2,813 research outputs found

    New Trends in Biologically-Inspired Audio Coding

    Get PDF
    This book chapter deals with the generation of auditory-inspired spectro-temporal features aimed at audio coding. To do so, we first generate sparse audio representations we call spikegrams, using projections on gammatone or gammachirp kernels that generate neural spikes. Unlike Fourier-based representations, these representations are powerful at identifying auditory events, such as onsets, offsets, transients and harmonic structures. We show that the introduction of adaptiveness in the selection of gammachirp kernels enhances the compression rate compared to the case where the kernels are non-adaptive. We also integrate a masking model that helps reduce bitrate without loss of perceptible audio quality. We then quantize coding values using the genetic algorithm that is more optimal than uniform quantization for this framework. We finally propose a method to extract frequent auditory objects (patterns) in the aforementioned sparse representations. The extracted frequency-domain patterns (auditory objects) help us address spikes (auditory events) collectively rather than individually. When audio compression is needed, the different patterns are stored in a small codebook that can be used to efficiently encode audio materials in a lossless way. The approach is applied to different audio signals and results are discussed and compared. This work is a first step towards the design of a high-quality auditory-inspired \"object-based\" audio coder

    Simplification Resilient LDPC-Coded Sparse-QIM Watermarking for 3D-Meshes

    Full text link
    We propose a blind watermarking scheme for 3-D meshes which combines sparse quantization index modulation (QIM) with deletion correction codes. The QIM operates on the vertices in rough concave regions of the surface thus ensuring impeccability, while the deletion correction code recovers the data hidden in the vertices which is removed by mesh optimization and/or simplification. The proposed scheme offers two orders of magnitude better performance in terms of recovered watermark bit error rate compared to the existing schemes of similar payloads and fidelity constraints.Comment: Submitted, revised and Copyright transfered to IEEE Transactions on Multimedia, October 9th 201

    Perceptual models in speech quality assessment and coding

    Get PDF
    The ever-increasing demand for good communications/toll quality speech has created a renewed interest into the perceptual impact of rate compression. Two general areas are investigated in this work, namely speech quality assessment and speech coding. In the field of speech quality assessment, a model is developed which simulates the processing stages of the peripheral auditory system. At the output of the model a "running" auditory spectrum is obtained. This represents the auditory (spectral) equivalent of any acoustic sound such as speech. Auditory spectra from coded speech segments serve as inputs to a second model. This model simulates the information centre in the brain which performs the speech quality assessment. [Continues.

    NASA JSC neural network survey results

    Get PDF
    A survey of Artificial Neural Systems in support of NASA's (Johnson Space Center) Automatic Perception for Mission Planning and Flight Control Research Program was conducted. Several of the world's leading researchers contributed papers containing their most recent results on artificial neural systems. These papers were broken into categories and descriptive accounts of the results make up a large part of this report. Also included is material on sources of information on artificial neural systems such as books, technical reports, software tools, etc
    corecore