines the challenges, opportunities, and limitations associated with the implementation of cuffless blood pressure monitoring systems.Results: Diverse technologies, including photoplethysmography, tonometry, and ECG analysis, enable cuffless blood pressure measurement and are integrated into devices like smartphones and smartwatches. Signal processing emerges as a critical aspect, dictating the accuracy and reliability of readings. Despite its potential, the integration of cuffless technologies into clinical practice faces obstacles, including the need to address concerns related to accuracy, calibration, and standardization across diverse devices and patient populations. The development of robust algorithms to mitigate artifacts and environmental disturbances is essential for extracting clear physiological signals. Based on extensive research, this review emphasizes the necessity for standardized protocols, validation studies, and regulatory frameworks to ensure the reliability and safety of cuffless blood pressure monitoring devices and their implementation in mainstream medical practice. Interdisciplinary collaborations between engineers, clinicians, and regulatory bodies are crucial to address technical, clinical, and regulatory complexities during implementation. In conclusion, while cuffless blood pressure monitoring holds immense potential to transform cardiovascular care. The resolution of existing challenges and the establishment of rigorous standards are imperative for its seamless incorporation into routine clinical practice.Conclusion: The emergence of these new technologies shifts the paradigm of cardiovascular health management, presenting a new possibility for non-invasive continuous and dynamic monitoring. The concept of cuffless blood pressure measurement is viable and more finely tuned devices are expected to enter the market, which could redefine our understanding of blood pressure and hypertension

    Multimodal Photoplethysmography-Based Approaches for Improved Detection of Hypertension

    Get PDF
    Elevated blood pressure (BP) is a major cause of death, yet hypertension commonly goes undetected. Owing to its nature, it is typically asymptomatic until later in its progression when the vessel or organ structure has already been compromised. Therefore, noninvasive and continuous BP measurement methods are needed to ensure appropriate diagnosis and early management before hypertension leads to irreversible complications. Photoplethysmography (PPG) is a noninvasive technology with waveform morphologies similar to that of arterial BP waveforms, therefore attracting interest regarding its usability in BP estimation. In recent years, wearable devices incorporating PPG sensors have been proposed to improve the early diagnosis and management of hypertension. Additionally, the need for improved accuracy and convenience has led to the development of devices that incorporate multiple different biosignals with PPG. Through the addition of modalities such as an electrocardiogram, a final measure of the pulse wave velocity is derived, which has been proved to be inversely correlated to BP and to yield accurate estimations. This paper reviews and summarizes recent studies within the period 2010-2019 that combined PPG with other biosignals and offers perspectives on the strengths and weaknesses of current developments to guide future advancements in BP measurement. Our literature review reveals promising measurement accuracies and we comment on the effective combinations of modalities and success of this technology

    An optimization study of estimating blood pressure models based on pulse arrival time for continuous monitoring

    Get PDF
    Continuous blood pressure (BP) monitoring has a significant meaning for the prevention and early diagnosis of cardiovascular disease. However, under different calibration methods, it is difficult to determine which model is better for estimating BP. This study was firstly designed to reveal a better BP estimation model by evaluating and optimizing different BP models under a justified and uniform criterion, i.e., the advanced point-to-point pairing method (PTP). Here, the physical trial in this study caused the BP increase largely. In addition, the PPG and ECG signals were collected while the cuff bps were measured for each subject. The validation was conducted on four popular vascular elasticity (VE) models (MK-EE, L-MK, MK-BH, and dMK-BH) and one representative elastic tube (ET) model, i.e., M-M. The results revealed that the VE models except for L-MK outperformed the ET model. The linear L-MK as a VE model had the largest estimated error, and the nonlinear M-M model had a weaker correlation between the estimated BP and the cuff BP than MK-EE, MK-BH, and dMK-BH models. Further, in contrast to L-MK, the dMK-BH model had the strongest correlation and the smallest difference between the estimated BP and the cuff BP including systolic blood pressure (SBP) and diastolic blood pressure (DBP) than others. In this study, the simple MK-EE model showed the best similarity to the dMK-BH model. There were no significant changes between MK-EE and dMK-BH models. These findings indicated that the nonlinear MK-EE model with low estimated error and simple mathematical expression was a good choice for application in wearable sensor devices for cuff-less BP monitoring compared to others

    Mobile Personal Healthcare System for Non-Invasive, Pervasive and Continuous Blood Pressure Monitoring: A Feasibility Study

    Get PDF
    Background: Smartphone-based blood pressure (BP) monitor using photoplethysmogram (PPG) technology has emerged as a promising approach to empower users with self-monitoring for effective diagnosis and control ofhypertension (HT). Objective: This study aimed to develop a mobile personal healthcare system for non-invasive, pervasive, and continuous estimation of BP level and variability to be user-friendly to elderly. Methods: The proposed approach was integrated by a self-designed cuffless, calibration-free, wireless and wearable PPG-only sensor, and a native purposely-designed smartphone application using multilayer perceptron machine learning techniques from raw signals. We performed a pilot study with three elder adults (mean age 61.3 ± 1.5 years; 66% women) to test usability and accuracy of the smartphone-based BP monitor. Results: The employed artificial neural network (ANN) model performed with high accuracy in terms of predicting the reference BP values of our validation sample (n=150). On average, our approach predicted BP measures with accuracy \u3e90% and correlations \u3e0.90 (P \u3c .0001). Bland-Altman plots showed that most of the errors for BP prediction were less than 10 mmHg. Conclusions: With further development and validation, the proposed system could provide a cost-effective strategy to improve the quality and coverage of healthcare, particularly in rural zones, areas lacking physicians, and solitary elderly populations

    Radar-based Measurement of Pulse Wave using Fast Physiological Component Analysis

    Get PDF
    2022 International Workshop on Antenna Technology (iWAT), 16-18 May 2022, Dublin, IrelandThis study proposes a fast blind signal separation technique for human arterial pulse wave propagation measurement. One of the authors previously developed a blind signal separation method called physiological component analysis that uses mathematical modeling of the measured physiological signals, including the pulse wave propagation, and this method improves the signal separation accuracy when applied to array signal processing. Physiological component analysis, however, is known to require long computation times because it is based on high-dimensional global optimization. In this paper, we propose a method to reduce the dimensionality of the decision variables for the optimization process that uses the Schelkunoff polynomial method. Using this dimension reduction technique, we propose a new algorithm, called fast physiological component analysis, and the performance of this algorithm is evaluated using numerical simulations

    Intraoperative Beat-to-Beat Pulse Transit Time (PTT) Monitoring via Non-Invasive Piezoelectric/Piezocapacitive Peripheral Sensors Can Predict Changes in Invasively Acquired Blood Pressure in High-Risk Surgical Patients

    Get PDF
    Background: Non-invasive tracking of beat-to-beat pulse transit time (PTT) via piezoelectric/piezocapacitive sensors (PES/PCS) may expand perioperative hemodynamic monitoring. This study evaluated the ability for PTT via PES/PCS to correlate with systolic, diastolic, and mean invasive blood pressure (SBPIBP, DBPIBP, and MAPIBP, respectively) and to detect SBPIBP fluctuations. Methods: PES/PCS and IBP measurements were performed in 20 patients undergoing abdominal, urological, and cardiac surgery. A Pearson’s correlation analysis (r) between 1/PTT and IBP was performed. The predictive ability of 1/PTT with changes in SBPIBP was determined by area under the curve (reported as AUC, sensitivity, specificity). Results: Significant correlations between 1/PTT and SBPIBP were found for PES (r = 0.64) and PCS (r = 0.55) (p < 0.01), as well as MAPIBP/DBPIBP for PES (r = 0.6/0.55) and PCS (r = 0.5/0.45) (p < 0.05). A 7% decrease in 1/PTTPES predicted a 30% SBPIBP decrease (0.82, 0.76, 0.76), while a 5.6% increase predicted a 30% SBPIBP increase (0.75, 0.7, 0.68). A 6.6% decrease in 1/PTTPCS detected a 30% SBPIBP decrease (0.81, 0.72, 0.8), while a 4.8% 1/PTTPCS increase detected a 30% SBPIBP increase (0.73, 0.64, 0.68). Conclusions: Non-invasive beat-to-beat PTT via PES/PCS demonstrated significant correlations with IBP and detected significant changes in SBPIBP. Thus, PES/PCS as a novel sensor technology may augment intraoperative hemodynamic monitoring during major surgery.German Government sponsored ZIM (Zentrales Innovationsprogramm Mittelstand) programPeer Reviewe
    corecore